DFAR, Data Fault Address Register

The DFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Data Abort exception.

Configuration

AArch32 System register DFAR bits [31:0] are architecturally mapped to AArch64 System register FAR_EL1[31:0].

AArch32 System register DFAR bits [31:0] (DFAR_S) are architecturally mapped to AArch32 System register HDFAR[31:0] when EL2 is implemented, EL3 is implemented and the implementation only supports execution in AArch32 state.

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to DFAR are UNDEFINED.

Attributes

DFAR is a 32-bit register.

Field descriptions

313029282726252423222120191817161514131211109876543210
VA of faulting address of synchronous Data Abort exception

Bits [31:0]

VA of faulting address of synchronous Data Abort exception.

The reset behavior of this field is:

Accessing DFAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b01100b00000b000

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) then R[t] = DFAR_NS; else R[t] = DFAR; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && ELUsingAArch32(EL3) then R[t] = DFAR_NS; else R[t] = DFAR; elsif PSTATE.EL == EL3 then if SCR.NS == '0' then R[t] = DFAR_S; else R[t] = DFAR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b01100b00000b000

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) then DFAR_NS = R[t]; else DFAR = R[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && ELUsingAArch32(EL3) then DFAR_NS = R[t]; else DFAR = R[t]; elsif PSTATE.EL == EL3 then if SCR.NS == '0' then DFAR_S = R[t]; else DFAR_NS = R[t];


04/07/2023 11:24; 1b994cb0b8c6d1ae5a9a15edbc8bd6ce3b5c7d68

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.