1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5double: 1
6float128: 1
7ldouble: 2
8
9Function: "acos_downward":
10float128: 1
11ldouble: 2
12
13Function: "acos_towardzero":
14float128: 1
15ldouble: 2
16
17Function: "acos_upward":
18double: 1
19float128: 1
20ldouble: 2
21
22Function: "acosh":
23double: 1
24float128: 4
25ldouble: 3
26
27Function: "acosh_downward":
28double: 1
29float128: 3
30ldouble: 4
31
32Function: "acosh_towardzero":
33double: 1
34float128: 2
35ldouble: 4
36
37Function: "acosh_upward":
38double: 1
39float128: 3
40ldouble: 3
41
42Function: "asin":
43double: 1
44float128: 1
45ldouble: 1
46
47Function: "asin_downward":
48double: 1
49float128: 2
50ldouble: 2
51
52Function: "asin_towardzero":
53double: 1
54float128: 1
55ldouble: 1
56
57Function: "asin_upward":
58double: 1
59float: 1
60float128: 2
61ldouble: 1
62
63Function: "asinh":
64double: 1
65float128: 4
66ldouble: 3
67
68Function: "asinh_downward":
69double: 1
70float: 1
71float128: 4
72ldouble: 5
73
74Function: "asinh_towardzero":
75double: 1
76float: 1
77float128: 2
78ldouble: 4
79
80Function: "asinh_upward":
81double: 1
82float: 1
83float128: 4
84ldouble: 5
85
86Function: "atan":
87double: 1
88float128: 1
89ldouble: 1
90
91Function: "atan2":
92double: 1
93float128: 2
94ldouble: 1
95
96Function: "atan2_downward":
97double: 1
98float: 1
99float128: 2
100ldouble: 1
101
102Function: "atan2_towardzero":
103double: 1
104float: 1
105float128: 3
106ldouble: 1
107
108Function: "atan2_upward":
109double: 1
110float: 1
111float128: 2
112ldouble: 1
113
114Function: "atan_downward":
115double: 1
116float: 1
117float128: 2
118ldouble: 1
119
120Function: "atan_towardzero":
121double: 1
122float: 1
123float128: 1
124ldouble: 1
125
126Function: "atan_upward":
127double: 1
128float: 1
129float128: 2
130ldouble: 1
131
132Function: "atanh":
133double: 1
134float128: 4
135ldouble: 3
136
137Function: "atanh_downward":
138double: 1
139float: 1
140float128: 4
141ldouble: 4
142
143Function: "atanh_towardzero":
144double: 1
145float: 1
146float128: 2
147ldouble: 3
148
149Function: "atanh_upward":
150double: 1
151float: 1
152float128: 4
153ldouble: 5
154
155Function: "cabs":
156double: 1
157float128: 1
158ldouble: 1
159
160Function: "cabs_downward":
161double: 1
162float128: 1
163ldouble: 1
164
165Function: "cabs_towardzero":
166double: 1
167float128: 1
168ldouble: 1
169
170Function: "cabs_upward":
171double: 1
172float128: 1
173ldouble: 1
174
175Function: Real part of "cacos":
176double: 1
177float: 2
178float128: 2
179ldouble: 1
180
181Function: Imaginary part of "cacos":
182double: 2
183float: 2
184float128: 2
185ldouble: 2
186
187Function: Real part of "cacos_downward":
188double: 1
189float: 1
190float128: 3
191ldouble: 2
192
193Function: Imaginary part of "cacos_downward":
194double: 5
195float: 3
196float128: 6
197ldouble: 6
198
199Function: Real part of "cacos_towardzero":
200double: 1
201float: 1
202float128: 3
203ldouble: 2
204
205Function: Imaginary part of "cacos_towardzero":
206double: 4
207float: 3
208float128: 5
209ldouble: 5
210
211Function: Real part of "cacos_upward":
212double: 2
213float: 2
214float128: 3
215ldouble: 2
216
217Function: Imaginary part of "cacos_upward":
218double: 7
219float: 7
220float128: 7
221ldouble: 7
222
223Function: Real part of "cacosh":
224double: 2
225float: 2
226float128: 2
227ldouble: 2
228
229Function: Imaginary part of "cacosh":
230double: 1
231float: 2
232float128: 2
233ldouble: 1
234
235Function: Real part of "cacosh_downward":
236double: 4
237float: 3
238float128: 5
239ldouble: 5
240
241Function: Imaginary part of "cacosh_downward":
242double: 2
243float: 2
244float128: 4
245ldouble: 3
246
247Function: Real part of "cacosh_towardzero":
248double: 4
249float: 3
250float128: 5
251ldouble: 5
252
253Function: Imaginary part of "cacosh_towardzero":
254double: 1
255float: 1
256float128: 3
257ldouble: 2
258
259Function: Real part of "cacosh_upward":
260double: 5
261float: 4
262float128: 6
263ldouble: 5
264
265Function: Imaginary part of "cacosh_upward":
266double: 3
267float: 2
268float128: 4
269ldouble: 3
270
271Function: "carg":
272double: 1
273float128: 2
274ldouble: 1
275
276Function: "carg_downward":
277double: 1
278float: 1
279float128: 2
280ldouble: 1
281
282Function: "carg_towardzero":
283double: 1
284float: 1
285float128: 3
286ldouble: 1
287
288Function: "carg_upward":
289double: 1
290float: 1
291float128: 2
292ldouble: 1
293
294Function: Real part of "casin":
295double: 1
296float: 1
297float128: 2
298ldouble: 1
299
300Function: Imaginary part of "casin":
301double: 2
302float: 2
303float128: 2
304ldouble: 2
305
306Function: Real part of "casin_downward":
307double: 3
308float: 2
309float128: 3
310ldouble: 3
311
312Function: Imaginary part of "casin_downward":
313double: 5
314float: 3
315float128: 6
316ldouble: 6
317
318Function: Real part of "casin_towardzero":
319double: 3
320float: 1
321float128: 3
322ldouble: 3
323
324Function: Imaginary part of "casin_towardzero":
325double: 4
326float: 3
327float128: 5
328ldouble: 5
329
330Function: Real part of "casin_upward":
331double: 2
332float: 2
333float128: 3
334ldouble: 2
335
336Function: Imaginary part of "casin_upward":
337double: 7
338float: 7
339float128: 7
340ldouble: 7
341
342Function: Real part of "casinh":
343double: 2
344float: 2
345float128: 2
346ldouble: 2
347
348Function: Imaginary part of "casinh":
349double: 1
350float: 1
351float128: 2
352ldouble: 1
353
354Function: Real part of "casinh_downward":
355double: 5
356float: 3
357float128: 6
358ldouble: 6
359
360Function: Imaginary part of "casinh_downward":
361double: 3
362float: 2
363float128: 3
364ldouble: 3
365
366Function: Real part of "casinh_towardzero":
367double: 4
368float: 3
369float128: 5
370ldouble: 5
371
372Function: Imaginary part of "casinh_towardzero":
373double: 3
374float: 1
375float128: 3
376ldouble: 3
377
378Function: Real part of "casinh_upward":
379double: 7
380float: 7
381float128: 7
382ldouble: 7
383
384Function: Imaginary part of "casinh_upward":
385double: 2
386float: 2
387float128: 3
388ldouble: 2
389
390Function: Real part of "catan":
391double: 1
392float128: 1
393ldouble: 1
394
395Function: Imaginary part of "catan":
396double: 1
397float: 1
398float128: 1
399ldouble: 1
400
401Function: Real part of "catan_downward":
402double: 1
403float: 1
404float128: 2
405ldouble: 1
406
407Function: Imaginary part of "catan_downward":
408double: 2
409float: 1
410float128: 2
411ldouble: 4
412
413Function: Real part of "catan_towardzero":
414double: 1
415float: 1
416float128: 2
417ldouble: 1
418
419Function: Imaginary part of "catan_towardzero":
420double: 2
421float: 1
422float128: 2
423ldouble: 4
424
425Function: Real part of "catan_upward":
426double: 1
427float: 1
428float128: 2
429ldouble: 1
430
431Function: Imaginary part of "catan_upward":
432double: 2
433float: 2
434float128: 3
435ldouble: 3
436
437Function: Real part of "catanh":
438double: 1
439float: 1
440float128: 1
441ldouble: 1
442
443Function: Imaginary part of "catanh":
444double: 1
445float128: 1
446ldouble: 1
447
448Function: Real part of "catanh_downward":
449double: 2
450float: 1
451float128: 2
452ldouble: 4
453
454Function: Imaginary part of "catanh_downward":
455double: 1
456float: 1
457float128: 2
458ldouble: 1
459
460Function: Real part of "catanh_towardzero":
461double: 2
462float: 1
463float128: 2
464ldouble: 4
465
466Function: Imaginary part of "catanh_towardzero":
467double: 1
468float: 1
469float128: 2
470ldouble: 1
471
472Function: Real part of "catanh_upward":
473double: 4
474float: 4
475float128: 4
476ldouble: 4
477
478Function: Imaginary part of "catanh_upward":
479double: 1
480float: 1
481float128: 2
482ldouble: 1
483
484Function: "cbrt":
485double: 1
486float: 1
487float128: 1
488ldouble: 3
489
490Function: "cbrt_downward":
491double: 1
492float: 1
493float128: 1
494ldouble: 4
495
496Function: "cbrt_towardzero":
497double: 1
498float: 1
499float128: 1
500ldouble: 3
501
502Function: "cbrt_upward":
503double: 1
504float: 1
505float128: 1
506ldouble: 4
507
508Function: Real part of "ccos":
509double: 1
510float: 1
511float128: 1
512ldouble: 1
513
514Function: Imaginary part of "ccos":
515double: 1
516float: 1
517float128: 1
518ldouble: 1
519
520Function: Real part of "ccos_downward":
521double: 1
522float: 1
523float128: 2
524ldouble: 3
525
526Function: Imaginary part of "ccos_downward":
527double: 3
528float: 3
529float128: 2
530ldouble: 3
531
532Function: Real part of "ccos_towardzero":
533double: 1
534float: 2
535float128: 2
536ldouble: 3
537
538Function: Imaginary part of "ccos_towardzero":
539double: 3
540float: 3
541float128: 2
542ldouble: 3
543
544Function: Real part of "ccos_upward":
545double: 2
546float: 2
547float128: 3
548ldouble: 2
549
550Function: Imaginary part of "ccos_upward":
551double: 2
552float: 2
553float128: 2
554ldouble: 2
555
556Function: Real part of "ccosh":
557double: 1
558float: 1
559float128: 1
560ldouble: 1
561
562Function: Imaginary part of "ccosh":
563double: 1
564float: 1
565float128: 1
566ldouble: 1
567
568Function: Real part of "ccosh_downward":
569double: 2
570float: 2
571float128: 2
572ldouble: 3
573
574Function: Imaginary part of "ccosh_downward":
575double: 3
576float: 3
577float128: 2
578ldouble: 3
579
580Function: Real part of "ccosh_towardzero":
581double: 2
582float: 3
583float128: 2
584ldouble: 3
585
586Function: Imaginary part of "ccosh_towardzero":
587double: 3
588float: 3
589float128: 2
590ldouble: 3
591
592Function: Real part of "ccosh_upward":
593double: 2
594float: 2
595float128: 3
596ldouble: 2
597
598Function: Imaginary part of "ccosh_upward":
599double: 3
600float: 2
601float128: 2
602ldouble: 2
603
604Function: Real part of "cexp":
605double: 2
606float: 1
607float128: 1
608ldouble: 1
609
610Function: Imaginary part of "cexp":
611double: 1
612float: 2
613float128: 1
614ldouble: 1
615
616Function: Real part of "cexp_downward":
617double: 2
618float: 2
619float128: 2
620ldouble: 3
621
622Function: Imaginary part of "cexp_downward":
623double: 3
624float: 3
625float128: 2
626ldouble: 3
627
628Function: Real part of "cexp_towardzero":
629double: 2
630float: 2
631float128: 2
632ldouble: 3
633
634Function: Imaginary part of "cexp_towardzero":
635double: 3
636float: 3
637float128: 2
638ldouble: 3
639
640Function: Real part of "cexp_upward":
641double: 1
642float: 2
643float128: 3
644ldouble: 2
645
646Function: Imaginary part of "cexp_upward":
647double: 3
648float: 2
649float128: 3
650ldouble: 3
651
652Function: Real part of "clog":
653double: 2
654float: 3
655float128: 2
656ldouble: 3
657
658Function: Imaginary part of "clog":
659double: 1
660float128: 1
661ldouble: 1
662
663Function: Real part of "clog10":
664double: 3
665float: 4
666float128: 2
667ldouble: 4
668
669Function: Imaginary part of "clog10":
670double: 2
671float: 1
672float128: 2
673ldouble: 2
674
675Function: Real part of "clog10_downward":
676double: 4
677float: 4
678float128: 3
679ldouble: 8
680
681Function: Imaginary part of "clog10_downward":
682double: 2
683float: 2
684float128: 3
685ldouble: 3
686
687Function: Real part of "clog10_towardzero":
688double: 5
689float: 5
690float128: 4
691ldouble: 8
692
693Function: Imaginary part of "clog10_towardzero":
694double: 2
695float: 2
696float128: 3
697ldouble: 3
698
699Function: Real part of "clog10_upward":
700double: 4
701float: 5
702float128: 4
703ldouble: 8
704
705Function: Imaginary part of "clog10_upward":
706double: 2
707float: 2
708float128: 3
709ldouble: 3
710
711Function: Real part of "clog_downward":
712double: 3
713float: 3
714float128: 3
715ldouble: 5
716
717Function: Imaginary part of "clog_downward":
718double: 1
719float: 1
720float128: 2
721ldouble: 1
722
723Function: Real part of "clog_towardzero":
724double: 3
725float: 4
726float128: 3
727ldouble: 5
728
729Function: Imaginary part of "clog_towardzero":
730double: 1
731float: 1
732float128: 2
733ldouble: 1
734
735Function: Real part of "clog_upward":
736double: 2
737float: 3
738float128: 4
739ldouble: 4
740
741Function: Imaginary part of "clog_upward":
742double: 1
743float: 1
744float128: 2
745ldouble: 1
746
747Function: "cos":
748double: 1
749float: 1
750float128: 2
751ldouble: 1
752
753Function: "cos_downward":
754double: 1
755float: 1
756float128: 3
757ldouble: 3
758
759Function: "cos_towardzero":
760double: 1
761float: 1
762float128: 1
763ldouble: 2
764
765Function: "cos_upward":
766double: 1
767float: 1
768float128: 2
769ldouble: 2
770
771Function: "cosh":
772double: 1
773float: 2
774float128: 2
775ldouble: 3
776
777Function: "cosh_downward":
778double: 3
779float: 1
780float128: 3
781ldouble: 3
782
783Function: "cosh_towardzero":
784double: 3
785float: 1
786float128: 3
787ldouble: 3
788
789Function: "cosh_upward":
790double: 4
791float: 2
792float128: 3
793ldouble: 3
794
795Function: Real part of "cpow":
796double: 2
797float: 5
798float128: 4
799ldouble: 3
800
801Function: Imaginary part of "cpow":
802float: 2
803float128: 1
804ldouble: 4
805
806Function: Real part of "cpow_downward":
807double: 5
808float: 8
809float128: 6
810ldouble: 7
811
812Function: Imaginary part of "cpow_downward":
813double: 2
814float: 2
815float128: 2
816ldouble: 2
817
818Function: Real part of "cpow_towardzero":
819double: 5
820float: 8
821float128: 6
822ldouble: 7
823
824Function: Imaginary part of "cpow_towardzero":
825double: 2
826float: 2
827float128: 2
828ldouble: 1
829
830Function: Real part of "cpow_upward":
831double: 4
832float: 1
833float128: 3
834ldouble: 2
835
836Function: Imaginary part of "cpow_upward":
837double: 1
838float: 2
839float128: 2
840ldouble: 2
841
842Function: Real part of "csin":
843double: 1
844float: 1
845float128: 1
846ldouble: 1
847
848Function: Imaginary part of "csin":
849float: 1
850float128: 1
851
852Function: Real part of "csin_downward":
853double: 3
854float: 3
855float128: 2
856ldouble: 3
857
858Function: Imaginary part of "csin_downward":
859double: 1
860float: 1
861float128: 2
862ldouble: 3
863
864Function: Real part of "csin_towardzero":
865double: 3
866float: 3
867float128: 2
868ldouble: 3
869
870Function: Imaginary part of "csin_towardzero":
871double: 1
872float: 1
873float128: 2
874ldouble: 3
875
876Function: Real part of "csin_upward":
877double: 3
878float: 2
879float128: 2
880ldouble: 2
881
882Function: Imaginary part of "csin_upward":
883double: 2
884float: 2
885float128: 3
886ldouble: 2
887
888Function: Real part of "csinh":
889float: 1
890float128: 1
891ldouble: 1
892
893Function: Imaginary part of "csinh":
894double: 1
895float: 1
896float128: 1
897ldouble: 1
898
899Function: Real part of "csinh_downward":
900double: 2
901float: 1
902float128: 2
903ldouble: 3
904
905Function: Imaginary part of "csinh_downward":
906double: 3
907float: 3
908float128: 2
909ldouble: 3
910
911Function: Real part of "csinh_towardzero":
912double: 2
913float: 2
914float128: 2
915ldouble: 3
916
917Function: Imaginary part of "csinh_towardzero":
918double: 3
919float: 3
920float128: 2
921ldouble: 3
922
923Function: Real part of "csinh_upward":
924double: 2
925float: 2
926float128: 3
927ldouble: 2
928
929Function: Imaginary part of "csinh_upward":
930double: 3
931float: 2
932float128: 2
933ldouble: 2
934
935Function: Real part of "csqrt":
936double: 2
937float: 2
938float128: 2
939ldouble: 2
940
941Function: Imaginary part of "csqrt":
942double: 2
943float: 2
944float128: 2
945ldouble: 2
946
947Function: Real part of "csqrt_downward":
948double: 4
949float: 4
950float128: 4
951ldouble: 5
952
953Function: Imaginary part of "csqrt_downward":
954double: 3
955float: 3
956float128: 3
957ldouble: 4
958
959Function: Real part of "csqrt_towardzero":
960double: 3
961float: 3
962float128: 3
963ldouble: 4
964
965Function: Imaginary part of "csqrt_towardzero":
966double: 3
967float: 3
968float128: 3
969ldouble: 4
970
971Function: Real part of "csqrt_upward":
972double: 4
973float: 4
974float128: 4
975ldouble: 5
976
977Function: Imaginary part of "csqrt_upward":
978double: 3
979float: 3
980float128: 3
981ldouble: 4
982
983Function: Real part of "ctan":
984double: 1
985float: 1
986float128: 3
987ldouble: 2
988
989Function: Imaginary part of "ctan":
990double: 2
991float: 2
992float128: 3
993ldouble: 1
994
995Function: Real part of "ctan_downward":
996double: 6
997float: 5
998float128: 4
999ldouble: 5
1000
1001Function: Imaginary part of "ctan_downward":
1002double: 2
1003float: 2
1004float128: 5
1005ldouble: 4
1006
1007Function: Real part of "ctan_towardzero":
1008double: 5
1009float: 3
1010float128: 4
1011ldouble: 5
1012
1013Function: Imaginary part of "ctan_towardzero":
1014double: 2
1015float: 3
1016float128: 5
1017ldouble: 4
1018
1019Function: Real part of "ctan_upward":
1020double: 3
1021float: 4
1022float128: 5
1023ldouble: 3
1024
1025Function: Imaginary part of "ctan_upward":
1026double: 2
1027float: 1
1028float128: 5
1029ldouble: 3
1030
1031Function: Real part of "ctanh":
1032double: 2
1033float: 2
1034float128: 3
1035ldouble: 1
1036
1037Function: Imaginary part of "ctanh":
1038double: 2
1039float: 2
1040float128: 3
1041ldouble: 2
1042
1043Function: Real part of "ctanh_downward":
1044double: 2
1045float: 2
1046float128: 5
1047ldouble: 4
1048
1049Function: Imaginary part of "ctanh_downward":
1050double: 6
1051float: 5
1052float128: 4
1053ldouble: 4
1054
1055Function: Real part of "ctanh_towardzero":
1056double: 2
1057float: 3
1058float128: 5
1059ldouble: 4
1060
1061Function: Imaginary part of "ctanh_towardzero":
1062double: 5
1063float: 3
1064float128: 3
1065ldouble: 3
1066
1067Function: Real part of "ctanh_upward":
1068double: 2
1069float: 2
1070float128: 5
1071ldouble: 3
1072
1073Function: Imaginary part of "ctanh_upward":
1074double: 3
1075float: 3
1076float128: 5
1077ldouble: 3
1078
1079Function: "erf":
1080double: 1
1081float: 1
1082float128: 1
1083ldouble: 1
1084
1085Function: "erf_downward":
1086double: 1
1087float: 1
1088float128: 2
1089ldouble: 1
1090
1091Function: "erf_towardzero":
1092double: 1
1093float: 1
1094float128: 1
1095ldouble: 1
1096
1097Function: "erf_upward":
1098double: 1
1099float: 1
1100float128: 2
1101ldouble: 1
1102
1103Function: "erfc":
1104double: 5
1105float: 3
1106float128: 4
1107ldouble: 5
1108
1109Function: "erfc_downward":
1110double: 5
1111float: 6
1112float128: 5
1113ldouble: 4
1114
1115Function: "erfc_towardzero":
1116double: 3
1117float: 4
1118float128: 4
1119ldouble: 4
1120
1121Function: "erfc_upward":
1122double: 5
1123float: 6
1124float128: 5
1125ldouble: 5
1126
1127Function: "exp":
1128double: 1
1129float: 1
1130float128: 1
1131ldouble: 1
1132
1133Function: "exp10":
1134double: 1
1135float128: 2
1136ldouble: 1
1137
1138Function: "exp10_downward":
1139double: 1
1140float: 1
1141float128: 3
1142ldouble: 2
1143
1144Function: "exp10_towardzero":
1145double: 1
1146float: 1
1147float128: 3
1148ldouble: 2
1149
1150Function: "exp10_upward":
1151double: 1
1152float: 1
1153float128: 3
1154ldouble: 2
1155
1156Function: "exp2":
1157double: 1
1158float128: 1
1159ldouble: 1
1160
1161Function: "exp2_downward":
1162float128: 1
1163ldouble: 1
1164
1165Function: "exp2_towardzero":
1166double: 1
1167float128: 1
1168ldouble: 1
1169
1170Function: "exp2_upward":
1171float: 1
1172float128: 2
1173ldouble: 1
1174
1175Function: "exp_downward":
1176double: 1
1177float: 1
1178ldouble: 1
1179
1180Function: "exp_towardzero":
1181double: 1
1182float: 1
1183ldouble: 2
1184
1185Function: "exp_upward":
1186double: 1
1187float: 1
1188ldouble: 1
1189
1190Function: "expm1":
1191double: 1
1192float128: 2
1193ldouble: 3
1194
1195Function: "expm1_downward":
1196double: 1
1197float: 1
1198float128: 2
1199ldouble: 4
1200
1201Function: "expm1_towardzero":
1202double: 1
1203float: 1
1204float128: 4
1205ldouble: 4
1206
1207Function: "expm1_upward":
1208double: 1
1209float: 1
1210float128: 3
1211ldouble: 4
1212
1213Function: "gamma":
1214double: 4
1215float: 5
1216ldouble: 4
1217
1218Function: "gamma_downward":
1219double: 5
1220float: 5
1221ldouble: 7
1222
1223Function: "gamma_towardzero":
1224double: 5
1225float: 6
1226ldouble: 7
1227
1228Function: "gamma_upward":
1229double: 5
1230float: 6
1231ldouble: 6
1232
1233Function: "hypot":
1234double: 1
1235float128: 1
1236ldouble: 1
1237
1238Function: "hypot_downward":
1239double: 1
1240float128: 1
1241ldouble: 1
1242
1243Function: "hypot_towardzero":
1244double: 1
1245float128: 1
1246ldouble: 1
1247
1248Function: "hypot_upward":
1249double: 1
1250float128: 1
1251ldouble: 1
1252
1253Function: "j0":
1254double: 5
1255float: 9
1256float128: 2
1257ldouble: 8
1258
1259Function: "j0_downward":
1260double: 5
1261float: 9
1262float128: 9
1263ldouble: 6
1264
1265Function: "j0_towardzero":
1266double: 6
1267float: 9
1268float128: 9
1269ldouble: 6
1270
1271Function: "j0_upward":
1272double: 9
1273float: 9
1274float128: 7
1275ldouble: 6
1276
1277Function: "j1":
1278double: 4
1279float: 9
1280float128: 4
1281ldouble: 9
1282
1283Function: "j1_downward":
1284double: 5
1285float: 8
1286float128: 4
1287ldouble: 4
1288
1289Function: "j1_towardzero":
1290double: 4
1291float: 8
1292float128: 4
1293ldouble: 4
1294
1295Function: "j1_upward":
1296double: 9
1297float: 9
1298float128: 3
1299ldouble: 3
1300
1301Function: "jn":
1302double: 4
1303float: 4
1304float128: 7
1305ldouble: 4
1306
1307Function: "jn_downward":
1308double: 5
1309float: 5
1310float128: 8
1311ldouble: 4
1312
1313Function: "jn_towardzero":
1314double: 5
1315float: 5
1316float128: 8
1317ldouble: 5
1318
1319Function: "jn_upward":
1320double: 5
1321float: 5
1322float128: 7
1323ldouble: 5
1324
1325Function: "lgamma":
1326double: 4
1327float: 5
1328float128: 5
1329ldouble: 4
1330
1331Function: "lgamma_downward":
1332double: 5
1333float: 5
1334float128: 8
1335ldouble: 7
1336
1337Function: "lgamma_towardzero":
1338double: 5
1339float: 6
1340float128: 5
1341ldouble: 7
1342
1343Function: "lgamma_upward":
1344double: 5
1345float: 6
1346float128: 8
1347ldouble: 6
1348
1349Function: "log":
1350double: 1
1351float128: 1
1352ldouble: 1
1353
1354Function: "log10":
1355double: 1
1356float128: 2
1357ldouble: 1
1358
1359Function: "log10_downward":
1360double: 1
1361float: 1
1362float128: 1
1363ldouble: 2
1364
1365Function: "log10_towardzero":
1366double: 1
1367float: 1
1368float128: 1
1369ldouble: 2
1370
1371Function: "log10_upward":
1372double: 1
1373float: 1
1374float128: 1
1375ldouble: 1
1376
1377Function: "log1p":
1378double: 1
1379float128: 3
1380ldouble: 2
1381
1382Function: "log1p_downward":
1383double: 1
1384float: 1
1385float128: 3
1386ldouble: 4
1387
1388Function: "log1p_towardzero":
1389double: 1
1390float: 1
1391float128: 3
1392ldouble: 4
1393
1394Function: "log1p_upward":
1395double: 1
1396float: 1
1397float128: 2
1398ldouble: 3
1399
1400Function: "log2":
1401double: 1
1402float: 1
1403float128: 3
1404ldouble: 1
1405
1406Function: "log2_downward":
1407double: 1
1408float128: 3
1409ldouble: 1
1410
1411Function: "log2_towardzero":
1412double: 1
1413float: 1
1414float128: 1
1415ldouble: 1
1416
1417Function: "log2_upward":
1418double: 1
1419float: 1
1420float128: 1
1421ldouble: 1
1422
1423Function: "log_downward":
1424double: 1
1425float128: 1
1426ldouble: 2
1427
1428Function: "log_towardzero":
1429double: 1
1430float128: 2
1431ldouble: 2
1432
1433Function: "log_upward":
1434double: 1
1435float128: 1
1436ldouble: 1
1437
1438Function: "pow":
1439double: 1
1440float128: 2
1441ldouble: 1
1442
1443Function: "pow_downward":
1444double: 1
1445float: 1
1446float128: 2
1447ldouble: 4
1448
1449Function: "pow_towardzero":
1450double: 1
1451float: 1
1452float128: 2
1453ldouble: 4
1454
1455Function: "pow_upward":
1456double: 1
1457float: 1
1458float128: 2
1459ldouble: 4
1460
1461Function: "sin":
1462double: 1
1463float: 1
1464float128: 2
1465ldouble: 2
1466
1467Function: "sin_downward":
1468double: 1
1469float: 1
1470float128: 3
1471ldouble: 3
1472
1473Function: "sin_towardzero":
1474double: 1
1475float: 1
1476float128: 2
1477ldouble: 2
1478
1479Function: "sin_upward":
1480double: 1
1481float: 1
1482float128: 3
1483ldouble: 3
1484
1485Function: "sincos":
1486double: 1
1487float: 1
1488float128: 1
1489ldouble: 1
1490
1491Function: "sincos_downward":
1492double: 1
1493float: 1
1494float128: 3
1495ldouble: 3
1496
1497Function: "sincos_towardzero":
1498double: 1
1499float: 1
1500float128: 2
1501ldouble: 2
1502
1503Function: "sincos_upward":
1504double: 1
1505float: 1
1506float128: 3
1507ldouble: 3
1508
1509Function: "sinh":
1510double: 2
1511float: 2
1512float128: 2
1513ldouble: 3
1514
1515Function: "sinh_downward":
1516double: 3
1517float: 3
1518float128: 3
1519ldouble: 5
1520
1521Function: "sinh_towardzero":
1522double: 3
1523float: 2
1524float128: 3
1525ldouble: 4
1526
1527Function: "sinh_upward":
1528double: 4
1529float: 3
1530float128: 4
1531ldouble: 5
1532
1533Function: "tan":
1534float: 1
1535float128: 1
1536ldouble: 2
1537
1538Function: "tan_downward":
1539double: 1
1540float: 2
1541float128: 1
1542ldouble: 3
1543
1544Function: "tan_towardzero":
1545double: 1
1546float: 2
1547float128: 1
1548ldouble: 3
1549
1550Function: "tan_upward":
1551double: 1
1552float: 2
1553float128: 1
1554ldouble: 2
1555
1556Function: "tanh":
1557double: 2
1558float: 2
1559float128: 2
1560ldouble: 3
1561
1562Function: "tanh_downward":
1563double: 3
1564float: 3
1565float128: 4
1566ldouble: 4
1567
1568Function: "tanh_towardzero":
1569double: 2
1570float: 2
1571float128: 3
1572ldouble: 3
1573
1574Function: "tanh_upward":
1575double: 3
1576float: 3
1577float128: 3
1578ldouble: 4
1579
1580Function: "tgamma":
1581double: 9
1582float: 8
1583float128: 4
1584ldouble: 5
1585
1586Function: "tgamma_downward":
1587double: 9
1588float: 7
1589float128: 5
1590ldouble: 6
1591
1592Function: "tgamma_towardzero":
1593double: 9
1594float: 7
1595float128: 5
1596ldouble: 6
1597
1598Function: "tgamma_upward":
1599double: 9
1600float: 8
1601float128: 4
1602ldouble: 5
1603
1604Function: "y0":
1605double: 3
1606float: 9
1607float128: 3
1608ldouble: 2
1609
1610Function: "y0_downward":
1611double: 3
1612float: 9
1613float128: 7
1614ldouble: 5
1615
1616Function: "y0_towardzero":
1617double: 4
1618float: 9
1619float128: 3
1620ldouble: 8
1621
1622Function: "y0_upward":
1623double: 3
1624float: 9
1625float128: 4
1626ldouble: 7
1627
1628Function: "y1":
1629double: 3
1630float: 9
1631float128: 5
1632ldouble: 3
1633
1634Function: "y1_downward":
1635double: 6
1636float: 9
1637float128: 5
1638ldouble: 7
1639
1640Function: "y1_towardzero":
1641double: 3
1642float: 9
1643float128: 2
1644ldouble: 5
1645
1646Function: "y1_upward":
1647double: 7
1648float: 9
1649float128: 5
1650ldouble: 7
1651
1652Function: "yn":
1653double: 3
1654float: 3
1655float128: 5
1656ldouble: 4
1657
1658Function: "yn_downward":
1659double: 3
1660float: 4
1661float128: 5
1662ldouble: 5
1663
1664Function: "yn_towardzero":
1665double: 3
1666float: 3
1667float128: 5
1668ldouble: 5
1669
1670Function: "yn_upward":
1671double: 4
1672float: 5
1673float128: 5
1674ldouble: 4
1675
1676# end of automatic generation
1677