1 /* Thread-local storage handling in the ELF dynamic linker.  Generic version.
2    Copyright (C) 2002-2021 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 #include <assert.h>
20 #include <errno.h>
21 #include <libintl.h>
22 #include <signal.h>
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include <sys/param.h>
26 #include <atomic.h>
27 
28 #include <tls.h>
29 #include <dl-tls.h>
30 #include <ldsodefs.h>
31 
32 #if PTHREAD_IN_LIBC
33 # include <list.h>
34 #endif
35 
36 #define TUNABLE_NAMESPACE rtld
37 #include <dl-tunables.h>
38 
39 /* Surplus static TLS, GLRO(dl_tls_static_surplus), is used for
40 
41    - IE TLS in libc.so for all dlmopen namespaces except in the initial
42      one where libc.so is not loaded dynamically but at startup time,
43    - IE TLS in other libraries which may be dynamically loaded even in the
44      initial namespace,
45    - and optionally for optimizing dynamic TLS access.
46 
47    The maximum number of namespaces is DL_NNS, but to support that many
48    namespaces correctly the static TLS allocation should be significantly
49    increased, which may cause problems with small thread stacks due to the
50    way static TLS is accounted (bug 11787).
51 
52    So there is a rtld.nns tunable limit on the number of supported namespaces
53    that affects the size of the static TLS and by default it's small enough
54    not to cause problems with existing applications. The limit is not
55    enforced or checked: it is the user's responsibility to increase rtld.nns
56    if more dlmopen namespaces are used.
57 
58    Audit modules use their own namespaces, they are not included in rtld.nns,
59    but come on top when computing the number of namespaces.  */
60 
61 /* Size of initial-exec TLS in libc.so.  This should be the maximum of
62    observed PT_GNU_TLS sizes across all architectures.  Some
63    architectures have lower values due to differences in type sizes
64    and link editor capabilities.  */
65 #define LIBC_IE_TLS 144
66 
67 /* Size of initial-exec TLS in libraries other than libc.so.
68    This should be large enough to cover runtime libraries of the
69    compiler such as libgomp and libraries in libc other than libc.so.  */
70 #define OTHER_IE_TLS 144
71 
72 /* Default number of namespaces.  */
73 #define DEFAULT_NNS 4
74 
75 /* Default for dl_tls_static_optional.  */
76 #define OPTIONAL_TLS 512
77 
78 /* Compute the static TLS surplus based on the namespace count and the
79    TLS space that can be used for optimizations.  */
80 static inline int
tls_static_surplus(int nns,int opt_tls)81 tls_static_surplus (int nns, int opt_tls)
82 {
83   return (nns - 1) * LIBC_IE_TLS + nns * OTHER_IE_TLS + opt_tls;
84 }
85 
86 /* This value is chosen so that with default values for the tunables,
87    the computation of dl_tls_static_surplus in
88    _dl_tls_static_surplus_init yields the historic value 1664, for
89    backwards compatibility.  */
90 #define LEGACY_TLS (1664 - tls_static_surplus (DEFAULT_NNS, OPTIONAL_TLS))
91 
92 /* Calculate the size of the static TLS surplus, when the given
93    number of audit modules are loaded.  Must be called after the
94    number of audit modules is known and before static TLS allocation.  */
95 void
_dl_tls_static_surplus_init(size_t naudit)96 _dl_tls_static_surplus_init (size_t naudit)
97 {
98   size_t nns, opt_tls;
99 
100 #if HAVE_TUNABLES
101   nns = TUNABLE_GET (nns, size_t, NULL);
102   opt_tls = TUNABLE_GET (optional_static_tls, size_t, NULL);
103 #else
104   /* Default values of the tunables.  */
105   nns = DEFAULT_NNS;
106   opt_tls = OPTIONAL_TLS;
107 #endif
108   if (nns > DL_NNS)
109     nns = DL_NNS;
110   if (DL_NNS - nns < naudit)
111     _dl_fatal_printf ("Failed loading %lu audit modules, %lu are supported.\n",
112 		      (unsigned long) naudit, (unsigned long) (DL_NNS - nns));
113   nns += naudit;
114 
115   GL(dl_tls_static_optional) = opt_tls;
116   assert (LEGACY_TLS >= 0);
117   GLRO(dl_tls_static_surplus) = tls_static_surplus (nns, opt_tls) + LEGACY_TLS;
118 }
119 
120 /* Out-of-memory handler.  */
121 static void
122 __attribute__ ((__noreturn__))
oom(void)123 oom (void)
124 {
125   _dl_fatal_printf ("cannot allocate memory for thread-local data: ABORT\n");
126 }
127 
128 
129 void
_dl_assign_tls_modid(struct link_map * l)130 _dl_assign_tls_modid (struct link_map *l)
131 {
132   size_t result;
133 
134   if (__builtin_expect (GL(dl_tls_dtv_gaps), false))
135     {
136       size_t disp = 0;
137       struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list);
138 
139       /* Note that this branch will never be executed during program
140 	 start since there are no gaps at that time.  Therefore it
141 	 does not matter that the dl_tls_dtv_slotinfo is not allocated
142 	 yet when the function is called for the first times.
143 
144 	 NB: the offset +1 is due to the fact that DTV[0] is used
145 	 for something else.  */
146       result = GL(dl_tls_static_nelem) + 1;
147       if (result <= GL(dl_tls_max_dtv_idx))
148 	do
149 	  {
150 	    while (result - disp < runp->len)
151 	      {
152 		if (runp->slotinfo[result - disp].map == NULL)
153 		  break;
154 
155 		++result;
156 		assert (result <= GL(dl_tls_max_dtv_idx) + 1);
157 	      }
158 
159 	    if (result - disp < runp->len)
160 	      {
161 		/* Mark the entry as used, so any dependency see it.  */
162 		atomic_store_relaxed (&runp->slotinfo[result - disp].map, l);
163 		break;
164 	      }
165 
166 	    disp += runp->len;
167 	  }
168 	while ((runp = runp->next) != NULL);
169 
170       if (result > GL(dl_tls_max_dtv_idx))
171 	{
172 	  /* The new index must indeed be exactly one higher than the
173 	     previous high.  */
174 	  assert (result == GL(dl_tls_max_dtv_idx) + 1);
175 	  /* There is no gap anymore.  */
176 	  GL(dl_tls_dtv_gaps) = false;
177 
178 	  goto nogaps;
179 	}
180     }
181   else
182     {
183       /* No gaps, allocate a new entry.  */
184     nogaps:
185 
186       result = GL(dl_tls_max_dtv_idx) + 1;
187       /* Can be read concurrently.  */
188       atomic_store_relaxed (&GL(dl_tls_max_dtv_idx), result);
189     }
190 
191   l->l_tls_modid = result;
192 }
193 
194 
195 size_t
_dl_count_modids(void)196 _dl_count_modids (void)
197 {
198   /* The count is the max unless dlclose or failed dlopen created gaps.  */
199   if (__glibc_likely (!GL(dl_tls_dtv_gaps)))
200     return GL(dl_tls_max_dtv_idx);
201 
202   /* We have gaps and are forced to count the non-NULL entries.  */
203   size_t n = 0;
204   struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list);
205   while (runp != NULL)
206     {
207       for (size_t i = 0; i < runp->len; ++i)
208 	if (runp->slotinfo[i].map != NULL)
209 	  ++n;
210 
211       runp = runp->next;
212     }
213 
214   return n;
215 }
216 
217 
218 #ifdef SHARED
219 void
_dl_determine_tlsoffset(void)220 _dl_determine_tlsoffset (void)
221 {
222   size_t max_align = TCB_ALIGNMENT;
223   size_t freetop = 0;
224   size_t freebottom = 0;
225 
226   /* The first element of the dtv slot info list is allocated.  */
227   assert (GL(dl_tls_dtv_slotinfo_list) != NULL);
228   /* There is at this point only one element in the
229      dl_tls_dtv_slotinfo_list list.  */
230   assert (GL(dl_tls_dtv_slotinfo_list)->next == NULL);
231 
232   struct dtv_slotinfo *slotinfo = GL(dl_tls_dtv_slotinfo_list)->slotinfo;
233 
234   /* Determining the offset of the various parts of the static TLS
235      block has several dependencies.  In addition we have to work
236      around bugs in some toolchains.
237 
238      Each TLS block from the objects available at link time has a size
239      and an alignment requirement.  The GNU ld computes the alignment
240      requirements for the data at the positions *in the file*, though.
241      I.e, it is not simply possible to allocate a block with the size
242      of the TLS program header entry.  The data is layed out assuming
243      that the first byte of the TLS block fulfills
244 
245        p_vaddr mod p_align == &TLS_BLOCK mod p_align
246 
247      This means we have to add artificial padding at the beginning of
248      the TLS block.  These bytes are never used for the TLS data in
249      this module but the first byte allocated must be aligned
250      according to mod p_align == 0 so that the first byte of the TLS
251      block is aligned according to p_vaddr mod p_align.  This is ugly
252      and the linker can help by computing the offsets in the TLS block
253      assuming the first byte of the TLS block is aligned according to
254      p_align.
255 
256      The extra space which might be allocated before the first byte of
257      the TLS block need not go unused.  The code below tries to use
258      that memory for the next TLS block.  This can work if the total
259      memory requirement for the next TLS block is smaller than the
260      gap.  */
261 
262 #if TLS_TCB_AT_TP
263   /* We simply start with zero.  */
264   size_t offset = 0;
265 
266   for (size_t cnt = 0; slotinfo[cnt].map != NULL; ++cnt)
267     {
268       assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len);
269 
270       size_t firstbyte = (-slotinfo[cnt].map->l_tls_firstbyte_offset
271 			  & (slotinfo[cnt].map->l_tls_align - 1));
272       size_t off;
273       max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align);
274 
275       if (freebottom - freetop >= slotinfo[cnt].map->l_tls_blocksize)
276 	{
277 	  off = roundup (freetop + slotinfo[cnt].map->l_tls_blocksize
278 			 - firstbyte, slotinfo[cnt].map->l_tls_align)
279 		+ firstbyte;
280 	  if (off <= freebottom)
281 	    {
282 	      freetop = off;
283 
284 	      /* XXX For some architectures we perhaps should store the
285 		 negative offset.  */
286 	      slotinfo[cnt].map->l_tls_offset = off;
287 	      continue;
288 	    }
289 	}
290 
291       off = roundup (offset + slotinfo[cnt].map->l_tls_blocksize - firstbyte,
292 		     slotinfo[cnt].map->l_tls_align) + firstbyte;
293       if (off > offset + slotinfo[cnt].map->l_tls_blocksize
294 		+ (freebottom - freetop))
295 	{
296 	  freetop = offset;
297 	  freebottom = off - slotinfo[cnt].map->l_tls_blocksize;
298 	}
299       offset = off;
300 
301       /* XXX For some architectures we perhaps should store the
302 	 negative offset.  */
303       slotinfo[cnt].map->l_tls_offset = off;
304     }
305 
306   GL(dl_tls_static_used) = offset;
307   GLRO (dl_tls_static_size) = (roundup (offset + GLRO(dl_tls_static_surplus),
308 					max_align)
309 			       + TLS_TCB_SIZE);
310 #elif TLS_DTV_AT_TP
311   /* The TLS blocks start right after the TCB.  */
312   size_t offset = TLS_TCB_SIZE;
313 
314   for (size_t cnt = 0; slotinfo[cnt].map != NULL; ++cnt)
315     {
316       assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len);
317 
318       size_t firstbyte = (-slotinfo[cnt].map->l_tls_firstbyte_offset
319 			  & (slotinfo[cnt].map->l_tls_align - 1));
320       size_t off;
321       max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align);
322 
323       if (slotinfo[cnt].map->l_tls_blocksize <= freetop - freebottom)
324 	{
325 	  off = roundup (freebottom, slotinfo[cnt].map->l_tls_align);
326 	  if (off - freebottom < firstbyte)
327 	    off += slotinfo[cnt].map->l_tls_align;
328 	  if (off + slotinfo[cnt].map->l_tls_blocksize - firstbyte <= freetop)
329 	    {
330 	      slotinfo[cnt].map->l_tls_offset = off - firstbyte;
331 	      freebottom = (off + slotinfo[cnt].map->l_tls_blocksize
332 			    - firstbyte);
333 	      continue;
334 	    }
335 	}
336 
337       off = roundup (offset, slotinfo[cnt].map->l_tls_align);
338       if (off - offset < firstbyte)
339 	off += slotinfo[cnt].map->l_tls_align;
340 
341       slotinfo[cnt].map->l_tls_offset = off - firstbyte;
342       if (off - firstbyte - offset > freetop - freebottom)
343 	{
344 	  freebottom = offset;
345 	  freetop = off - firstbyte;
346 	}
347 
348       offset = off + slotinfo[cnt].map->l_tls_blocksize - firstbyte;
349     }
350 
351   GL(dl_tls_static_used) = offset;
352   GLRO (dl_tls_static_size) = roundup (offset + GLRO(dl_tls_static_surplus),
353 				       TCB_ALIGNMENT);
354 #else
355 # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
356 #endif
357 
358   /* The alignment requirement for the static TLS block.  */
359   GLRO (dl_tls_static_align) = max_align;
360 }
361 #endif /* SHARED */
362 
363 static void *
allocate_dtv(void * result)364 allocate_dtv (void *result)
365 {
366   dtv_t *dtv;
367   size_t dtv_length;
368 
369   /* Relaxed MO, because the dtv size is later rechecked, not relied on.  */
370   size_t max_modid = atomic_load_relaxed (&GL(dl_tls_max_dtv_idx));
371   /* We allocate a few more elements in the dtv than are needed for the
372      initial set of modules.  This should avoid in most cases expansions
373      of the dtv.  */
374   dtv_length = max_modid + DTV_SURPLUS;
375   dtv = calloc (dtv_length + 2, sizeof (dtv_t));
376   if (dtv != NULL)
377     {
378       /* This is the initial length of the dtv.  */
379       dtv[0].counter = dtv_length;
380 
381       /* The rest of the dtv (including the generation counter) is
382 	 Initialize with zero to indicate nothing there.  */
383 
384       /* Add the dtv to the thread data structures.  */
385       INSTALL_DTV (result, dtv);
386     }
387   else
388     result = NULL;
389 
390   return result;
391 }
392 
393 /* Get size and alignment requirements of the static TLS block.  This
394    function is no longer used by glibc itself, but the GCC sanitizers
395    use it despite the GLIBC_PRIVATE status.  */
396 void
_dl_get_tls_static_info(size_t * sizep,size_t * alignp)397 _dl_get_tls_static_info (size_t *sizep, size_t *alignp)
398 {
399   *sizep = GLRO (dl_tls_static_size);
400   *alignp = GLRO (dl_tls_static_align);
401 }
402 
403 /* Derive the location of the pointer to the start of the original
404    allocation (before alignment) from the pointer to the TCB.  */
405 static inline void **
tcb_to_pointer_to_free_location(void * tcb)406 tcb_to_pointer_to_free_location (void *tcb)
407 {
408 #if TLS_TCB_AT_TP
409   /* The TCB follows the TLS blocks, and the pointer to the front
410      follows the TCB.  */
411   void **original_pointer_location = tcb + TLS_TCB_SIZE;
412 #elif TLS_DTV_AT_TP
413   /* The TCB comes first, preceded by the pre-TCB, and the pointer is
414      before that.  */
415   void **original_pointer_location = tcb - TLS_PRE_TCB_SIZE - sizeof (void *);
416 #endif
417   return original_pointer_location;
418 }
419 
420 void *
_dl_allocate_tls_storage(void)421 _dl_allocate_tls_storage (void)
422 {
423   void *result;
424   size_t size = GLRO (dl_tls_static_size);
425 
426 #if TLS_DTV_AT_TP
427   /* Memory layout is:
428      [ TLS_PRE_TCB_SIZE ] [ TLS_TCB_SIZE ] [ TLS blocks ]
429 			  ^ This should be returned.  */
430   size += TLS_PRE_TCB_SIZE;
431 #endif
432 
433   /* Perform the allocation.  Reserve space for the required alignment
434      and the pointer to the original allocation.  */
435   size_t alignment = GLRO (dl_tls_static_align);
436   void *allocated = malloc (size + alignment + sizeof (void *));
437   if (__glibc_unlikely (allocated == NULL))
438     return NULL;
439 
440   /* Perform alignment and allocate the DTV.  */
441 #if TLS_TCB_AT_TP
442   /* The TCB follows the TLS blocks, which determine the alignment.
443      (TCB alignment requirements have been taken into account when
444      calculating GLRO (dl_tls_static_align).)  */
445   void *aligned = (void *) roundup ((uintptr_t) allocated, alignment);
446   result = aligned + size - TLS_TCB_SIZE;
447 
448   /* Clear the TCB data structure.  We can't ask the caller (i.e.
449      libpthread) to do it, because we will initialize the DTV et al.  */
450   memset (result, '\0', TLS_TCB_SIZE);
451 #elif TLS_DTV_AT_TP
452   /* Pre-TCB and TCB come before the TLS blocks.  The layout computed
453      in _dl_determine_tlsoffset assumes that the TCB is aligned to the
454      TLS block alignment, and not just the TLS blocks after it.  This
455      can leave an unused alignment gap between the TCB and the TLS
456      blocks.  */
457   result = (void *) roundup
458     (sizeof (void *) + TLS_PRE_TCB_SIZE + (uintptr_t) allocated,
459      alignment);
460 
461   /* Clear the TCB data structure and TLS_PRE_TCB_SIZE bytes before
462      it.  We can't ask the caller (i.e. libpthread) to do it, because
463      we will initialize the DTV et al.  */
464   memset (result - TLS_PRE_TCB_SIZE, '\0', TLS_PRE_TCB_SIZE + TLS_TCB_SIZE);
465 #endif
466 
467   /* Record the value of the original pointer for later
468      deallocation.  */
469   *tcb_to_pointer_to_free_location (result) = allocated;
470 
471   result = allocate_dtv (result);
472   if (result == NULL)
473     free (allocated);
474   return result;
475 }
476 
477 
478 #ifndef SHARED
479 extern dtv_t _dl_static_dtv[];
480 # define _dl_initial_dtv (&_dl_static_dtv[1])
481 #endif
482 
483 static dtv_t *
_dl_resize_dtv(dtv_t * dtv,size_t max_modid)484 _dl_resize_dtv (dtv_t *dtv, size_t max_modid)
485 {
486   /* Resize the dtv.  */
487   dtv_t *newp;
488   size_t newsize = max_modid + DTV_SURPLUS;
489   size_t oldsize = dtv[-1].counter;
490 
491   if (dtv == GL(dl_initial_dtv))
492     {
493       /* This is the initial dtv that was either statically allocated in
494 	 __libc_setup_tls or allocated during rtld startup using the
495 	 dl-minimal.c malloc instead of the real malloc.  We can't free
496 	 it, we have to abandon the old storage.  */
497 
498       newp = malloc ((2 + newsize) * sizeof (dtv_t));
499       if (newp == NULL)
500 	oom ();
501       memcpy (newp, &dtv[-1], (2 + oldsize) * sizeof (dtv_t));
502     }
503   else
504     {
505       newp = realloc (&dtv[-1],
506 		      (2 + newsize) * sizeof (dtv_t));
507       if (newp == NULL)
508 	oom ();
509     }
510 
511   newp[0].counter = newsize;
512 
513   /* Clear the newly allocated part.  */
514   memset (newp + 2 + oldsize, '\0',
515 	  (newsize - oldsize) * sizeof (dtv_t));
516 
517   /* Return the generation counter.  */
518   return &newp[1];
519 }
520 
521 
522 void *
_dl_allocate_tls_init(void * result)523 _dl_allocate_tls_init (void *result)
524 {
525   if (result == NULL)
526     /* The memory allocation failed.  */
527     return NULL;
528 
529   dtv_t *dtv = GET_DTV (result);
530   struct dtv_slotinfo_list *listp;
531   size_t total = 0;
532   size_t maxgen = 0;
533 
534   /* Protects global dynamic TLS related state.  */
535   __rtld_lock_lock_recursive (GL(dl_load_tls_lock));
536 
537   /* Check if the current dtv is big enough.   */
538   if (dtv[-1].counter < GL(dl_tls_max_dtv_idx))
539     {
540       /* Resize the dtv.  */
541       dtv = _dl_resize_dtv (dtv, GL(dl_tls_max_dtv_idx));
542 
543       /* Install this new dtv in the thread data structures.  */
544       INSTALL_DTV (result, &dtv[-1]);
545     }
546 
547   /* We have to prepare the dtv for all currently loaded modules using
548      TLS.  For those which are dynamically loaded we add the values
549      indicating deferred allocation.  */
550   listp = GL(dl_tls_dtv_slotinfo_list);
551   while (1)
552     {
553       size_t cnt;
554 
555       for (cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt)
556 	{
557 	  struct link_map *map;
558 	  void *dest;
559 
560 	  /* Check for the total number of used slots.  */
561 	  if (total + cnt > GL(dl_tls_max_dtv_idx))
562 	    break;
563 
564 	  map = listp->slotinfo[cnt].map;
565 	  if (map == NULL)
566 	    /* Unused entry.  */
567 	    continue;
568 
569 	  /* Keep track of the maximum generation number.  This might
570 	     not be the generation counter.  */
571 	  assert (listp->slotinfo[cnt].gen <= GL(dl_tls_generation));
572 	  maxgen = MAX (maxgen, listp->slotinfo[cnt].gen);
573 
574 	  dtv[map->l_tls_modid].pointer.val = TLS_DTV_UNALLOCATED;
575 	  dtv[map->l_tls_modid].pointer.to_free = NULL;
576 
577 	  if (map->l_tls_offset == NO_TLS_OFFSET
578 	      || map->l_tls_offset == FORCED_DYNAMIC_TLS_OFFSET)
579 	    continue;
580 
581 	  assert (map->l_tls_modid == total + cnt);
582 	  assert (map->l_tls_blocksize >= map->l_tls_initimage_size);
583 #if TLS_TCB_AT_TP
584 	  assert ((size_t) map->l_tls_offset >= map->l_tls_blocksize);
585 	  dest = (char *) result - map->l_tls_offset;
586 #elif TLS_DTV_AT_TP
587 	  dest = (char *) result + map->l_tls_offset;
588 #else
589 # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
590 #endif
591 
592 	  /* Set up the DTV entry.  The simplified __tls_get_addr that
593 	     some platforms use in static programs requires it.  */
594 	  dtv[map->l_tls_modid].pointer.val = dest;
595 
596 	  /* Copy the initialization image and clear the BSS part.  */
597 	  memset (__mempcpy (dest, map->l_tls_initimage,
598 			     map->l_tls_initimage_size), '\0',
599 		  map->l_tls_blocksize - map->l_tls_initimage_size);
600 	}
601 
602       total += cnt;
603       if (total > GL(dl_tls_max_dtv_idx))
604 	break;
605 
606       listp = listp->next;
607       assert (listp != NULL);
608     }
609   __rtld_lock_unlock_recursive (GL(dl_load_tls_lock));
610 
611   /* The DTV version is up-to-date now.  */
612   dtv[0].counter = maxgen;
613 
614   return result;
615 }
rtld_hidden_def(_dl_allocate_tls_init)616 rtld_hidden_def (_dl_allocate_tls_init)
617 
618 void *
619 _dl_allocate_tls (void *mem)
620 {
621   return _dl_allocate_tls_init (mem == NULL
622 				? _dl_allocate_tls_storage ()
623 				: allocate_dtv (mem));
624 }
rtld_hidden_def(_dl_allocate_tls)625 rtld_hidden_def (_dl_allocate_tls)
626 
627 
628 void
629 _dl_deallocate_tls (void *tcb, bool dealloc_tcb)
630 {
631   dtv_t *dtv = GET_DTV (tcb);
632 
633   /* We need to free the memory allocated for non-static TLS.  */
634   for (size_t cnt = 0; cnt < dtv[-1].counter; ++cnt)
635     free (dtv[1 + cnt].pointer.to_free);
636 
637   /* The array starts with dtv[-1].  */
638   if (dtv != GL(dl_initial_dtv))
639     free (dtv - 1);
640 
641   if (dealloc_tcb)
642     free (*tcb_to_pointer_to_free_location (tcb));
643 }
rtld_hidden_def(_dl_deallocate_tls)644 rtld_hidden_def (_dl_deallocate_tls)
645 
646 
647 #ifdef SHARED
648 /* The __tls_get_addr function has two basic forms which differ in the
649    arguments.  The IA-64 form takes two parameters, the module ID and
650    offset.  The form used, among others, on IA-32 takes a reference to
651    a special structure which contain the same information.  The second
652    form seems to be more often used (in the moment) so we default to
653    it.  Users of the IA-64 form have to provide adequate definitions
654    of the following macros.  */
655 # ifndef GET_ADDR_ARGS
656 #  define GET_ADDR_ARGS tls_index *ti
657 #  define GET_ADDR_PARAM ti
658 # endif
659 # ifndef GET_ADDR_MODULE
660 #  define GET_ADDR_MODULE ti->ti_module
661 # endif
662 # ifndef GET_ADDR_OFFSET
663 #  define GET_ADDR_OFFSET ti->ti_offset
664 # endif
665 
666 /* Allocate one DTV entry.  */
667 static struct dtv_pointer
668 allocate_dtv_entry (size_t alignment, size_t size)
669 {
670   if (powerof2 (alignment) && alignment <= _Alignof (max_align_t))
671     {
672       /* The alignment is supported by malloc.  */
673       void *ptr = malloc (size);
674       return (struct dtv_pointer) { ptr, ptr };
675     }
676 
677   /* Emulate memalign to by manually aligning a pointer returned by
678      malloc.  First compute the size with an overflow check.  */
679   size_t alloc_size = size + alignment;
680   if (alloc_size < size)
681     return (struct dtv_pointer) {};
682 
683   /* Perform the allocation.  This is the pointer we need to free
684      later.  */
685   void *start = malloc (alloc_size);
686   if (start == NULL)
687     return (struct dtv_pointer) {};
688 
689   /* Find the aligned position within the larger allocation.  */
690   void *aligned = (void *) roundup ((uintptr_t) start, alignment);
691 
692   return (struct dtv_pointer) { .val = aligned, .to_free = start };
693 }
694 
695 static struct dtv_pointer
allocate_and_init(struct link_map * map)696 allocate_and_init (struct link_map *map)
697 {
698   struct dtv_pointer result = allocate_dtv_entry
699     (map->l_tls_align, map->l_tls_blocksize);
700   if (result.val == NULL)
701     oom ();
702 
703   /* Initialize the memory.  */
704   memset (__mempcpy (result.val, map->l_tls_initimage,
705 		     map->l_tls_initimage_size),
706 	  '\0', map->l_tls_blocksize - map->l_tls_initimage_size);
707 
708   return result;
709 }
710 
711 
712 struct link_map *
_dl_update_slotinfo(unsigned long int req_modid)713 _dl_update_slotinfo (unsigned long int req_modid)
714 {
715   struct link_map *the_map = NULL;
716   dtv_t *dtv = THREAD_DTV ();
717 
718   /* The global dl_tls_dtv_slotinfo array contains for each module
719      index the generation counter current when the entry was created.
720      This array never shrinks so that all module indices which were
721      valid at some time can be used to access it.  Before the first
722      use of a new module index in this function the array was extended
723      appropriately.  Access also does not have to be guarded against
724      modifications of the array.  It is assumed that pointer-size
725      values can be read atomically even in SMP environments.  It is
726      possible that other threads at the same time dynamically load
727      code and therefore add to the slotinfo list.  This is a problem
728      since we must not pick up any information about incomplete work.
729      The solution to this is to ignore all dtv slots which were
730      created after the one we are currently interested.  We know that
731      dynamic loading for this module is completed and this is the last
732      load operation we know finished.  */
733   unsigned long int idx = req_modid;
734   struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list);
735 
736   while (idx >= listp->len)
737     {
738       idx -= listp->len;
739       listp = listp->next;
740     }
741 
742   if (dtv[0].counter < listp->slotinfo[idx].gen)
743     {
744       /* CONCURRENCY NOTES:
745 
746 	 Here the dtv needs to be updated to new_gen generation count.
747 
748 	 This code may be called during TLS access when GL(dl_load_tls_lock)
749 	 is not held.  In that case the user code has to synchronize with
750 	 dlopen and dlclose calls of relevant modules.  A module m is
751 	 relevant if the generation of m <= new_gen and dlclose of m is
752 	 synchronized: a memory access here happens after the dlopen and
753 	 before the dlclose of relevant modules.  The dtv entries for
754 	 relevant modules need to be updated, other entries can be
755 	 arbitrary.
756 
757 	 This e.g. means that the first part of the slotinfo list can be
758 	 accessed race free, but the tail may be concurrently extended.
759 	 Similarly relevant slotinfo entries can be read race free, but
760 	 other entries are racy.  However updating a non-relevant dtv
761 	 entry does not affect correctness.  For a relevant module m,
762 	 max_modid >= modid of m.  */
763       size_t new_gen = listp->slotinfo[idx].gen;
764       size_t total = 0;
765       size_t max_modid  = atomic_load_relaxed (&GL(dl_tls_max_dtv_idx));
766       assert (max_modid >= req_modid);
767 
768       /* We have to look through the entire dtv slotinfo list.  */
769       listp =  GL(dl_tls_dtv_slotinfo_list);
770       do
771 	{
772 	  for (size_t cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt)
773 	    {
774 	      size_t modid = total + cnt;
775 
776 	      /* Later entries are not relevant.  */
777 	      if (modid > max_modid)
778 		break;
779 
780 	      size_t gen = atomic_load_relaxed (&listp->slotinfo[cnt].gen);
781 
782 	      if (gen > new_gen)
783 		/* Not relevant.  */
784 		continue;
785 
786 	      /* If the entry is older than the current dtv layout we
787 		 know we don't have to handle it.  */
788 	      if (gen <= dtv[0].counter)
789 		continue;
790 
791 	      /* If there is no map this means the entry is empty.  */
792 	      struct link_map *map
793 		= atomic_load_relaxed (&listp->slotinfo[cnt].map);
794 	      /* Check whether the current dtv array is large enough.  */
795 	      if (dtv[-1].counter < modid)
796 		{
797 		  if (map == NULL)
798 		    continue;
799 
800 		  /* Resize the dtv.  */
801 		  dtv = _dl_resize_dtv (dtv, max_modid);
802 
803 		  assert (modid <= dtv[-1].counter);
804 
805 		  /* Install this new dtv in the thread data
806 		     structures.  */
807 		  INSTALL_NEW_DTV (dtv);
808 		}
809 
810 	      /* If there is currently memory allocate for this
811 		 dtv entry free it.  */
812 	      /* XXX Ideally we will at some point create a memory
813 		 pool.  */
814 	      free (dtv[modid].pointer.to_free);
815 	      dtv[modid].pointer.val = TLS_DTV_UNALLOCATED;
816 	      dtv[modid].pointer.to_free = NULL;
817 
818 	      if (modid == req_modid)
819 		the_map = map;
820 	    }
821 
822 	  total += listp->len;
823 	  if (total > max_modid)
824 	    break;
825 
826 	  /* Synchronize with _dl_add_to_slotinfo.  Ideally this would
827 	     be consume MO since we only need to order the accesses to
828 	     the next node after the read of the address and on most
829 	     hardware (other than alpha) a normal load would do that
830 	     because of the address dependency.  */
831 	  listp = atomic_load_acquire (&listp->next);
832 	}
833       while (listp != NULL);
834 
835       /* This will be the new maximum generation counter.  */
836       dtv[0].counter = new_gen;
837     }
838 
839   return the_map;
840 }
841 
842 
843 static void *
844 __attribute_noinline__
tls_get_addr_tail(GET_ADDR_ARGS,dtv_t * dtv,struct link_map * the_map)845 tls_get_addr_tail (GET_ADDR_ARGS, dtv_t *dtv, struct link_map *the_map)
846 {
847   /* The allocation was deferred.  Do it now.  */
848   if (the_map == NULL)
849     {
850       /* Find the link map for this module.  */
851       size_t idx = GET_ADDR_MODULE;
852       struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list);
853 
854       while (idx >= listp->len)
855 	{
856 	  idx -= listp->len;
857 	  listp = listp->next;
858 	}
859 
860       the_map = listp->slotinfo[idx].map;
861     }
862 
863   /* Make sure that, if a dlopen running in parallel forces the
864      variable into static storage, we'll wait until the address in the
865      static TLS block is set up, and use that.  If we're undecided
866      yet, make sure we make the decision holding the lock as well.  */
867   if (__glibc_unlikely (the_map->l_tls_offset
868 			!= FORCED_DYNAMIC_TLS_OFFSET))
869     {
870       __rtld_lock_lock_recursive (GL(dl_load_tls_lock));
871       if (__glibc_likely (the_map->l_tls_offset == NO_TLS_OFFSET))
872 	{
873 	  the_map->l_tls_offset = FORCED_DYNAMIC_TLS_OFFSET;
874 	  __rtld_lock_unlock_recursive (GL(dl_load_tls_lock));
875 	}
876       else if (__glibc_likely (the_map->l_tls_offset
877 			       != FORCED_DYNAMIC_TLS_OFFSET))
878 	{
879 #if TLS_TCB_AT_TP
880 	  void *p = (char *) THREAD_SELF - the_map->l_tls_offset;
881 #elif TLS_DTV_AT_TP
882 	  void *p = (char *) THREAD_SELF + the_map->l_tls_offset + TLS_PRE_TCB_SIZE;
883 #else
884 # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
885 #endif
886 	  __rtld_lock_unlock_recursive (GL(dl_load_tls_lock));
887 
888 	  dtv[GET_ADDR_MODULE].pointer.to_free = NULL;
889 	  dtv[GET_ADDR_MODULE].pointer.val = p;
890 
891 	  return (char *) p + GET_ADDR_OFFSET;
892 	}
893       else
894 	__rtld_lock_unlock_recursive (GL(dl_load_tls_lock));
895     }
896   struct dtv_pointer result = allocate_and_init (the_map);
897   dtv[GET_ADDR_MODULE].pointer = result;
898   assert (result.to_free != NULL);
899 
900   return (char *) result.val + GET_ADDR_OFFSET;
901 }
902 
903 
904 static struct link_map *
905 __attribute_noinline__
update_get_addr(GET_ADDR_ARGS)906 update_get_addr (GET_ADDR_ARGS)
907 {
908   struct link_map *the_map = _dl_update_slotinfo (GET_ADDR_MODULE);
909   dtv_t *dtv = THREAD_DTV ();
910 
911   void *p = dtv[GET_ADDR_MODULE].pointer.val;
912 
913   if (__glibc_unlikely (p == TLS_DTV_UNALLOCATED))
914     return tls_get_addr_tail (GET_ADDR_PARAM, dtv, the_map);
915 
916   return (void *) p + GET_ADDR_OFFSET;
917 }
918 
919 /* For all machines that have a non-macro version of __tls_get_addr, we
920    want to use rtld_hidden_proto/rtld_hidden_def in order to call the
921    internal alias for __tls_get_addr from ld.so. This avoids a PLT entry
922    in ld.so for __tls_get_addr.  */
923 
924 #ifndef __tls_get_addr
925 extern void * __tls_get_addr (GET_ADDR_ARGS);
926 rtld_hidden_proto (__tls_get_addr)
rtld_hidden_def(__tls_get_addr)927 rtld_hidden_def (__tls_get_addr)
928 #endif
929 
930 /* The generic dynamic and local dynamic model cannot be used in
931    statically linked applications.  */
932 void *
933 __tls_get_addr (GET_ADDR_ARGS)
934 {
935   dtv_t *dtv = THREAD_DTV ();
936 
937   /* Update is needed if dtv[0].counter < the generation of the accessed
938      module.  The global generation counter is used here as it is easier
939      to check.  Synchronization for the relaxed MO access is guaranteed
940      by user code, see CONCURRENCY NOTES in _dl_update_slotinfo.  */
941   size_t gen = atomic_load_relaxed (&GL(dl_tls_generation));
942   if (__glibc_unlikely (dtv[0].counter != gen))
943     return update_get_addr (GET_ADDR_PARAM);
944 
945   void *p = dtv[GET_ADDR_MODULE].pointer.val;
946 
947   if (__glibc_unlikely (p == TLS_DTV_UNALLOCATED))
948     return tls_get_addr_tail (GET_ADDR_PARAM, dtv, NULL);
949 
950   return (char *) p + GET_ADDR_OFFSET;
951 }
952 #endif
953 
954 
955 /* Look up the module's TLS block as for __tls_get_addr,
956    but never touch anything.  Return null if it's not allocated yet.  */
957 void *
_dl_tls_get_addr_soft(struct link_map * l)958 _dl_tls_get_addr_soft (struct link_map *l)
959 {
960   if (__glibc_unlikely (l->l_tls_modid == 0))
961     /* This module has no TLS segment.  */
962     return NULL;
963 
964   dtv_t *dtv = THREAD_DTV ();
965   /* This may be called without holding the GL(dl_load_tls_lock).  Reading
966      arbitrary gen value is fine since this is best effort code.  */
967   size_t gen = atomic_load_relaxed (&GL(dl_tls_generation));
968   if (__glibc_unlikely (dtv[0].counter != gen))
969     {
970       /* This thread's DTV is not completely current,
971 	 but it might already cover this module.  */
972 
973       if (l->l_tls_modid >= dtv[-1].counter)
974 	/* Nope.  */
975 	return NULL;
976 
977       size_t idx = l->l_tls_modid;
978       struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list);
979       while (idx >= listp->len)
980 	{
981 	  idx -= listp->len;
982 	  listp = listp->next;
983 	}
984 
985       /* We've reached the slot for this module.
986 	 If its generation counter is higher than the DTV's,
987 	 this thread does not know about this module yet.  */
988       if (dtv[0].counter < listp->slotinfo[idx].gen)
989 	return NULL;
990     }
991 
992   void *data = dtv[l->l_tls_modid].pointer.val;
993   if (__glibc_unlikely (data == TLS_DTV_UNALLOCATED))
994     /* The DTV is current, but this thread has not yet needed
995        to allocate this module's segment.  */
996     data = NULL;
997 
998   return data;
999 }
1000 
1001 
1002 void
_dl_add_to_slotinfo(struct link_map * l,bool do_add)1003 _dl_add_to_slotinfo (struct link_map *l, bool do_add)
1004 {
1005   /* Now that we know the object is loaded successfully add
1006      modules containing TLS data to the dtv info table.  We
1007      might have to increase its size.  */
1008   struct dtv_slotinfo_list *listp;
1009   struct dtv_slotinfo_list *prevp;
1010   size_t idx = l->l_tls_modid;
1011 
1012   /* Find the place in the dtv slotinfo list.  */
1013   listp = GL(dl_tls_dtv_slotinfo_list);
1014   prevp = NULL;		/* Needed to shut up gcc.  */
1015   do
1016     {
1017       /* Does it fit in the array of this list element?  */
1018       if (idx < listp->len)
1019 	break;
1020       idx -= listp->len;
1021       prevp = listp;
1022       listp = listp->next;
1023     }
1024   while (listp != NULL);
1025 
1026   if (listp == NULL)
1027     {
1028       /* When we come here it means we have to add a new element
1029 	 to the slotinfo list.  And the new module must be in
1030 	 the first slot.  */
1031       assert (idx == 0);
1032 
1033       listp = (struct dtv_slotinfo_list *)
1034 	malloc (sizeof (struct dtv_slotinfo_list)
1035 		+ TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo));
1036       if (listp == NULL)
1037 	{
1038 	  /* We ran out of memory while resizing the dtv slotinfo list.  */
1039 	  _dl_signal_error (ENOMEM, "dlopen", NULL, N_("\
1040 cannot create TLS data structures"));
1041 	}
1042 
1043       listp->len = TLS_SLOTINFO_SURPLUS;
1044       listp->next = NULL;
1045       memset (listp->slotinfo, '\0',
1046 	      TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo));
1047       /* Synchronize with _dl_update_slotinfo.  */
1048       atomic_store_release (&prevp->next, listp);
1049     }
1050 
1051   /* Add the information into the slotinfo data structure.  */
1052   if (do_add)
1053     {
1054       /* Can be read concurrently.  See _dl_update_slotinfo.  */
1055       atomic_store_relaxed (&listp->slotinfo[idx].map, l);
1056       atomic_store_relaxed (&listp->slotinfo[idx].gen,
1057 			    GL(dl_tls_generation) + 1);
1058     }
1059 }
1060 
1061 #if PTHREAD_IN_LIBC
1062 static inline void __attribute__((always_inline))
init_one_static_tls(struct pthread * curp,struct link_map * map)1063 init_one_static_tls (struct pthread *curp, struct link_map *map)
1064 {
1065 # if TLS_TCB_AT_TP
1066   void *dest = (char *) curp - map->l_tls_offset;
1067 # elif TLS_DTV_AT_TP
1068   void *dest = (char *) curp + map->l_tls_offset + TLS_PRE_TCB_SIZE;
1069 # else
1070 #  error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
1071 # endif
1072 
1073   /* Initialize the memory.  */
1074   memset (__mempcpy (dest, map->l_tls_initimage, map->l_tls_initimage_size),
1075 	  '\0', map->l_tls_blocksize - map->l_tls_initimage_size);
1076 }
1077 
1078 void
_dl_init_static_tls(struct link_map * map)1079 _dl_init_static_tls (struct link_map *map)
1080 {
1081   lll_lock (GL (dl_stack_cache_lock), LLL_PRIVATE);
1082 
1083   /* Iterate over the list with system-allocated threads first.  */
1084   list_t *runp;
1085   list_for_each (runp, &GL (dl_stack_used))
1086     init_one_static_tls (list_entry (runp, struct pthread, list), map);
1087 
1088   /* Now the list with threads using user-allocated stacks.  */
1089   list_for_each (runp, &GL (dl_stack_user))
1090     init_one_static_tls (list_entry (runp, struct pthread, list), map);
1091 
1092   lll_unlock (GL (dl_stack_cache_lock), LLL_PRIVATE);
1093 }
1094 #endif /* PTHREAD_IN_LIBC */
1095