1/* Copyright (C) 1996-2021 Free Software Foundation, Inc. 2 This file is part of the GNU C Library. 3 4 The GNU C Library is free software; you can redistribute it and/or 5 modify it under the terms of the GNU Lesser General Public 6 License as published by the Free Software Foundation; either 7 version 2.1 of the License, or (at your option) any later version. 8 9 The GNU C Library is distributed in the hope that it will be useful, 10 but WITHOUT ANY WARRANTY; without even the implied warranty of 11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 Lesser General Public License for more details. 13 14 You should have received a copy of the GNU Lesser General Public 15 License along with the GNU C Library. If not, see 16 <https://www.gnu.org/licenses/>. */ 17 18/* Copy no more than COUNT bytes of the null-terminated string from 19 SRC to DST. 20 21 This is an internal routine used by strncpy, stpncpy, and strncat. 22 As such, it uses special linkage conventions to make implementation 23 of these public functions more efficient. 24 25 On input: 26 t9 = return address 27 a0 = DST 28 a1 = SRC 29 a2 = COUNT 30 31 Furthermore, COUNT may not be zero. 32 33 On output: 34 t0 = last word written 35 t8 = bitmask (with one bit set) indicating the last byte written 36 t10 = bitmask (with one bit set) indicating the byte position of 37 the end of the range specified by COUNT 38 a0 = unaligned address of the last *word* written 39 a2 = the number of full words left in COUNT 40 41 Furthermore, v0, a3-a5, t11, and t12 are untouched. 42*/ 43 44 45/* This is generally scheduled for the EV5, but should still be pretty 46 good for the EV4 too. */ 47 48#include <sysdep.h> 49 50 .set noat 51 .set noreorder 52 53 .text 54 .type __stxncpy, @function 55 .globl __stxncpy 56 .usepv __stxncpy, no 57 58 cfi_startproc 59 cfi_return_column (t9) 60 61 /* On entry to this basic block: 62 t0 == the first destination word for masking back in 63 t1 == the first source word. */ 64 .align 3 65stxncpy_aligned: 66 /* Create the 1st output word and detect 0's in the 1st input word. */ 67 lda t2, -1 # e1 : build a mask against false zero 68 mskqh t2, a1, t2 # e0 : detection in the src word 69 mskqh t1, a1, t3 # e0 : 70 ornot t1, t2, t2 # .. e1 : 71 mskql t0, a1, t0 # e0 : assemble the first output word 72 cmpbge zero, t2, t7 # .. e1 : bits set iff null found 73 or t0, t3, t0 # e0 : 74 beq a2, $a_eoc # .. e1 : 75 bne t7, $a_eos # .. e1 : 76 77 /* On entry to this basic block: 78 t0 == a source word not containing a null. */ 79$a_loop: 80 stq_u t0, 0(a0) # e0 : 81 addq a0, 8, a0 # .. e1 : 82 ldq_u t0, 0(a1) # e0 : 83 addq a1, 8, a1 # .. e1 : 84 subq a2, 1, a2 # e0 : 85 cmpbge zero, t0, t7 # .. e1 (stall) 86 beq a2, $a_eoc # e1 : 87 beq t7, $a_loop # e1 : 88 89 /* Take care of the final (partial) word store. At this point 90 the end-of-count bit is set in t7 iff it applies. 91 92 On entry to this basic block we have: 93 t0 == the source word containing the null 94 t7 == the cmpbge mask that found it. */ 95$a_eos: 96 negq t7, t8 # e0 : find low bit set 97 and t7, t8, t8 # e1 (stall) 98 99 /* For the sake of the cache, don't read a destination word 100 if we're not going to need it. */ 101 and t8, 0x80, t6 # e0 : 102 bne t6, 1f # .. e1 (zdb) 103 104 /* We're doing a partial word store and so need to combine 105 our source and original destination words. */ 106 ldq_u t1, 0(a0) # e0 : 107 subq t8, 1, t6 # .. e1 : 108 or t8, t6, t7 # e0 : 109 unop # 110 zapnot t0, t7, t0 # e0 : clear src bytes > null 111 zap t1, t7, t1 # .. e1 : clear dst bytes <= null 112 or t0, t1, t0 # e1 : 113 1141: stq_u t0, 0(a0) # e0 : 115 ret (t9) # e1 : 116 117 /* Add the end-of-count bit to the eos detection bitmask. */ 118$a_eoc: 119 or t10, t7, t7 120 br $a_eos 121 122 .align 3 123__stxncpy: 124 /* Are source and destination co-aligned? */ 125 lda t2, -1 126 xor a0, a1, t1 127 srl t2, 1, t2 128 and a0, 7, t0 # find dest misalignment 129 cmovlt a2, t2, a2 # bound neg count to LONG_MAX 130 and t1, 7, t1 131 addq a2, t0, a2 # bias count by dest misalignment 132 subq a2, 1, a2 133 and a2, 7, t2 134 srl a2, 3, a2 # a2 = loop counter = (count - 1)/8 135 addq zero, 1, t10 136 sll t10, t2, t10 # t10 = bitmask of last count byte 137 bne t1, $unaligned 138 139 /* We are co-aligned; take care of a partial first word. */ 140 141 ldq_u t1, 0(a1) # e0 : load first src word 142 addq a1, 8, a1 # .. e1 : 143 144 beq t0, stxncpy_aligned # avoid loading dest word if not needed 145 ldq_u t0, 0(a0) # e0 : 146 br stxncpy_aligned # .. e1 : 147 148 149/* The source and destination are not co-aligned. Align the destination 150 and cope. We have to be very careful about not reading too much and 151 causing a SEGV. */ 152 153 .align 3 154$u_head: 155 /* We know just enough now to be able to assemble the first 156 full source word. We can still find a zero at the end of it 157 that prevents us from outputting the whole thing. 158 159 On entry to this basic block: 160 t0 == the first dest word, unmasked 161 t1 == the shifted low bits of the first source word 162 t6 == bytemask that is -1 in dest word bytes */ 163 164 ldq_u t2, 8(a1) # e0 : load second src word 165 addq a1, 8, a1 # .. e1 : 166 mskql t0, a0, t0 # e0 : mask trailing garbage in dst 167 extqh t2, a1, t4 # e0 : 168 or t1, t4, t1 # e1 : first aligned src word complete 169 mskqh t1, a0, t1 # e0 : mask leading garbage in src 170 or t0, t1, t0 # e0 : first output word complete 171 or t0, t6, t6 # e1 : mask original data for zero test 172 cmpbge zero, t6, t7 # e0 : 173 beq a2, $u_eocfin # .. e1 : 174 lda t6, -1 # e0 : 175 bne t7, $u_final # .. e1 : 176 177 mskql t6, a1, t6 # e0 : mask out bits already seen 178 nop # .. e1 : 179 stq_u t0, 0(a0) # e0 : store first output word 180 or t6, t2, t2 # .. e1 : 181 cmpbge zero, t2, t7 # e0 : find nulls in second partial 182 addq a0, 8, a0 # .. e1 : 183 subq a2, 1, a2 # e0 : 184 bne t7, $u_late_head_exit # .. e1 : 185 186 /* Finally, we've got all the stupid leading edge cases taken care 187 of and we can set up to enter the main loop. */ 188 189 extql t2, a1, t1 # e0 : position hi-bits of lo word 190 beq a2, $u_eoc # .. e1 : 191 ldq_u t2, 8(a1) # e0 : read next high-order source word 192 addq a1, 8, a1 # .. e1 : 193 extqh t2, a1, t0 # e0 : position lo-bits of hi word 194 cmpbge zero, t2, t7 # .. e1 : test new word for eos 195 nop # e0 : 196 bne t7, $u_eos # .. e1 : 197 198 /* Unaligned copy main loop. In order to avoid reading too much, 199 the loop is structured to detect zeros in aligned source words. 200 This has, unfortunately, effectively pulled half of a loop 201 iteration out into the head and half into the tail, but it does 202 prevent nastiness from accumulating in the very thing we want 203 to run as fast as possible. 204 205 On entry to this basic block: 206 t0 == the shifted low-order bits from the current source word 207 t1 == the shifted high-order bits from the previous source word 208 t2 == the unshifted current source word 209 210 We further know that t2 does not contain a null terminator. */ 211 212 .align 3 213$u_loop: 214 or t0, t1, t0 # e0 : current dst word now complete 215 subq a2, 1, a2 # .. e1 : decrement word count 216 stq_u t0, 0(a0) # e0 : save the current word 217 addq a0, 8, a0 # .. e1 : 218 extql t2, a1, t1 # e0 : extract high bits for next time 219 beq a2, $u_eoc # .. e1 : 220 ldq_u t2, 8(a1) # e0 : load high word for next time 221 addq a1, 8, a1 # .. e1 : 222 nop # e0 : 223 cmpbge zero, t2, t7 # .. e1 : test new word for eos 224 extqh t2, a1, t0 # e0 : extract low bits for current word 225 beq t7, $u_loop # .. e1 : 226 227 /* We've found a zero somewhere in the source word we just read. 228 If it resides in the lower half, we have one (probably partial) 229 word to write out, and if it resides in the upper half, we 230 have one full and one partial word left to write out. 231 232 On entry to this basic block: 233 t0 == the shifted low-order bits from the current source word 234 t1 == the shifted high-order bits from the previous source word 235 t2 == the unshifted current source word. */ 236$u_eos: 237 or t0, t1, t0 # e0 : first (partial) source word complete 238 cmpbge zero, t0, t7 # e0 : is the null in this first bit? 239 bne t7, $u_final # .. e1 (zdb) 240 241 stq_u t0, 0(a0) # e0 : the null was in the high-order bits 242 addq a0, 8, a0 # .. e1 : 243 subq a2, 1, a2 # e0 : 244 245$u_late_head_exit: 246 extql t2, a1, t0 # e0 : 247 cmpbge zero, t0, t7 # e0 : 248 or t7, t10, t6 # e1 : 249 cmoveq a2, t6, t7 # e0 : 250 251 /* Take care of a final (probably partial) result word. 252 On entry to this basic block: 253 t0 == assembled source word 254 t7 == cmpbge mask that found the null. */ 255$u_final: 256 negq t7, t6 # e0 : isolate low bit set 257 and t6, t7, t8 # e1 : 258 259 and t8, 0x80, t6 # e0 : avoid dest word load if we can 260 bne t6, 1f # .. e1 (zdb) 261 262 ldq_u t1, 0(a0) # e0 : 263 subq t8, 1, t6 # .. e1 : 264 or t6, t8, t7 # e0 : 265 zapnot t0, t7, t0 # .. e1 : kill source bytes > null 266 zap t1, t7, t1 # e0 : kill dest bytes <= null 267 or t0, t1, t0 # e1 : 268 2691: stq_u t0, 0(a0) # e0 : 270 ret (t9) # .. e1 : 271 272 /* Got to end-of-count before end of string. 273 On entry to this basic block: 274 t1 == the shifted high-order bits from the previous source word */ 275$u_eoc: 276 and a1, 7, t6 # e1 : 277 sll t10, t6, t6 # e0 : 278 and t6, 0xff, t6 # e0 : 279 bne t6, 1f # e1 : avoid src word load if we can 280 281 ldq_u t2, 8(a1) # e0 : load final src word 282 nop # .. e1 : 283 extqh t2, a1, t0 # e0 : extract high bits for last word 284 or t1, t0, t1 # e1 : 285 2861: cmpbge zero, t1, t7 287 mov t1, t0 288 289$u_eocfin: # end-of-count, final word 290 or t10, t7, t7 291 br $u_final 292 293 /* Unaligned copy entry point. */ 294 .align 3 295$unaligned: 296 297 ldq_u t1, 0(a1) # e0 : load first source word 298 299 and a0, 7, t4 # .. e1 : find dest misalignment 300 and a1, 7, t5 # e0 : find src misalignment 301 302 /* Conditionally load the first destination word and a bytemask 303 with 0xff indicating that the destination byte is sacrosanct. */ 304 305 mov zero, t0 # .. e1 : 306 mov zero, t6 # e0 : 307 beq t4, 1f # .. e1 : 308 ldq_u t0, 0(a0) # e0 : 309 lda t6, -1 # .. e1 : 310 mskql t6, a0, t6 # e0 : 3111: 312 subq a1, t4, a1 # .. e1 : sub dest misalignment from src addr 313 314 /* If source misalignment is larger than dest misalignment, we need 315 extra startup checks to avoid SEGV. */ 316 317 cmplt t4, t5, t8 # e1 : 318 extql t1, a1, t1 # .. e0 : shift src into place 319 lda t2, -1 # e0 : for creating masks later 320 beq t8, $u_head # e1 : 321 322 mskqh t2, t5, t2 # e0 : begin src byte validity mask 323 cmpbge zero, t1, t7 # .. e1 : is there a zero? 324 extql t2, a1, t2 # e0 : 325 or t7, t10, t5 # .. e1 : test for end-of-count too 326 cmpbge zero, t2, t3 # e0 : 327 cmoveq a2, t5, t7 # .. e1 : 328 andnot t7, t3, t7 # e0 : 329 beq t7, $u_head # .. e1 (zdb) 330 331 /* At this point we've found a zero in the first partial word of 332 the source. We need to isolate the valid source data and mask 333 it into the original destination data. (Incidentally, we know 334 that we'll need at least one byte of that original dest word.) */ 335 336 ldq_u t0, 0(a0) # e0 : 337 negq t7, t6 # .. e1 : build bitmask of bytes <= zero 338 mskqh t1, t4, t1 # e0 : 339 and t6, t7, t8 # .. e1 : 340 subq t8, 1, t6 # e0 : 341 or t6, t8, t7 # e1 : 342 343 zapnot t2, t7, t2 # e0 : prepare source word; mirror changes 344 zapnot t1, t7, t1 # .. e1 : to source validity mask 345 346 andnot t0, t2, t0 # e0 : zero place for source to reside 347 or t0, t1, t0 # e1 : and put it there 348 stq_u t0, 0(a0) # e0 : 349 ret (t9) # .. e1 : 350 351 cfi_endproc 352