VMINNM

This instruction determines the floating point minimum number.

It handles NaNs in consistence with the IEEE754-2008 specification. It returns the numerical operand when one operand is numerical and the other is a quiet NaN, but otherwise the result is identical to floating-point VMIN.

This instruction is not conditional.

It has encodings from the following instruction sets: A32 ( A1 and A2 ) and T32 ( T1 and T2 ) .

A1

313029282726252423222120191817161514131211109876543210
111100110D1szVnVd1111NQM1Vm
op

64-bit SIMD vector (Q == 0)

VMINNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMINNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED; if sz == '1' && !HaveFP16Ext() then UNDEFINED; maximum = (op == '0'); advsimd = TRUE; integer esize; integer elements; case sz of when '0' esize = 32; elements = 2; when '1' esize = 16; elements = 4; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

313029282726252423222120191817161514131211109876543210
111111101D00VnVd10!= 00N1M0Vm
sizeop

Half-precision scalar (size == 01)
(FEAT_FP16)

VMINNM{<q>}.F16 <Sd>, <Sn>, <Sm> // (Cannot be conditional)

Single-precision scalar (size == 10)

VMINNM{<q>}.F32 <Sd>, <Sn>, <Sm> // (Cannot be conditional)

Double-precision scalar (size == 11)

VMINNM{<q>}.F64 <Dd>, <Dn>, <Dm> // (Cannot be conditional)

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED; advsimd = FALSE; maximum = (op == '0'); integer esize; integer d; integer n; integer m; case size of when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M); when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M); when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

T1

15141312111098765432101514131211109876543210
111111110D1szVnVd1111NQM1Vm
op

64-bit SIMD vector (Q == 0)

VMINNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMINNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE; if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED; if sz == '1' && !HaveFP16Ext() then UNDEFINED; maximum = (op == '0'); advsimd = TRUE; integer esize; integer elements; case sz of when '0' esize = 32; elements = 2; when '1' esize = 16; elements = 4; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

T2

15141312111098765432101514131211109876543210
111111101D00VnVd10!= 00N1M0Vm
sizeop

Half-precision scalar (size == 01)
(FEAT_FP16)

VMINNM{<q>}.F16 <Sd>, <Sn>, <Sm> // (Not permitted in IT block)

Single-precision scalar (size == 10)

VMINNM{<q>}.F32 <Sd>, <Sn>, <Sm> // (Not permitted in IT block)

Double-precision scalar (size == 11)

VMINNM{<q>}.F64 <Dd>, <Dn>, <Dm> // (Not permitted in IT block)

if InITBlock() then UNPREDICTABLE; if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED; advsimd = FALSE; maximum = (op == '0'); integer esize; integer d; integer n; integer m; case size of when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M); when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M); when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

For more information about the constrained unpredictable behavior of this instruction, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<q>

See Standard assembler syntax fields.

<dt>

Is the data type for the elements of the vectors, encoded in sz:

sz <dt>
0 F32
1 F16
<Qd>

Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn>

Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm>

Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd>

Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn>

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm>

Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd>

Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn>

Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm>

Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation

EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd); if advsimd then // Advanced SIMD instruction for r = 0 to regs-1 for e = 0 to elements-1 op1 = Elem[D[n+r], e, esize]; op2 = Elem[D[m+r], e, esize]; if maximum then Elem[D[d+r], e, esize] = FPMaxNum(op1, op2, StandardFPSCRValue()); else Elem[D[d+r], e, esize] = FPMinNum(op1, op2, StandardFPSCRValue()); else // VFP instruction case esize of when 16 if maximum then S[d] = Zeros(16) : FPMaxNum(S[n]<15:0>, S[m]<15:0>, FPSCR[]); else S[d] = Zeros(16) : FPMinNum(S[n]<15:0>, S[m]<15:0>, FPSCR[]); when 32 if maximum then S[d] = FPMaxNum(S[n], S[m], FPSCR[]); else S[d] = FPMinNum(S[n], S[m], FPSCR[]); when 64 if maximum then D[d] = FPMaxNum(D[n], D[m], FPSCR[]); else D[d] = FPMinNum(D[n], D[m], FPSCR[]);


Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.