1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acos": 5double: 1 6float128: 1 7ldouble: 2 8 9Function: "acos_downward": 10float128: 1 11ldouble: 2 12 13Function: "acos_towardzero": 14float128: 1 15ldouble: 2 16 17Function: "acos_upward": 18double: 1 19float128: 1 20ldouble: 2 21 22Function: "acosh": 23double: 1 24float128: 4 25ldouble: 3 26 27Function: "acosh_downward": 28double: 1 29float128: 3 30ldouble: 4 31 32Function: "acosh_towardzero": 33double: 1 34float128: 2 35ldouble: 4 36 37Function: "acosh_upward": 38double: 1 39float128: 3 40ldouble: 3 41 42Function: "asin": 43double: 1 44float128: 1 45ldouble: 1 46 47Function: "asin_downward": 48double: 1 49float128: 2 50ldouble: 2 51 52Function: "asin_towardzero": 53double: 1 54float128: 1 55ldouble: 1 56 57Function: "asin_upward": 58double: 1 59float: 1 60float128: 2 61ldouble: 1 62 63Function: "asinh": 64double: 1 65float128: 4 66ldouble: 3 67 68Function: "asinh_downward": 69double: 1 70float: 1 71float128: 4 72ldouble: 5 73 74Function: "asinh_towardzero": 75double: 1 76float: 1 77float128: 2 78ldouble: 4 79 80Function: "asinh_upward": 81double: 1 82float: 1 83float128: 4 84ldouble: 5 85 86Function: "atan": 87double: 1 88float128: 1 89ldouble: 1 90 91Function: "atan2": 92double: 1 93float128: 2 94ldouble: 1 95 96Function: "atan2_downward": 97double: 1 98float: 1 99float128: 2 100ldouble: 1 101 102Function: "atan2_towardzero": 103double: 1 104float: 1 105float128: 3 106ldouble: 1 107 108Function: "atan2_upward": 109double: 1 110float: 1 111float128: 2 112ldouble: 1 113 114Function: "atan_downward": 115double: 1 116float: 1 117float128: 2 118ldouble: 1 119 120Function: "atan_towardzero": 121double: 1 122float: 1 123float128: 1 124ldouble: 1 125 126Function: "atan_upward": 127double: 1 128float: 1 129float128: 2 130ldouble: 1 131 132Function: "atanh": 133double: 1 134float128: 4 135ldouble: 3 136 137Function: "atanh_downward": 138double: 1 139float: 1 140float128: 4 141ldouble: 4 142 143Function: "atanh_towardzero": 144double: 1 145float: 1 146float128: 2 147ldouble: 3 148 149Function: "atanh_upward": 150double: 1 151float: 1 152float128: 4 153ldouble: 5 154 155Function: "cabs": 156double: 1 157float128: 1 158ldouble: 1 159 160Function: "cabs_downward": 161double: 1 162float128: 1 163ldouble: 1 164 165Function: "cabs_towardzero": 166double: 1 167float128: 1 168ldouble: 1 169 170Function: "cabs_upward": 171double: 1 172float128: 1 173ldouble: 1 174 175Function: Real part of "cacos": 176double: 1 177float: 2 178float128: 2 179ldouble: 1 180 181Function: Imaginary part of "cacos": 182double: 2 183float: 2 184float128: 2 185ldouble: 2 186 187Function: Real part of "cacos_downward": 188double: 1 189float: 1 190float128: 3 191ldouble: 2 192 193Function: Imaginary part of "cacos_downward": 194double: 5 195float: 3 196float128: 6 197ldouble: 6 198 199Function: Real part of "cacos_towardzero": 200double: 1 201float: 1 202float128: 3 203ldouble: 2 204 205Function: Imaginary part of "cacos_towardzero": 206double: 4 207float: 3 208float128: 5 209ldouble: 5 210 211Function: Real part of "cacos_upward": 212double: 2 213float: 2 214float128: 3 215ldouble: 2 216 217Function: Imaginary part of "cacos_upward": 218double: 7 219float: 7 220float128: 7 221ldouble: 7 222 223Function: Real part of "cacosh": 224double: 2 225float: 2 226float128: 2 227ldouble: 2 228 229Function: Imaginary part of "cacosh": 230double: 1 231float: 2 232float128: 2 233ldouble: 1 234 235Function: Real part of "cacosh_downward": 236double: 4 237float: 3 238float128: 5 239ldouble: 5 240 241Function: Imaginary part of "cacosh_downward": 242double: 2 243float: 2 244float128: 4 245ldouble: 3 246 247Function: Real part of "cacosh_towardzero": 248double: 4 249float: 3 250float128: 5 251ldouble: 5 252 253Function: Imaginary part of "cacosh_towardzero": 254double: 1 255float: 1 256float128: 3 257ldouble: 2 258 259Function: Real part of "cacosh_upward": 260double: 5 261float: 4 262float128: 6 263ldouble: 5 264 265Function: Imaginary part of "cacosh_upward": 266double: 3 267float: 2 268float128: 4 269ldouble: 3 270 271Function: "carg": 272double: 1 273float128: 2 274ldouble: 1 275 276Function: "carg_downward": 277double: 1 278float: 1 279float128: 2 280ldouble: 1 281 282Function: "carg_towardzero": 283double: 1 284float: 1 285float128: 3 286ldouble: 1 287 288Function: "carg_upward": 289double: 1 290float: 1 291float128: 2 292ldouble: 1 293 294Function: Real part of "casin": 295double: 1 296float: 1 297float128: 2 298ldouble: 1 299 300Function: Imaginary part of "casin": 301double: 2 302float: 2 303float128: 2 304ldouble: 2 305 306Function: Real part of "casin_downward": 307double: 3 308float: 2 309float128: 3 310ldouble: 3 311 312Function: Imaginary part of "casin_downward": 313double: 5 314float: 3 315float128: 6 316ldouble: 6 317 318Function: Real part of "casin_towardzero": 319double: 3 320float: 1 321float128: 3 322ldouble: 3 323 324Function: Imaginary part of "casin_towardzero": 325double: 4 326float: 3 327float128: 5 328ldouble: 5 329 330Function: Real part of "casin_upward": 331double: 2 332float: 2 333float128: 3 334ldouble: 2 335 336Function: Imaginary part of "casin_upward": 337double: 7 338float: 7 339float128: 7 340ldouble: 7 341 342Function: Real part of "casinh": 343double: 2 344float: 2 345float128: 2 346ldouble: 2 347 348Function: Imaginary part of "casinh": 349double: 1 350float: 1 351float128: 2 352ldouble: 1 353 354Function: Real part of "casinh_downward": 355double: 5 356float: 3 357float128: 6 358ldouble: 6 359 360Function: Imaginary part of "casinh_downward": 361double: 3 362float: 2 363float128: 3 364ldouble: 3 365 366Function: Real part of "casinh_towardzero": 367double: 4 368float: 3 369float128: 5 370ldouble: 5 371 372Function: Imaginary part of "casinh_towardzero": 373double: 3 374float: 1 375float128: 3 376ldouble: 3 377 378Function: Real part of "casinh_upward": 379double: 7 380float: 7 381float128: 7 382ldouble: 7 383 384Function: Imaginary part of "casinh_upward": 385double: 2 386float: 2 387float128: 3 388ldouble: 2 389 390Function: Real part of "catan": 391double: 1 392float128: 1 393ldouble: 1 394 395Function: Imaginary part of "catan": 396double: 1 397float: 1 398float128: 1 399ldouble: 1 400 401Function: Real part of "catan_downward": 402double: 1 403float: 1 404float128: 2 405ldouble: 1 406 407Function: Imaginary part of "catan_downward": 408double: 2 409float: 1 410float128: 2 411ldouble: 4 412 413Function: Real part of "catan_towardzero": 414double: 1 415float: 1 416float128: 2 417ldouble: 1 418 419Function: Imaginary part of "catan_towardzero": 420double: 2 421float: 1 422float128: 2 423ldouble: 4 424 425Function: Real part of "catan_upward": 426double: 1 427float: 1 428float128: 2 429ldouble: 1 430 431Function: Imaginary part of "catan_upward": 432double: 2 433float: 2 434float128: 3 435ldouble: 3 436 437Function: Real part of "catanh": 438double: 1 439float: 1 440float128: 1 441ldouble: 1 442 443Function: Imaginary part of "catanh": 444double: 1 445float128: 1 446ldouble: 1 447 448Function: Real part of "catanh_downward": 449double: 2 450float: 1 451float128: 2 452ldouble: 4 453 454Function: Imaginary part of "catanh_downward": 455double: 1 456float: 1 457float128: 2 458ldouble: 1 459 460Function: Real part of "catanh_towardzero": 461double: 2 462float: 1 463float128: 2 464ldouble: 4 465 466Function: Imaginary part of "catanh_towardzero": 467double: 1 468float: 1 469float128: 2 470ldouble: 1 471 472Function: Real part of "catanh_upward": 473double: 4 474float: 4 475float128: 4 476ldouble: 4 477 478Function: Imaginary part of "catanh_upward": 479double: 1 480float: 1 481float128: 2 482ldouble: 1 483 484Function: "cbrt": 485double: 1 486float: 1 487float128: 1 488ldouble: 3 489 490Function: "cbrt_downward": 491double: 1 492float: 1 493float128: 1 494ldouble: 4 495 496Function: "cbrt_towardzero": 497double: 1 498float: 1 499float128: 1 500ldouble: 3 501 502Function: "cbrt_upward": 503double: 1 504float: 1 505float128: 1 506ldouble: 4 507 508Function: Real part of "ccos": 509double: 1 510float: 1 511float128: 1 512ldouble: 1 513 514Function: Imaginary part of "ccos": 515double: 1 516float: 1 517float128: 1 518ldouble: 1 519 520Function: Real part of "ccos_downward": 521double: 1 522float: 1 523float128: 2 524ldouble: 3 525 526Function: Imaginary part of "ccos_downward": 527double: 3 528float: 3 529float128: 2 530ldouble: 3 531 532Function: Real part of "ccos_towardzero": 533double: 1 534float: 2 535float128: 2 536ldouble: 3 537 538Function: Imaginary part of "ccos_towardzero": 539double: 3 540float: 3 541float128: 2 542ldouble: 3 543 544Function: Real part of "ccos_upward": 545double: 2 546float: 2 547float128: 3 548ldouble: 2 549 550Function: Imaginary part of "ccos_upward": 551double: 2 552float: 2 553float128: 2 554ldouble: 2 555 556Function: Real part of "ccosh": 557double: 1 558float: 1 559float128: 1 560ldouble: 1 561 562Function: Imaginary part of "ccosh": 563double: 1 564float: 1 565float128: 1 566ldouble: 1 567 568Function: Real part of "ccosh_downward": 569double: 2 570float: 2 571float128: 2 572ldouble: 3 573 574Function: Imaginary part of "ccosh_downward": 575double: 3 576float: 3 577float128: 2 578ldouble: 3 579 580Function: Real part of "ccosh_towardzero": 581double: 2 582float: 3 583float128: 2 584ldouble: 3 585 586Function: Imaginary part of "ccosh_towardzero": 587double: 3 588float: 3 589float128: 2 590ldouble: 3 591 592Function: Real part of "ccosh_upward": 593double: 2 594float: 2 595float128: 3 596ldouble: 2 597 598Function: Imaginary part of "ccosh_upward": 599double: 3 600float: 2 601float128: 2 602ldouble: 2 603 604Function: Real part of "cexp": 605double: 2 606float: 1 607float128: 1 608ldouble: 1 609 610Function: Imaginary part of "cexp": 611double: 1 612float: 2 613float128: 1 614ldouble: 1 615 616Function: Real part of "cexp_downward": 617double: 2 618float: 2 619float128: 2 620ldouble: 3 621 622Function: Imaginary part of "cexp_downward": 623double: 3 624float: 3 625float128: 2 626ldouble: 3 627 628Function: Real part of "cexp_towardzero": 629double: 2 630float: 2 631float128: 2 632ldouble: 3 633 634Function: Imaginary part of "cexp_towardzero": 635double: 3 636float: 3 637float128: 2 638ldouble: 3 639 640Function: Real part of "cexp_upward": 641double: 1 642float: 2 643float128: 3 644ldouble: 2 645 646Function: Imaginary part of "cexp_upward": 647double: 3 648float: 2 649float128: 3 650ldouble: 3 651 652Function: Real part of "clog": 653double: 2 654float: 3 655float128: 2 656ldouble: 3 657 658Function: Imaginary part of "clog": 659double: 1 660float128: 1 661ldouble: 1 662 663Function: Real part of "clog10": 664double: 3 665float: 4 666float128: 2 667ldouble: 4 668 669Function: Imaginary part of "clog10": 670double: 2 671float: 1 672float128: 2 673ldouble: 2 674 675Function: Real part of "clog10_downward": 676double: 4 677float: 4 678float128: 3 679ldouble: 8 680 681Function: Imaginary part of "clog10_downward": 682double: 2 683float: 2 684float128: 3 685ldouble: 3 686 687Function: Real part of "clog10_towardzero": 688double: 5 689float: 5 690float128: 4 691ldouble: 8 692 693Function: Imaginary part of "clog10_towardzero": 694double: 2 695float: 2 696float128: 3 697ldouble: 3 698 699Function: Real part of "clog10_upward": 700double: 4 701float: 5 702float128: 4 703ldouble: 8 704 705Function: Imaginary part of "clog10_upward": 706double: 2 707float: 2 708float128: 3 709ldouble: 3 710 711Function: Real part of "clog_downward": 712double: 3 713float: 3 714float128: 3 715ldouble: 5 716 717Function: Imaginary part of "clog_downward": 718double: 1 719float: 1 720float128: 2 721ldouble: 1 722 723Function: Real part of "clog_towardzero": 724double: 3 725float: 4 726float128: 3 727ldouble: 5 728 729Function: Imaginary part of "clog_towardzero": 730double: 1 731float: 1 732float128: 2 733ldouble: 1 734 735Function: Real part of "clog_upward": 736double: 2 737float: 3 738float128: 4 739ldouble: 4 740 741Function: Imaginary part of "clog_upward": 742double: 1 743float: 1 744float128: 2 745ldouble: 1 746 747Function: "cos": 748double: 1 749float: 1 750float128: 2 751ldouble: 1 752 753Function: "cos_downward": 754double: 1 755float: 1 756float128: 3 757ldouble: 3 758 759Function: "cos_towardzero": 760double: 1 761float: 1 762float128: 1 763ldouble: 2 764 765Function: "cos_upward": 766double: 1 767float: 1 768float128: 2 769ldouble: 2 770 771Function: "cosh": 772double: 1 773float: 2 774float128: 2 775ldouble: 3 776 777Function: "cosh_downward": 778double: 3 779float: 1 780float128: 3 781ldouble: 3 782 783Function: "cosh_towardzero": 784double: 3 785float: 1 786float128: 3 787ldouble: 3 788 789Function: "cosh_upward": 790double: 4 791float: 2 792float128: 3 793ldouble: 3 794 795Function: Real part of "cpow": 796double: 2 797float: 5 798float128: 4 799ldouble: 3 800 801Function: Imaginary part of "cpow": 802float: 2 803float128: 1 804ldouble: 4 805 806Function: Real part of "cpow_downward": 807double: 5 808float: 8 809float128: 6 810ldouble: 7 811 812Function: Imaginary part of "cpow_downward": 813double: 2 814float: 2 815float128: 2 816ldouble: 2 817 818Function: Real part of "cpow_towardzero": 819double: 5 820float: 8 821float128: 6 822ldouble: 7 823 824Function: Imaginary part of "cpow_towardzero": 825double: 2 826float: 2 827float128: 2 828ldouble: 1 829 830Function: Real part of "cpow_upward": 831double: 4 832float: 1 833float128: 3 834ldouble: 2 835 836Function: Imaginary part of "cpow_upward": 837double: 1 838float: 2 839float128: 2 840ldouble: 2 841 842Function: Real part of "csin": 843double: 1 844float: 1 845float128: 1 846ldouble: 1 847 848Function: Imaginary part of "csin": 849float: 1 850float128: 1 851 852Function: Real part of "csin_downward": 853double: 3 854float: 3 855float128: 2 856ldouble: 3 857 858Function: Imaginary part of "csin_downward": 859double: 1 860float: 1 861float128: 2 862ldouble: 3 863 864Function: Real part of "csin_towardzero": 865double: 3 866float: 3 867float128: 2 868ldouble: 3 869 870Function: Imaginary part of "csin_towardzero": 871double: 1 872float: 1 873float128: 2 874ldouble: 3 875 876Function: Real part of "csin_upward": 877double: 3 878float: 2 879float128: 2 880ldouble: 2 881 882Function: Imaginary part of "csin_upward": 883double: 2 884float: 2 885float128: 3 886ldouble: 2 887 888Function: Real part of "csinh": 889float: 1 890float128: 1 891ldouble: 1 892 893Function: Imaginary part of "csinh": 894double: 1 895float: 1 896float128: 1 897ldouble: 1 898 899Function: Real part of "csinh_downward": 900double: 2 901float: 1 902float128: 2 903ldouble: 3 904 905Function: Imaginary part of "csinh_downward": 906double: 3 907float: 3 908float128: 2 909ldouble: 3 910 911Function: Real part of "csinh_towardzero": 912double: 2 913float: 2 914float128: 2 915ldouble: 3 916 917Function: Imaginary part of "csinh_towardzero": 918double: 3 919float: 3 920float128: 2 921ldouble: 3 922 923Function: Real part of "csinh_upward": 924double: 2 925float: 2 926float128: 3 927ldouble: 2 928 929Function: Imaginary part of "csinh_upward": 930double: 3 931float: 2 932float128: 2 933ldouble: 2 934 935Function: Real part of "csqrt": 936double: 2 937float: 2 938float128: 2 939ldouble: 2 940 941Function: Imaginary part of "csqrt": 942double: 2 943float: 2 944float128: 2 945ldouble: 2 946 947Function: Real part of "csqrt_downward": 948double: 4 949float: 4 950float128: 4 951ldouble: 5 952 953Function: Imaginary part of "csqrt_downward": 954double: 3 955float: 3 956float128: 3 957ldouble: 4 958 959Function: Real part of "csqrt_towardzero": 960double: 3 961float: 3 962float128: 3 963ldouble: 4 964 965Function: Imaginary part of "csqrt_towardzero": 966double: 3 967float: 3 968float128: 3 969ldouble: 4 970 971Function: Real part of "csqrt_upward": 972double: 4 973float: 4 974float128: 4 975ldouble: 5 976 977Function: Imaginary part of "csqrt_upward": 978double: 3 979float: 3 980float128: 3 981ldouble: 4 982 983Function: Real part of "ctan": 984double: 1 985float: 1 986float128: 3 987ldouble: 2 988 989Function: Imaginary part of "ctan": 990double: 2 991float: 2 992float128: 3 993ldouble: 1 994 995Function: Real part of "ctan_downward": 996double: 6 997float: 5 998float128: 4 999ldouble: 5 1000 1001Function: Imaginary part of "ctan_downward": 1002double: 2 1003float: 2 1004float128: 5 1005ldouble: 4 1006 1007Function: Real part of "ctan_towardzero": 1008double: 5 1009float: 3 1010float128: 4 1011ldouble: 5 1012 1013Function: Imaginary part of "ctan_towardzero": 1014double: 2 1015float: 3 1016float128: 5 1017ldouble: 4 1018 1019Function: Real part of "ctan_upward": 1020double: 3 1021float: 4 1022float128: 5 1023ldouble: 3 1024 1025Function: Imaginary part of "ctan_upward": 1026double: 2 1027float: 1 1028float128: 5 1029ldouble: 3 1030 1031Function: Real part of "ctanh": 1032double: 2 1033float: 2 1034float128: 3 1035ldouble: 1 1036 1037Function: Imaginary part of "ctanh": 1038double: 2 1039float: 2 1040float128: 3 1041ldouble: 2 1042 1043Function: Real part of "ctanh_downward": 1044double: 2 1045float: 2 1046float128: 5 1047ldouble: 4 1048 1049Function: Imaginary part of "ctanh_downward": 1050double: 6 1051float: 5 1052float128: 4 1053ldouble: 4 1054 1055Function: Real part of "ctanh_towardzero": 1056double: 2 1057float: 3 1058float128: 5 1059ldouble: 4 1060 1061Function: Imaginary part of "ctanh_towardzero": 1062double: 5 1063float: 3 1064float128: 3 1065ldouble: 3 1066 1067Function: Real part of "ctanh_upward": 1068double: 2 1069float: 2 1070float128: 5 1071ldouble: 3 1072 1073Function: Imaginary part of "ctanh_upward": 1074double: 3 1075float: 3 1076float128: 5 1077ldouble: 3 1078 1079Function: "erf": 1080double: 1 1081float: 1 1082float128: 1 1083ldouble: 1 1084 1085Function: "erf_downward": 1086double: 1 1087float: 1 1088float128: 2 1089ldouble: 1 1090 1091Function: "erf_towardzero": 1092double: 1 1093float: 1 1094float128: 1 1095ldouble: 1 1096 1097Function: "erf_upward": 1098double: 1 1099float: 1 1100float128: 2 1101ldouble: 1 1102 1103Function: "erfc": 1104double: 5 1105float: 3 1106float128: 4 1107ldouble: 5 1108 1109Function: "erfc_downward": 1110double: 5 1111float: 6 1112float128: 5 1113ldouble: 4 1114 1115Function: "erfc_towardzero": 1116double: 3 1117float: 4 1118float128: 4 1119ldouble: 4 1120 1121Function: "erfc_upward": 1122double: 5 1123float: 6 1124float128: 5 1125ldouble: 5 1126 1127Function: "exp": 1128double: 1 1129float: 1 1130float128: 1 1131ldouble: 1 1132 1133Function: "exp10": 1134double: 1 1135float128: 2 1136ldouble: 1 1137 1138Function: "exp10_downward": 1139double: 1 1140float: 1 1141float128: 3 1142ldouble: 2 1143 1144Function: "exp10_towardzero": 1145double: 1 1146float: 1 1147float128: 3 1148ldouble: 2 1149 1150Function: "exp10_upward": 1151double: 1 1152float: 1 1153float128: 3 1154ldouble: 2 1155 1156Function: "exp2": 1157double: 1 1158float128: 1 1159ldouble: 1 1160 1161Function: "exp2_downward": 1162float128: 1 1163ldouble: 1 1164 1165Function: "exp2_towardzero": 1166double: 1 1167float128: 1 1168ldouble: 1 1169 1170Function: "exp2_upward": 1171float: 1 1172float128: 2 1173ldouble: 1 1174 1175Function: "exp_downward": 1176double: 1 1177float: 1 1178ldouble: 1 1179 1180Function: "exp_towardzero": 1181double: 1 1182float: 1 1183ldouble: 2 1184 1185Function: "exp_upward": 1186double: 1 1187float: 1 1188ldouble: 1 1189 1190Function: "expm1": 1191double: 1 1192float128: 2 1193ldouble: 3 1194 1195Function: "expm1_downward": 1196double: 1 1197float: 1 1198float128: 2 1199ldouble: 4 1200 1201Function: "expm1_towardzero": 1202double: 1 1203float: 1 1204float128: 4 1205ldouble: 4 1206 1207Function: "expm1_upward": 1208double: 1 1209float: 1 1210float128: 3 1211ldouble: 4 1212 1213Function: "gamma": 1214double: 4 1215float: 5 1216ldouble: 4 1217 1218Function: "gamma_downward": 1219double: 5 1220float: 5 1221ldouble: 7 1222 1223Function: "gamma_towardzero": 1224double: 5 1225float: 6 1226ldouble: 7 1227 1228Function: "gamma_upward": 1229double: 5 1230float: 6 1231ldouble: 6 1232 1233Function: "hypot": 1234double: 1 1235float128: 1 1236ldouble: 1 1237 1238Function: "hypot_downward": 1239double: 1 1240float128: 1 1241ldouble: 1 1242 1243Function: "hypot_towardzero": 1244double: 1 1245float128: 1 1246ldouble: 1 1247 1248Function: "hypot_upward": 1249double: 1 1250float128: 1 1251ldouble: 1 1252 1253Function: "j0": 1254double: 5 1255float: 9 1256float128: 2 1257ldouble: 8 1258 1259Function: "j0_downward": 1260double: 5 1261float: 9 1262float128: 9 1263ldouble: 6 1264 1265Function: "j0_towardzero": 1266double: 6 1267float: 9 1268float128: 9 1269ldouble: 6 1270 1271Function: "j0_upward": 1272double: 9 1273float: 9 1274float128: 7 1275ldouble: 6 1276 1277Function: "j1": 1278double: 4 1279float: 9 1280float128: 4 1281ldouble: 9 1282 1283Function: "j1_downward": 1284double: 5 1285float: 8 1286float128: 4 1287ldouble: 4 1288 1289Function: "j1_towardzero": 1290double: 4 1291float: 8 1292float128: 4 1293ldouble: 4 1294 1295Function: "j1_upward": 1296double: 9 1297float: 9 1298float128: 3 1299ldouble: 3 1300 1301Function: "jn": 1302double: 4 1303float: 4 1304float128: 7 1305ldouble: 4 1306 1307Function: "jn_downward": 1308double: 5 1309float: 5 1310float128: 8 1311ldouble: 4 1312 1313Function: "jn_towardzero": 1314double: 5 1315float: 5 1316float128: 8 1317ldouble: 5 1318 1319Function: "jn_upward": 1320double: 5 1321float: 5 1322float128: 7 1323ldouble: 5 1324 1325Function: "lgamma": 1326double: 4 1327float: 5 1328float128: 5 1329ldouble: 4 1330 1331Function: "lgamma_downward": 1332double: 5 1333float: 5 1334float128: 8 1335ldouble: 7 1336 1337Function: "lgamma_towardzero": 1338double: 5 1339float: 6 1340float128: 5 1341ldouble: 7 1342 1343Function: "lgamma_upward": 1344double: 5 1345float: 6 1346float128: 8 1347ldouble: 6 1348 1349Function: "log": 1350double: 1 1351float128: 1 1352ldouble: 1 1353 1354Function: "log10": 1355double: 1 1356float128: 2 1357ldouble: 1 1358 1359Function: "log10_downward": 1360double: 1 1361float: 1 1362float128: 1 1363ldouble: 2 1364 1365Function: "log10_towardzero": 1366double: 1 1367float: 1 1368float128: 1 1369ldouble: 2 1370 1371Function: "log10_upward": 1372double: 1 1373float: 1 1374float128: 1 1375ldouble: 1 1376 1377Function: "log1p": 1378double: 1 1379float128: 3 1380ldouble: 2 1381 1382Function: "log1p_downward": 1383double: 1 1384float: 1 1385float128: 3 1386ldouble: 4 1387 1388Function: "log1p_towardzero": 1389double: 1 1390float: 1 1391float128: 3 1392ldouble: 4 1393 1394Function: "log1p_upward": 1395double: 1 1396float: 1 1397float128: 2 1398ldouble: 3 1399 1400Function: "log2": 1401double: 1 1402float: 1 1403float128: 3 1404ldouble: 1 1405 1406Function: "log2_downward": 1407double: 1 1408float128: 3 1409ldouble: 1 1410 1411Function: "log2_towardzero": 1412double: 1 1413float: 1 1414float128: 1 1415ldouble: 1 1416 1417Function: "log2_upward": 1418double: 1 1419float: 1 1420float128: 1 1421ldouble: 1 1422 1423Function: "log_downward": 1424double: 1 1425float128: 1 1426ldouble: 2 1427 1428Function: "log_towardzero": 1429double: 1 1430float128: 2 1431ldouble: 2 1432 1433Function: "log_upward": 1434double: 1 1435float128: 1 1436ldouble: 1 1437 1438Function: "pow": 1439double: 1 1440float128: 2 1441ldouble: 1 1442 1443Function: "pow_downward": 1444double: 1 1445float: 1 1446float128: 2 1447ldouble: 4 1448 1449Function: "pow_towardzero": 1450double: 1 1451float: 1 1452float128: 2 1453ldouble: 4 1454 1455Function: "pow_upward": 1456double: 1 1457float: 1 1458float128: 2 1459ldouble: 4 1460 1461Function: "sin": 1462double: 1 1463float: 1 1464float128: 2 1465ldouble: 2 1466 1467Function: "sin_downward": 1468double: 1 1469float: 1 1470float128: 3 1471ldouble: 3 1472 1473Function: "sin_towardzero": 1474double: 1 1475float: 1 1476float128: 2 1477ldouble: 2 1478 1479Function: "sin_upward": 1480double: 1 1481float: 1 1482float128: 3 1483ldouble: 3 1484 1485Function: "sincos": 1486double: 1 1487float: 1 1488float128: 1 1489ldouble: 1 1490 1491Function: "sincos_downward": 1492double: 1 1493float: 1 1494float128: 3 1495ldouble: 3 1496 1497Function: "sincos_towardzero": 1498double: 1 1499float: 1 1500float128: 2 1501ldouble: 2 1502 1503Function: "sincos_upward": 1504double: 1 1505float: 1 1506float128: 3 1507ldouble: 3 1508 1509Function: "sinh": 1510double: 2 1511float: 2 1512float128: 2 1513ldouble: 3 1514 1515Function: "sinh_downward": 1516double: 3 1517float: 3 1518float128: 3 1519ldouble: 5 1520 1521Function: "sinh_towardzero": 1522double: 3 1523float: 2 1524float128: 3 1525ldouble: 4 1526 1527Function: "sinh_upward": 1528double: 4 1529float: 3 1530float128: 4 1531ldouble: 5 1532 1533Function: "tan": 1534float: 1 1535float128: 1 1536ldouble: 2 1537 1538Function: "tan_downward": 1539double: 1 1540float: 2 1541float128: 1 1542ldouble: 3 1543 1544Function: "tan_towardzero": 1545double: 1 1546float: 2 1547float128: 1 1548ldouble: 3 1549 1550Function: "tan_upward": 1551double: 1 1552float: 2 1553float128: 1 1554ldouble: 2 1555 1556Function: "tanh": 1557double: 2 1558float: 2 1559float128: 2 1560ldouble: 3 1561 1562Function: "tanh_downward": 1563double: 3 1564float: 3 1565float128: 4 1566ldouble: 4 1567 1568Function: "tanh_towardzero": 1569double: 2 1570float: 2 1571float128: 3 1572ldouble: 3 1573 1574Function: "tanh_upward": 1575double: 3 1576float: 3 1577float128: 3 1578ldouble: 4 1579 1580Function: "tgamma": 1581double: 9 1582float: 8 1583float128: 4 1584ldouble: 5 1585 1586Function: "tgamma_downward": 1587double: 9 1588float: 7 1589float128: 5 1590ldouble: 6 1591 1592Function: "tgamma_towardzero": 1593double: 9 1594float: 7 1595float128: 5 1596ldouble: 6 1597 1598Function: "tgamma_upward": 1599double: 9 1600float: 8 1601float128: 4 1602ldouble: 5 1603 1604Function: "y0": 1605double: 3 1606float: 9 1607float128: 3 1608ldouble: 2 1609 1610Function: "y0_downward": 1611double: 3 1612float: 9 1613float128: 7 1614ldouble: 5 1615 1616Function: "y0_towardzero": 1617double: 4 1618float: 9 1619float128: 3 1620ldouble: 8 1621 1622Function: "y0_upward": 1623double: 3 1624float: 9 1625float128: 4 1626ldouble: 7 1627 1628Function: "y1": 1629double: 3 1630float: 9 1631float128: 5 1632ldouble: 3 1633 1634Function: "y1_downward": 1635double: 6 1636float: 9 1637float128: 5 1638ldouble: 7 1639 1640Function: "y1_towardzero": 1641double: 3 1642float: 9 1643float128: 2 1644ldouble: 5 1645 1646Function: "y1_upward": 1647double: 7 1648float: 9 1649float128: 5 1650ldouble: 7 1651 1652Function: "yn": 1653double: 3 1654float: 3 1655float128: 5 1656ldouble: 4 1657 1658Function: "yn_downward": 1659double: 3 1660float: 4 1661float128: 5 1662ldouble: 5 1663 1664Function: "yn_towardzero": 1665double: 3 1666float: 3 1667float128: 5 1668ldouble: 5 1669 1670Function: "yn_upward": 1671double: 4 1672float: 5 1673float128: 5 1674ldouble: 4 1675 1676# end of automatic generation 1677