1 /* Copyright (C) 2002-2021 Free Software Foundation, Inc.
2    This file is part of the GNU C Library.
3 
4    The GNU C Library is free software; you can redistribute it and/or
5    modify it under the terms of the GNU Lesser General Public
6    License as published by the Free Software Foundation; either
7    version 2.1 of the License, or (at your option) any later version.
8 
9    The GNU C Library is distributed in the hope that it will be useful,
10    but WITHOUT ANY WARRANTY; without even the implied warranty of
11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12    Lesser General Public License for more details.
13 
14    You should have received a copy of the GNU Lesser General Public
15    License along with the GNU C Library; if not, see
16    <https://www.gnu.org/licenses/>.  */
17 
18 #ifndef _DESCR_H
19 #define _DESCR_H	1
20 
21 #include <limits.h>
22 #include <sched.h>
23 #include <setjmp.h>
24 #include <stdbool.h>
25 #include <sys/types.h>
26 #include <hp-timing.h>
27 #include <list_t.h>
28 #include <lowlevellock.h>
29 #include <pthreaddef.h>
30 #include <dl-sysdep.h>
31 #include <thread_db.h>
32 #include <tls.h>
33 #include <unwind.h>
34 #include <bits/types/res_state.h>
35 #include <kernel-features.h>
36 #include <tls-internal-struct.h>
37 #include <sys/rseq.h>
38 
39 #ifndef TCB_ALIGNMENT
40 # define TCB_ALIGNMENT 32
41 #elif TCB_ALIGNMENT < 32
42 # error TCB_ALIGNMENT must be at least 32
43 #endif
44 
45 
46 /* We keep thread specific data in a special data structure, a two-level
47    array.  The top-level array contains pointers to dynamically allocated
48    arrays of a certain number of data pointers.  So we can implement a
49    sparse array.  Each dynamic second-level array has
50         PTHREAD_KEY_2NDLEVEL_SIZE
51    entries.  This value shouldn't be too large.  */
52 #define PTHREAD_KEY_2NDLEVEL_SIZE       32
53 
54 /* We need to address PTHREAD_KEYS_MAX key with PTHREAD_KEY_2NDLEVEL_SIZE
55    keys in each subarray.  */
56 #define PTHREAD_KEY_1STLEVEL_SIZE \
57   ((PTHREAD_KEYS_MAX + PTHREAD_KEY_2NDLEVEL_SIZE - 1) \
58    / PTHREAD_KEY_2NDLEVEL_SIZE)
59 
60 
61 
62 
63 /* Internal version of the buffer to store cancellation handler
64    information.  */
65 struct pthread_unwind_buf
66 {
67   struct
68   {
69     __jmp_buf jmp_buf;
70     int mask_was_saved;
71   } cancel_jmp_buf[1];
72 
73   union
74   {
75     /* This is the placeholder of the public version.  */
76     void *pad[4];
77 
78     struct
79     {
80       /* Pointer to the previous cleanup buffer.  */
81       struct pthread_unwind_buf *prev;
82 
83       /* Backward compatibility: state of the old-style cleanup
84 	 handler at the time of the previous new-style cleanup handler
85 	 installment.  */
86       struct _pthread_cleanup_buffer *cleanup;
87 
88       /* Cancellation type before the push call.  */
89       int canceltype;
90     } data;
91   } priv;
92 };
93 
94 
95 /* Opcodes and data types for communication with the signal handler to
96    change user/group IDs.  */
97 struct xid_command
98 {
99   int syscall_no;
100   /* Enforce zero-extension for the pointer argument in
101 
102      int setgroups (size_t size, const gid_t *list);
103 
104      The kernel XID arguments are unsigned and do not require sign
105      extension.  */
106   unsigned long int id[3];
107   volatile int cntr;
108   volatile int error; /* -1: no call yet, 0: success seen, >0: error seen.  */
109 };
110 
111 
112 /* Data structure used by the kernel to find robust futexes.  */
113 struct robust_list_head
114 {
115   void *list;
116   long int futex_offset;
117   void *list_op_pending;
118 };
119 
120 
121 /* Data strcture used to handle thread priority protection.  */
122 struct priority_protection_data
123 {
124   int priomax;
125   unsigned int priomap[];
126 };
127 
128 
129 /* Thread descriptor data structure.  */
130 struct pthread
131 {
132   union
133   {
134 #if !TLS_DTV_AT_TP
135     /* This overlaps the TCB as used for TLS without threads (see tls.h).  */
136     tcbhead_t header;
137 #else
138     struct
139     {
140       /* multiple_threads is enabled either when the process has spawned at
141 	 least one thread or when a single-threaded process cancels itself.
142 	 This enables additional code to introduce locking before doing some
143 	 compare_and_exchange operations and also enable cancellation points.
144 	 The concepts of multiple threads and cancellation points ideally
145 	 should be separate, since it is not necessary for multiple threads to
146 	 have been created for cancellation points to be enabled, as is the
147 	 case is when single-threaded process cancels itself.
148 
149 	 Since enabling multiple_threads enables additional code in
150 	 cancellation points and compare_and_exchange operations, there is a
151 	 potential for an unneeded performance hit when it is enabled in a
152 	 single-threaded, self-canceling process.  This is OK though, since a
153 	 single-threaded process will enable async cancellation only when it
154 	 looks to cancel itself and is hence going to end anyway.  */
155       int multiple_threads;
156       int gscope_flag;
157     } header;
158 #endif
159 
160     /* This extra padding has no special purpose, and this structure layout
161        is private and subject to change without affecting the official ABI.
162        We just have it here in case it might be convenient for some
163        implementation-specific instrumentation hack or suchlike.  */
164     void *__padding[24];
165   };
166 
167   /* This descriptor's link on the GL (dl_stack_used) or
168      GL (dl_stack_user) list.  */
169   list_t list;
170 
171   /* Thread ID - which is also a 'is this thread descriptor (and
172      therefore stack) used' flag.  */
173   pid_t tid;
174 
175   /* Ununsed.  */
176   pid_t pid_ununsed;
177 
178   /* List of robust mutexes the thread is holding.  */
179 #if __PTHREAD_MUTEX_HAVE_PREV
180   void *robust_prev;
181   struct robust_list_head robust_head;
182 
183   /* The list above is strange.  It is basically a double linked list
184      but the pointer to the next/previous element of the list points
185      in the middle of the object, the __next element.  Whenever
186      casting to __pthread_list_t we need to adjust the pointer
187      first.
188      These operations are effectively concurrent code in that the thread
189      can get killed at any point in time and the kernel takes over.  Thus,
190      the __next elements are a kind of concurrent list and we need to
191      enforce using compiler barriers that the individual operations happen
192      in such a way that the kernel always sees a consistent list.  The
193      backward links (ie, the __prev elements) are not used by the kernel.
194      FIXME We should use relaxed MO atomic operations here and signal fences
195      because this kind of concurrency is similar to synchronizing with a
196      signal handler.  */
197 # define QUEUE_PTR_ADJUST (offsetof (__pthread_list_t, __next))
198 
199 # define ENQUEUE_MUTEX_BOTH(mutex, val)					      \
200   do {									      \
201     __pthread_list_t *next = (__pthread_list_t *)			      \
202       ((((uintptr_t) THREAD_GETMEM (THREAD_SELF, robust_head.list)) & ~1ul)   \
203        - QUEUE_PTR_ADJUST);						      \
204     next->__prev = (void *) &mutex->__data.__list.__next;		      \
205     mutex->__data.__list.__next = THREAD_GETMEM (THREAD_SELF,		      \
206 						 robust_head.list);	      \
207     mutex->__data.__list.__prev = (void *) &THREAD_SELF->robust_head;	      \
208     /* Ensure that the new list entry is ready before we insert it.  */	      \
209     __asm ("" ::: "memory");						      \
210     THREAD_SETMEM (THREAD_SELF, robust_head.list,			      \
211 		   (void *) (((uintptr_t) &mutex->__data.__list.__next)	      \
212 			     | val));					      \
213   } while (0)
214 # define DEQUEUE_MUTEX(mutex) \
215   do {									      \
216     __pthread_list_t *next = (__pthread_list_t *)			      \
217       ((char *) (((uintptr_t) mutex->__data.__list.__next) & ~1ul)	      \
218        - QUEUE_PTR_ADJUST);						      \
219     next->__prev = mutex->__data.__list.__prev;				      \
220     __pthread_list_t *prev = (__pthread_list_t *)			      \
221       ((char *) (((uintptr_t) mutex->__data.__list.__prev) & ~1ul)	      \
222        - QUEUE_PTR_ADJUST);						      \
223     prev->__next = mutex->__data.__list.__next;				      \
224     /* Ensure that we remove the entry from the list before we change the     \
225        __next pointer of the entry, which is read by the kernel.  */	      \
226     __asm ("" ::: "memory");						      \
227     mutex->__data.__list.__prev = NULL;					      \
228     mutex->__data.__list.__next = NULL;					      \
229   } while (0)
230 #else
231   union
232   {
233     __pthread_slist_t robust_list;
234     struct robust_list_head robust_head;
235   };
236 
237 # define ENQUEUE_MUTEX_BOTH(mutex, val)					      \
238   do {									      \
239     mutex->__data.__list.__next						      \
240       = THREAD_GETMEM (THREAD_SELF, robust_list.__next);		      \
241     /* Ensure that the new list entry is ready before we insert it.  */	      \
242     __asm ("" ::: "memory");						      \
243     THREAD_SETMEM (THREAD_SELF, robust_list.__next,			      \
244 		   (void *) (((uintptr_t) &mutex->__data.__list) | val));     \
245   } while (0)
246 # define DEQUEUE_MUTEX(mutex) \
247   do {									      \
248     __pthread_slist_t *runp = (__pthread_slist_t *)			      \
249       (((uintptr_t) THREAD_GETMEM (THREAD_SELF, robust_list.__next)) & ~1ul); \
250     if (runp == &mutex->__data.__list)					      \
251       THREAD_SETMEM (THREAD_SELF, robust_list.__next, runp->__next);	      \
252     else								      \
253       {									      \
254 	__pthread_slist_t *next = (__pthread_slist_t *)		      \
255 	  (((uintptr_t) runp->__next) & ~1ul);				      \
256 	while (next != &mutex->__data.__list)				      \
257 	  {								      \
258 	    runp = next;						      \
259 	    next = (__pthread_slist_t *) (((uintptr_t) runp->__next) & ~1ul); \
260 	  }								      \
261 									      \
262 	runp->__next = next->__next;					      \
263 	/* Ensure that we remove the entry from the list before we change the \
264 	   __next pointer of the entry, which is read by the kernel.  */      \
265 	    __asm ("" ::: "memory");					      \
266 	mutex->__data.__list.__next = NULL;				      \
267       }									      \
268   } while (0)
269 #endif
270 #define ENQUEUE_MUTEX(mutex) ENQUEUE_MUTEX_BOTH (mutex, 0)
271 #define ENQUEUE_MUTEX_PI(mutex) ENQUEUE_MUTEX_BOTH (mutex, 1)
272 
273   /* List of cleanup buffers.  */
274   struct _pthread_cleanup_buffer *cleanup;
275 
276   /* Unwind information.  */
277   struct pthread_unwind_buf *cleanup_jmp_buf;
278 #define HAVE_CLEANUP_JMP_BUF
279 
280   /* Flags determining processing of cancellation.  */
281   int cancelhandling;
282   /* Bit set if canceled.  */
283 #define CANCELED_BIT		3
284 #define CANCELED_BITMASK	(0x01 << CANCELED_BIT)
285   /* Bit set if thread is exiting.  */
286 #define EXITING_BIT		4
287 #define EXITING_BITMASK		(0x01 << EXITING_BIT)
288   /* Bit set if thread terminated and TCB is freed.  */
289 #define TERMINATED_BIT		5
290 #define TERMINATED_BITMASK	(0x01 << TERMINATED_BIT)
291   /* Bit set if thread is supposed to change XID.  */
292 #define SETXID_BIT		6
293 #define SETXID_BITMASK		(0x01 << SETXID_BIT)
294 
295   /* Flags.  Including those copied from the thread attribute.  */
296   int flags;
297 
298   /* We allocate one block of references here.  This should be enough
299      to avoid allocating any memory dynamically for most applications.  */
300   struct pthread_key_data
301   {
302     /* Sequence number.  We use uintptr_t to not require padding on
303        32- and 64-bit machines.  On 64-bit machines it helps to avoid
304        wrapping, too.  */
305     uintptr_t seq;
306 
307     /* Data pointer.  */
308     void *data;
309   } specific_1stblock[PTHREAD_KEY_2NDLEVEL_SIZE];
310 
311   /* Two-level array for the thread-specific data.  */
312   struct pthread_key_data *specific[PTHREAD_KEY_1STLEVEL_SIZE];
313 
314   /* Flag which is set when specific data is set.  */
315   bool specific_used;
316 
317   /* True if events must be reported.  */
318   bool report_events;
319 
320   /* True if the user provided the stack.  */
321   bool user_stack;
322 
323   /* True if thread must stop at startup time.  */
324   bool stopped_start;
325 
326   /* Indicate that a thread creation setup has failed (for instance the
327      scheduler or affinity).  */
328   int setup_failed;
329 
330   /* Lock to synchronize access to the descriptor.  */
331   int lock;
332 
333   /* Lock for synchronizing setxid calls.  */
334   unsigned int setxid_futex;
335 
336 #if HP_TIMING_INLINE
337   hp_timing_t cpuclock_offset_ununsed;
338 #endif
339 
340   /* If the thread waits to join another one the ID of the latter is
341      stored here.
342 
343      In case a thread is detached this field contains a pointer of the
344      TCB if the thread itself.  This is something which cannot happen
345      in normal operation.  */
346   struct pthread *joinid;
347   /* Check whether a thread is detached.  */
348 #define IS_DETACHED(pd) ((pd)->joinid == (pd))
349 
350   /* The result of the thread function.  */
351   void *result;
352 
353   /* Scheduling parameters for the new thread.  */
354   struct sched_param schedparam;
355   int schedpolicy;
356 
357   /* Start position of the code to be executed and the argument passed
358      to the function.  */
359   void *(*start_routine) (void *);
360   void *arg;
361 
362   /* Debug state.  */
363   td_eventbuf_t eventbuf;
364   /* Next descriptor with a pending event.  */
365   struct pthread *nextevent;
366 
367   /* Machine-specific unwind info.  */
368   struct _Unwind_Exception exc;
369 
370   /* If nonzero, pointer to the area allocated for the stack and guard. */
371   void *stackblock;
372   /* Size of the stackblock area including the guard.  */
373   size_t stackblock_size;
374   /* Size of the included guard area.  */
375   size_t guardsize;
376   /* This is what the user specified and what we will report.  */
377   size_t reported_guardsize;
378 
379   /* Thread Priority Protection data.  */
380   struct priority_protection_data *tpp;
381 
382   /* Resolver state.  */
383   struct __res_state res;
384 
385   /* Signal mask for the new thread.  Used during thread startup to
386      restore the signal mask.  (Threads are launched with all signals
387      masked.)  */
388   sigset_t sigmask;
389 
390   /* Indicates whether is a C11 thread created by thrd_creat.  */
391   bool c11;
392 
393   /* Thread cancel state (PTHREAD_CANCEL_ENABLE or
394      PTHREAD_CANCEL_DISABLE).  */
395   unsigned char cancelstate;
396 
397   /* Thread cancel type (PTHREAD_CANCEL_DEFERRED or
398      PTHREAD_CANCEL_ASYNCHRONOUS).  */
399   unsigned char canceltype;
400 
401   /* Used in __pthread_kill_internal to detected a thread that has
402      exited or is about to exit.  exit_lock must only be acquired
403      after blocking signals.  */
404   bool exiting;
405   int exit_lock; /* A low-level lock (for use with __libc_lock_init etc).  */
406 
407   /* Used on strsignal.  */
408   struct tls_internal_t tls_state;
409 
410   /* rseq area registered with the kernel.  */
411   struct rseq rseq_area;
412 
413   /* This member must be last.  */
414   char end_padding[];
415 
416 #define PTHREAD_STRUCT_END_PADDING \
417   (sizeof (struct pthread) - offsetof (struct pthread, end_padding))
418 } __attribute ((aligned (TCB_ALIGNMENT)));
419 
420 /* This yields the pointer that TLS support code calls the thread pointer.  */
421 #if TLS_TCB_AT_TP
422 # define TLS_TPADJ(pd) (pd)
423 #elif TLS_DTV_AT_TP
424 # define TLS_TPADJ(pd) ((struct pthread *)((char *) (pd) + TLS_PRE_TCB_SIZE))
425 #endif
426 
427 #endif	/* descr.h */
428