Concatenate even or odd elements from two vectors
Concatenate adjacent even or odd-numbered elements from the first and second source vectors and place in elements of the destination vector. This instruction is unpredicated.
Note: UZP1 is equivalent to truncating and packing each element from two source vectors into a single destination vector with elements of half the size.
The 128-bit element variant requires that the current vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing bits are set to zero. ID_AA64ZFR0_EL1.F64MM indicates whether the 128-bit element variant is implemented. The 128-bit element variant is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and enabled.
It has encodings from 4 classes: Even , Even (quadwords) , Odd and Odd (quadwords)
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | size | 1 | Zm | 0 | 1 | 1 | 0 | 1 | 0 | Zn | Zd | |||||||||||||
H |
if !HaveSVE() && !HaveSME() then UNDEFINED; constant integer esize = 8 << UInt(size); integer n = UInt(Zn); integer m = UInt(Zm); integer d = UInt(Zd); integer part = 0;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | Zm | 0 | 0 | 0 | 0 | 1 | 0 | Zn | Zd | ||||||||||||
H |
if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED; constant integer esize = 128; integer n = UInt(Zn); integer m = UInt(Zm); integer d = UInt(Zd); integer part = 0;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | size | 1 | Zm | 0 | 1 | 1 | 0 | 1 | 1 | Zn | Zd | |||||||||||||
H |
if !HaveSVE() && !HaveSME() then UNDEFINED; constant integer esize = 8 << UInt(size); integer n = UInt(Zn); integer m = UInt(Zm); integer d = UInt(Zd); integer part = 1;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | Zm | 0 | 0 | 0 | 0 | 1 | 1 | Zn | Zd | ||||||||||||
H |
if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED; constant integer esize = 128; integer n = UInt(Zn); integer m = UInt(Zm); integer d = UInt(Zd); integer part = 1;
<Zd> |
Is the name of the destination scalable vector register, encoded in the "Zd" field. |
<T> |
Is the size specifier,
encoded in
|
<Zn> |
Is the name of the first source scalable vector register, encoded in the "Zn" field. |
<Zm> |
Is the name of the second source scalable vector register, encoded in the "Zm" field. |
if esize < 128 then CheckSVEEnabled(); else CheckNonStreamingSVEEnabled(); constant integer VL = CurrentVL; if VL < esize * 2 then UNDEFINED; constant integer pairs = VL DIV (esize * 2); bits(VL) operand1 = Z[n, VL]; bits(VL) operand2 = Z[m, VL]; bits(VL) result = Zeros(VL); for p = 0 to pairs - 1 Elem[result, p, esize] = Elem[operand1, 2*p+part, esize]; for p = 0 to pairs - 1 Elem[result, pairs+p, esize] = Elem[operand2, 2*p+part, esize]; Z[d, VL] = result;
If FEAT_SVE2 is implemented or FEAT_SME is implemented, then if PSTATE.DIT is 1:
Internal version only: isa v33.64, AdvSIMD v29.12, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T19:42
Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.