1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acos": 5double: 1 6float128: 1 7ldouble: 2 8 9Function: "acos_downward": 10float128: 1 11ldouble: 2 12 13Function: "acos_towardzero": 14float128: 1 15ldouble: 2 16 17Function: "acos_upward": 18double: 1 19float128: 1 20ldouble: 2 21 22Function: "acosh": 23double: 1 24float128: 4 25ldouble: 3 26 27Function: "acosh_downward": 28double: 1 29float128: 3 30ldouble: 4 31 32Function: "acosh_towardzero": 33double: 1 34float128: 2 35ldouble: 4 36 37Function: "acosh_upward": 38double: 1 39float128: 3 40ldouble: 3 41 42Function: "asin": 43double: 1 44float128: 1 45ldouble: 1 46 47Function: "asin_downward": 48double: 1 49float128: 2 50ldouble: 2 51 52Function: "asin_towardzero": 53double: 1 54float128: 1 55ldouble: 1 56 57Function: "asin_upward": 58double: 1 59float: 1 60float128: 2 61ldouble: 1 62 63Function: "asinh": 64double: 1 65float128: 4 66ldouble: 3 67 68Function: "asinh_downward": 69double: 1 70float: 1 71float128: 4 72ldouble: 5 73 74Function: "asinh_towardzero": 75double: 1 76float: 1 77float128: 2 78ldouble: 4 79 80Function: "asinh_upward": 81double: 1 82float: 1 83float128: 4 84ldouble: 5 85 86Function: "atan": 87double: 1 88float128: 1 89ldouble: 1 90 91Function: "atan2": 92double: 1 93float128: 2 94ldouble: 1 95 96Function: "atan2_downward": 97double: 1 98float: 1 99float128: 2 100ldouble: 1 101 102Function: "atan2_towardzero": 103double: 1 104float: 1 105float128: 3 106ldouble: 1 107 108Function: "atan2_upward": 109double: 1 110float: 1 111float128: 2 112ldouble: 1 113 114Function: "atan_downward": 115double: 1 116float: 1 117float128: 2 118ldouble: 1 119 120Function: "atan_towardzero": 121double: 1 122float: 1 123float128: 1 124ldouble: 1 125 126Function: "atan_upward": 127double: 1 128float: 1 129float128: 2 130ldouble: 1 131 132Function: "atanh": 133double: 1 134float128: 4 135ldouble: 3 136 137Function: "atanh_downward": 138double: 1 139float: 1 140float128: 4 141ldouble: 4 142 143Function: "atanh_towardzero": 144double: 1 145float: 1 146float128: 2 147ldouble: 3 148 149Function: "atanh_upward": 150double: 1 151float: 1 152float128: 4 153ldouble: 5 154 155Function: "cabs": 156double: 1 157float128: 1 158ldouble: 1 159 160Function: "cabs_downward": 161double: 1 162float128: 1 163ldouble: 1 164 165Function: "cabs_towardzero": 166double: 1 167float128: 1 168ldouble: 1 169 170Function: "cabs_upward": 171double: 1 172float128: 1 173ldouble: 1 174 175Function: Real part of "cacos": 176double: 1 177float: 2 178float128: 2 179ldouble: 1 180 181Function: Imaginary part of "cacos": 182double: 2 183float: 2 184float128: 2 185ldouble: 2 186 187Function: Real part of "cacos_downward": 188double: 2 189float: 1 190float128: 3 191ldouble: 2 192 193Function: Imaginary part of "cacos_downward": 194double: 5 195float: 3 196float128: 6 197ldouble: 6 198 199Function: Real part of "cacos_towardzero": 200double: 2 201float: 1 202float128: 3 203ldouble: 2 204 205Function: Imaginary part of "cacos_towardzero": 206double: 4 207float: 3 208float128: 5 209ldouble: 5 210 211Function: Real part of "cacos_upward": 212double: 2 213float: 2 214float128: 3 215ldouble: 2 216 217Function: Imaginary part of "cacos_upward": 218double: 7 219float: 7 220float128: 7 221ldouble: 7 222 223Function: Real part of "cacosh": 224double: 2 225float: 2 226float128: 2 227ldouble: 2 228 229Function: Imaginary part of "cacosh": 230double: 1 231float: 2 232float128: 2 233ldouble: 1 234 235Function: Real part of "cacosh_downward": 236double: 4 237float: 3 238float128: 5 239ldouble: 5 240 241Function: Imaginary part of "cacosh_downward": 242double: 2 243float: 2 244float128: 4 245ldouble: 3 246 247Function: Real part of "cacosh_towardzero": 248double: 4 249float: 3 250float128: 5 251ldouble: 5 252 253Function: Imaginary part of "cacosh_towardzero": 254double: 2 255float: 1 256float128: 3 257ldouble: 2 258 259Function: Real part of "cacosh_upward": 260double: 5 261float: 4 262float128: 6 263ldouble: 5 264 265Function: Imaginary part of "cacosh_upward": 266double: 3 267float: 2 268float128: 4 269ldouble: 3 270 271Function: "carg": 272double: 1 273float128: 2 274ldouble: 1 275 276Function: "carg_downward": 277double: 1 278float: 1 279float128: 2 280ldouble: 1 281 282Function: "carg_towardzero": 283double: 1 284float: 1 285float128: 3 286ldouble: 1 287 288Function: "carg_upward": 289double: 1 290float: 1 291float128: 2 292ldouble: 1 293 294Function: Real part of "casin": 295double: 1 296float: 1 297float128: 2 298ldouble: 1 299 300Function: Imaginary part of "casin": 301double: 2 302float: 2 303float128: 2 304ldouble: 2 305 306Function: Real part of "casin_downward": 307double: 3 308float: 2 309float128: 3 310ldouble: 3 311 312Function: Imaginary part of "casin_downward": 313double: 5 314float: 3 315float128: 6 316ldouble: 6 317 318Function: Real part of "casin_towardzero": 319double: 3 320float: 1 321float128: 3 322ldouble: 3 323 324Function: Imaginary part of "casin_towardzero": 325double: 4 326float: 3 327float128: 5 328ldouble: 5 329 330Function: Real part of "casin_upward": 331double: 2 332float: 2 333float128: 3 334ldouble: 2 335 336Function: Imaginary part of "casin_upward": 337double: 7 338float: 7 339float128: 7 340ldouble: 7 341 342Function: Real part of "casinh": 343double: 2 344float: 2 345float128: 2 346ldouble: 2 347 348Function: Imaginary part of "casinh": 349double: 1 350float: 1 351float128: 2 352ldouble: 1 353 354Function: Real part of "casinh_downward": 355double: 5 356float: 3 357float128: 6 358ldouble: 6 359 360Function: Imaginary part of "casinh_downward": 361double: 3 362float: 2 363float128: 3 364ldouble: 3 365 366Function: Real part of "casinh_towardzero": 367double: 4 368float: 3 369float128: 5 370ldouble: 5 371 372Function: Imaginary part of "casinh_towardzero": 373double: 3 374float: 1 375float128: 3 376ldouble: 3 377 378Function: Real part of "casinh_upward": 379double: 7 380float: 7 381float128: 7 382ldouble: 7 383 384Function: Imaginary part of "casinh_upward": 385double: 2 386float: 2 387float128: 3 388ldouble: 2 389 390Function: Real part of "catan": 391double: 1 392float128: 1 393ldouble: 1 394 395Function: Imaginary part of "catan": 396double: 1 397float: 1 398float128: 1 399ldouble: 1 400 401Function: Real part of "catan_downward": 402double: 1 403float: 1 404float128: 2 405ldouble: 1 406 407Function: Imaginary part of "catan_downward": 408double: 2 409float: 1 410float128: 2 411ldouble: 4 412 413Function: Real part of "catan_towardzero": 414double: 1 415float: 1 416float128: 2 417ldouble: 1 418 419Function: Imaginary part of "catan_towardzero": 420double: 2 421float: 1 422float128: 2 423ldouble: 4 424 425Function: Real part of "catan_upward": 426double: 1 427float: 1 428float128: 2 429ldouble: 1 430 431Function: Imaginary part of "catan_upward": 432double: 2 433float: 2 434float128: 3 435ldouble: 3 436 437Function: Real part of "catanh": 438double: 1 439float: 1 440float128: 1 441ldouble: 1 442 443Function: Imaginary part of "catanh": 444double: 1 445float128: 1 446ldouble: 1 447 448Function: Real part of "catanh_downward": 449double: 2 450float: 1 451float128: 2 452ldouble: 4 453 454Function: Imaginary part of "catanh_downward": 455double: 1 456float: 1 457float128: 2 458ldouble: 1 459 460Function: Real part of "catanh_towardzero": 461double: 2 462float: 1 463float128: 2 464ldouble: 4 465 466Function: Imaginary part of "catanh_towardzero": 467double: 1 468float: 1 469float128: 2 470ldouble: 1 471 472Function: Real part of "catanh_upward": 473double: 4 474float: 4 475float128: 4 476ldouble: 4 477 478Function: Imaginary part of "catanh_upward": 479double: 1 480float: 1 481float128: 2 482ldouble: 1 483 484Function: "cbrt": 485double: 1 486float: 1 487float128: 1 488ldouble: 3 489 490Function: "cbrt_downward": 491double: 1 492float: 1 493float128: 1 494ldouble: 4 495 496Function: "cbrt_towardzero": 497double: 1 498float: 1 499float128: 1 500ldouble: 3 501 502Function: "cbrt_upward": 503double: 1 504float: 1 505float128: 1 506ldouble: 4 507 508Function: Real part of "ccos": 509double: 1 510float: 1 511float128: 1 512ldouble: 1 513 514Function: Imaginary part of "ccos": 515double: 1 516float: 1 517float128: 1 518ldouble: 1 519 520Function: Real part of "ccos_downward": 521double: 1 522float: 1 523float128: 2 524ldouble: 3 525 526Function: Imaginary part of "ccos_downward": 527double: 3 528float: 3 529float128: 2 530ldouble: 3 531 532Function: Real part of "ccos_towardzero": 533double: 1 534float: 2 535float128: 2 536ldouble: 3 537 538Function: Imaginary part of "ccos_towardzero": 539double: 3 540float: 3 541float128: 2 542ldouble: 3 543 544Function: Real part of "ccos_upward": 545double: 2 546float: 2 547float128: 3 548ldouble: 2 549 550Function: Imaginary part of "ccos_upward": 551double: 2 552float: 2 553float128: 2 554ldouble: 2 555 556Function: Real part of "ccosh": 557double: 1 558float: 1 559float128: 1 560ldouble: 1 561 562Function: Imaginary part of "ccosh": 563double: 1 564float: 1 565float128: 1 566ldouble: 1 567 568Function: Real part of "ccosh_downward": 569double: 2 570float: 2 571float128: 2 572ldouble: 3 573 574Function: Imaginary part of "ccosh_downward": 575double: 3 576float: 3 577float128: 2 578ldouble: 3 579 580Function: Real part of "ccosh_towardzero": 581double: 2 582float: 3 583float128: 2 584ldouble: 3 585 586Function: Imaginary part of "ccosh_towardzero": 587double: 3 588float: 3 589float128: 2 590ldouble: 3 591 592Function: Real part of "ccosh_upward": 593double: 2 594float: 2 595float128: 3 596ldouble: 2 597 598Function: Imaginary part of "ccosh_upward": 599double: 3 600float: 2 601float128: 2 602ldouble: 2 603 604Function: Real part of "cexp": 605double: 2 606float: 1 607float128: 1 608ldouble: 1 609 610Function: Imaginary part of "cexp": 611double: 1 612float: 2 613float128: 1 614ldouble: 1 615 616Function: Real part of "cexp_downward": 617double: 2 618float: 2 619float128: 2 620ldouble: 3 621 622Function: Imaginary part of "cexp_downward": 623double: 3 624float: 3 625float128: 2 626ldouble: 3 627 628Function: Real part of "cexp_towardzero": 629double: 2 630float: 2 631float128: 2 632ldouble: 3 633 634Function: Imaginary part of "cexp_towardzero": 635double: 3 636float: 3 637float128: 2 638ldouble: 3 639 640Function: Real part of "cexp_upward": 641double: 1 642float: 2 643float128: 3 644ldouble: 2 645 646Function: Imaginary part of "cexp_upward": 647double: 3 648float: 2 649float128: 3 650ldouble: 3 651 652Function: Real part of "clog": 653double: 2 654float: 3 655float128: 2 656ldouble: 3 657 658Function: Imaginary part of "clog": 659double: 1 660float128: 1 661ldouble: 1 662 663Function: Real part of "clog10": 664double: 3 665float: 4 666float128: 2 667ldouble: 4 668 669Function: Imaginary part of "clog10": 670double: 2 671float: 1 672float128: 2 673ldouble: 2 674 675Function: Real part of "clog10_downward": 676double: 4 677float: 4 678float128: 3 679ldouble: 8 680 681Function: Imaginary part of "clog10_downward": 682double: 2 683float: 2 684float128: 3 685ldouble: 3 686 687Function: Real part of "clog10_towardzero": 688double: 5 689float: 5 690float128: 4 691ldouble: 8 692 693Function: Imaginary part of "clog10_towardzero": 694double: 2 695float: 2 696float128: 3 697ldouble: 3 698 699Function: Real part of "clog10_upward": 700double: 4 701float: 5 702float128: 4 703ldouble: 8 704 705Function: Imaginary part of "clog10_upward": 706double: 2 707float: 2 708float128: 3 709ldouble: 3 710 711Function: Real part of "clog_downward": 712double: 3 713float: 3 714float128: 3 715ldouble: 5 716 717Function: Imaginary part of "clog_downward": 718double: 1 719float: 1 720float128: 2 721ldouble: 1 722 723Function: Real part of "clog_towardzero": 724double: 3 725float: 4 726float128: 3 727ldouble: 5 728 729Function: Imaginary part of "clog_towardzero": 730double: 1 731float: 1 732float128: 2 733ldouble: 1 734 735Function: Real part of "clog_upward": 736double: 2 737float: 3 738float128: 4 739ldouble: 4 740 741Function: Imaginary part of "clog_upward": 742double: 1 743float: 1 744float128: 2 745ldouble: 1 746 747Function: "cos": 748double: 1 749float128: 2 750ldouble: 1 751 752Function: "cos_downward": 753double: 1 754float128: 3 755ldouble: 3 756 757Function: "cos_towardzero": 758double: 1 759float128: 1 760ldouble: 2 761 762Function: "cos_upward": 763double: 1 764float128: 2 765ldouble: 2 766 767Function: "cosh": 768double: 1 769float: 2 770float128: 2 771ldouble: 3 772 773Function: "cosh_downward": 774double: 3 775float: 1 776float128: 3 777ldouble: 3 778 779Function: "cosh_towardzero": 780double: 3 781float: 1 782float128: 3 783ldouble: 3 784 785Function: "cosh_upward": 786double: 4 787float: 2 788float128: 3 789ldouble: 3 790 791Function: Real part of "cpow": 792double: 2 793float: 5 794float128: 4 795ldouble: 3 796 797Function: Imaginary part of "cpow": 798double: 1 799float: 2 800float128: 1 801ldouble: 4 802 803Function: Real part of "cpow_downward": 804double: 5 805float: 8 806float128: 6 807ldouble: 7 808 809Function: Imaginary part of "cpow_downward": 810double: 2 811float: 2 812float128: 2 813ldouble: 2 814 815Function: Real part of "cpow_towardzero": 816double: 5 817float: 8 818float128: 6 819ldouble: 7 820 821Function: Imaginary part of "cpow_towardzero": 822double: 2 823float: 2 824float128: 2 825ldouble: 1 826 827Function: Real part of "cpow_upward": 828double: 4 829float: 1 830float128: 3 831ldouble: 2 832 833Function: Imaginary part of "cpow_upward": 834double: 1 835float: 2 836float128: 2 837ldouble: 2 838 839Function: Real part of "csin": 840double: 1 841float: 1 842float128: 1 843ldouble: 1 844 845Function: Imaginary part of "csin": 846double: 1 847float: 1 848float128: 1 849 850Function: Real part of "csin_downward": 851double: 3 852float: 3 853float128: 2 854ldouble: 3 855 856Function: Imaginary part of "csin_downward": 857double: 1 858float: 1 859float128: 2 860ldouble: 3 861 862Function: Real part of "csin_towardzero": 863double: 3 864float: 3 865float128: 2 866ldouble: 3 867 868Function: Imaginary part of "csin_towardzero": 869double: 1 870float: 1 871float128: 2 872ldouble: 3 873 874Function: Real part of "csin_upward": 875double: 3 876float: 2 877float128: 2 878ldouble: 3 879 880Function: Imaginary part of "csin_upward": 881double: 2 882float: 2 883float128: 3 884ldouble: 3 885 886Function: Real part of "csinh": 887double: 1 888float: 1 889float128: 1 890ldouble: 1 891 892Function: Imaginary part of "csinh": 893double: 1 894float: 1 895float128: 1 896ldouble: 1 897 898Function: Real part of "csinh_downward": 899double: 2 900float: 2 901float128: 2 902ldouble: 3 903 904Function: Imaginary part of "csinh_downward": 905double: 3 906float: 3 907float128: 2 908ldouble: 3 909 910Function: Real part of "csinh_towardzero": 911double: 2 912float: 2 913float128: 2 914ldouble: 3 915 916Function: Imaginary part of "csinh_towardzero": 917double: 3 918float: 3 919float128: 2 920ldouble: 3 921 922Function: Real part of "csinh_upward": 923double: 2 924float: 2 925float128: 3 926ldouble: 3 927 928Function: Imaginary part of "csinh_upward": 929double: 3 930float: 2 931float128: 2 932ldouble: 3 933 934Function: Real part of "csqrt": 935double: 2 936float: 2 937float128: 2 938ldouble: 2 939 940Function: Imaginary part of "csqrt": 941double: 2 942float: 2 943float128: 2 944ldouble: 2 945 946Function: Real part of "csqrt_downward": 947double: 4 948float: 4 949float128: 4 950ldouble: 5 951 952Function: Imaginary part of "csqrt_downward": 953double: 3 954float: 3 955float128: 3 956ldouble: 4 957 958Function: Real part of "csqrt_towardzero": 959double: 3 960float: 3 961float128: 3 962ldouble: 4 963 964Function: Imaginary part of "csqrt_towardzero": 965double: 3 966float: 3 967float128: 3 968ldouble: 4 969 970Function: Real part of "csqrt_upward": 971double: 4 972float: 4 973float128: 4 974ldouble: 5 975 976Function: Imaginary part of "csqrt_upward": 977double: 3 978float: 3 979float128: 3 980ldouble: 4 981 982Function: Real part of "ctan": 983double: 1 984float: 1 985float128: 3 986ldouble: 2 987 988Function: Imaginary part of "ctan": 989double: 2 990float: 2 991float128: 3 992ldouble: 1 993 994Function: Real part of "ctan_downward": 995double: 6 996float: 5 997float128: 4 998ldouble: 5 999 1000Function: Imaginary part of "ctan_downward": 1001double: 2 1002float: 2 1003float128: 5 1004ldouble: 4 1005 1006Function: Real part of "ctan_towardzero": 1007double: 5 1008float: 3 1009float128: 4 1010ldouble: 5 1011 1012Function: Imaginary part of "ctan_towardzero": 1013double: 2 1014float: 2 1015float128: 5 1016ldouble: 4 1017 1018Function: Real part of "ctan_upward": 1019double: 3 1020float: 4 1021float128: 5 1022ldouble: 3 1023 1024Function: Imaginary part of "ctan_upward": 1025double: 2 1026float: 1 1027float128: 5 1028ldouble: 3 1029 1030Function: Real part of "ctanh": 1031double: 2 1032float: 2 1033float128: 3 1034ldouble: 1 1035 1036Function: Imaginary part of "ctanh": 1037double: 2 1038float: 2 1039float128: 3 1040ldouble: 2 1041 1042Function: Real part of "ctanh_downward": 1043double: 2 1044float: 2 1045float128: 5 1046ldouble: 4 1047 1048Function: Imaginary part of "ctanh_downward": 1049double: 6 1050float: 5 1051float128: 4 1052ldouble: 4 1053 1054Function: Real part of "ctanh_towardzero": 1055double: 2 1056float: 2 1057float128: 5 1058ldouble: 4 1059 1060Function: Imaginary part of "ctanh_towardzero": 1061double: 5 1062float: 3 1063float128: 3 1064ldouble: 3 1065 1066Function: Real part of "ctanh_upward": 1067double: 2 1068float: 2 1069float128: 5 1070ldouble: 3 1071 1072Function: Imaginary part of "ctanh_upward": 1073double: 3 1074float: 3 1075float128: 5 1076ldouble: 3 1077 1078Function: "erf": 1079double: 1 1080float: 1 1081float128: 1 1082ldouble: 1 1083 1084Function: "erf_downward": 1085double: 1 1086float: 1 1087float128: 2 1088ldouble: 1 1089 1090Function: "erf_towardzero": 1091double: 1 1092float: 1 1093float128: 1 1094ldouble: 1 1095 1096Function: "erf_upward": 1097double: 1 1098float: 1 1099float128: 2 1100ldouble: 1 1101 1102Function: "erfc": 1103double: 5 1104float: 3 1105float128: 4 1106ldouble: 5 1107 1108Function: "erfc_downward": 1109double: 5 1110float: 6 1111float128: 5 1112ldouble: 4 1113 1114Function: "erfc_towardzero": 1115double: 3 1116float: 4 1117float128: 4 1118ldouble: 4 1119 1120Function: "erfc_upward": 1121double: 5 1122float: 6 1123float128: 5 1124ldouble: 5 1125 1126Function: "exp": 1127double: 1 1128float: 1 1129float128: 1 1130ldouble: 1 1131 1132Function: "exp10": 1133double: 1 1134float128: 2 1135ldouble: 1 1136 1137Function: "exp10_downward": 1138double: 1 1139float: 1 1140float128: 3 1141ldouble: 2 1142 1143Function: "exp10_towardzero": 1144double: 1 1145float: 1 1146float128: 3 1147ldouble: 2 1148 1149Function: "exp10_upward": 1150double: 1 1151float: 1 1152float128: 3 1153ldouble: 2 1154 1155Function: "exp2": 1156double: 1 1157float128: 1 1158ldouble: 1 1159 1160Function: "exp2_downward": 1161float128: 1 1162ldouble: 1 1163 1164Function: "exp2_towardzero": 1165double: 1 1166float128: 1 1167ldouble: 1 1168 1169Function: "exp2_upward": 1170float: 1 1171float128: 2 1172ldouble: 1 1173 1174Function: "exp_downward": 1175double: 1 1176float: 1 1177ldouble: 1 1178 1179Function: "exp_towardzero": 1180double: 1 1181float: 1 1182ldouble: 2 1183 1184Function: "exp_upward": 1185double: 1 1186float: 1 1187ldouble: 1 1188 1189Function: "expm1": 1190double: 1 1191float128: 2 1192ldouble: 3 1193 1194Function: "expm1_downward": 1195double: 1 1196float: 1 1197float128: 2 1198ldouble: 4 1199 1200Function: "expm1_towardzero": 1201double: 1 1202float: 1 1203float128: 4 1204ldouble: 4 1205 1206Function: "expm1_upward": 1207double: 1 1208float: 1 1209float128: 3 1210ldouble: 4 1211 1212Function: "gamma": 1213double: 4 1214float: 5 1215ldouble: 4 1216 1217Function: "gamma_downward": 1218double: 5 1219float: 5 1220ldouble: 7 1221 1222Function: "gamma_towardzero": 1223double: 5 1224float: 6 1225ldouble: 7 1226 1227Function: "gamma_upward": 1228double: 5 1229float: 6 1230ldouble: 6 1231 1232Function: "hypot": 1233double: 1 1234float128: 1 1235ldouble: 1 1236 1237Function: "hypot_downward": 1238double: 1 1239float128: 1 1240ldouble: 1 1241 1242Function: "hypot_towardzero": 1243double: 1 1244float128: 1 1245ldouble: 1 1246 1247Function: "hypot_upward": 1248double: 1 1249float128: 1 1250ldouble: 1 1251 1252Function: "j0": 1253double: 5 1254float: 9 1255float128: 2 1256ldouble: 8 1257 1258Function: "j0_downward": 1259double: 5 1260float: 9 1261float128: 9 1262ldouble: 6 1263 1264Function: "j0_towardzero": 1265double: 6 1266float: 9 1267float128: 9 1268ldouble: 6 1269 1270Function: "j0_upward": 1271double: 9 1272float: 9 1273float128: 7 1274ldouble: 6 1275 1276Function: "j1": 1277double: 4 1278float: 9 1279float128: 4 1280ldouble: 9 1281 1282Function: "j1_downward": 1283double: 5 1284float: 6 1285float128: 4 1286ldouble: 4 1287 1288Function: "j1_towardzero": 1289double: 4 1290float: 6 1291float128: 4 1292ldouble: 4 1293 1294Function: "j1_upward": 1295double: 9 1296float: 9 1297float128: 3 1298ldouble: 3 1299 1300Function: "jn": 1301double: 4 1302float: 4 1303float128: 7 1304ldouble: 4 1305 1306Function: "jn_downward": 1307double: 5 1308float: 5 1309float128: 8 1310ldouble: 4 1311 1312Function: "jn_towardzero": 1313double: 5 1314float: 5 1315float128: 8 1316ldouble: 5 1317 1318Function: "jn_upward": 1319double: 5 1320float: 5 1321float128: 7 1322ldouble: 5 1323 1324Function: "lgamma": 1325double: 4 1326float: 5 1327float128: 5 1328ldouble: 4 1329 1330Function: "lgamma_downward": 1331double: 5 1332float: 5 1333float128: 8 1334ldouble: 7 1335 1336Function: "lgamma_towardzero": 1337double: 5 1338float: 6 1339float128: 5 1340ldouble: 7 1341 1342Function: "lgamma_upward": 1343double: 5 1344float: 6 1345float128: 8 1346ldouble: 6 1347 1348Function: "log": 1349double: 1 1350float128: 1 1351ldouble: 1 1352 1353Function: "log10": 1354double: 1 1355float128: 2 1356ldouble: 1 1357 1358Function: "log10_downward": 1359double: 1 1360float: 1 1361float128: 1 1362ldouble: 2 1363 1364Function: "log10_towardzero": 1365double: 1 1366float: 1 1367float128: 1 1368ldouble: 2 1369 1370Function: "log10_upward": 1371double: 1 1372float: 1 1373float128: 1 1374ldouble: 1 1375 1376Function: "log1p": 1377double: 1 1378float128: 3 1379ldouble: 2 1380 1381Function: "log1p_downward": 1382double: 1 1383float: 1 1384float128: 3 1385ldouble: 4 1386 1387Function: "log1p_towardzero": 1388double: 1 1389float: 1 1390float128: 3 1391ldouble: 4 1392 1393Function: "log1p_upward": 1394double: 1 1395float: 1 1396float128: 2 1397ldouble: 3 1398 1399Function: "log2": 1400double: 1 1401float: 1 1402float128: 3 1403ldouble: 1 1404 1405Function: "log2_downward": 1406double: 1 1407float128: 3 1408ldouble: 1 1409 1410Function: "log2_towardzero": 1411double: 1 1412float: 1 1413float128: 1 1414ldouble: 1 1415 1416Function: "log2_upward": 1417double: 1 1418float: 1 1419float128: 1 1420ldouble: 1 1421 1422Function: "log_downward": 1423double: 1 1424float128: 1 1425ldouble: 2 1426 1427Function: "log_towardzero": 1428double: 1 1429float128: 2 1430ldouble: 2 1431 1432Function: "log_upward": 1433double: 1 1434float128: 1 1435ldouble: 1 1436 1437Function: "pow": 1438double: 1 1439float128: 2 1440ldouble: 1 1441 1442Function: "pow_downward": 1443double: 1 1444float: 1 1445float128: 2 1446ldouble: 4 1447 1448Function: "pow_towardzero": 1449double: 1 1450float: 1 1451float128: 2 1452ldouble: 4 1453 1454Function: "pow_upward": 1455double: 1 1456float: 1 1457float128: 2 1458ldouble: 4 1459 1460Function: "sin": 1461double: 1 1462float128: 2 1463ldouble: 2 1464 1465Function: "sin_downward": 1466double: 1 1467float128: 3 1468ldouble: 3 1469 1470Function: "sin_towardzero": 1471double: 1 1472float128: 2 1473ldouble: 2 1474 1475Function: "sin_upward": 1476double: 1 1477float128: 3 1478ldouble: 3 1479 1480Function: "sincos": 1481double: 1 1482float128: 1 1483ldouble: 1 1484 1485Function: "sincos_downward": 1486double: 1 1487float128: 3 1488ldouble: 3 1489 1490Function: "sincos_towardzero": 1491double: 1 1492float128: 2 1493ldouble: 2 1494 1495Function: "sincos_upward": 1496double: 1 1497float128: 3 1498ldouble: 3 1499 1500Function: "sinh": 1501double: 2 1502float: 2 1503float128: 2 1504ldouble: 3 1505 1506Function: "sinh_downward": 1507double: 3 1508float: 3 1509float128: 3 1510ldouble: 5 1511 1512Function: "sinh_towardzero": 1513double: 3 1514float: 2 1515float128: 3 1516ldouble: 4 1517 1518Function: "sinh_upward": 1519double: 4 1520float: 3 1521float128: 4 1522ldouble: 5 1523 1524Function: "tan": 1525float: 1 1526float128: 1 1527ldouble: 2 1528 1529Function: "tan_downward": 1530double: 1 1531float: 2 1532float128: 1 1533ldouble: 3 1534 1535Function: "tan_towardzero": 1536double: 1 1537float: 2 1538float128: 1 1539ldouble: 3 1540 1541Function: "tan_upward": 1542double: 1 1543float: 2 1544float128: 1 1545ldouble: 2 1546 1547Function: "tanh": 1548double: 2 1549float: 2 1550float128: 2 1551ldouble: 3 1552 1553Function: "tanh_downward": 1554double: 3 1555float: 3 1556float128: 4 1557ldouble: 4 1558 1559Function: "tanh_towardzero": 1560double: 2 1561float: 2 1562float128: 3 1563ldouble: 3 1564 1565Function: "tanh_upward": 1566double: 3 1567float: 3 1568float128: 3 1569ldouble: 4 1570 1571Function: "tgamma": 1572double: 9 1573float: 8 1574float128: 4 1575ldouble: 5 1576 1577Function: "tgamma_downward": 1578double: 9 1579float: 7 1580float128: 5 1581ldouble: 6 1582 1583Function: "tgamma_towardzero": 1584double: 9 1585float: 7 1586float128: 5 1587ldouble: 6 1588 1589Function: "tgamma_upward": 1590double: 8 1591float: 8 1592float128: 4 1593ldouble: 5 1594 1595Function: "y0": 1596double: 3 1597float: 9 1598float128: 3 1599ldouble: 2 1600 1601Function: "y0_downward": 1602double: 3 1603float: 9 1604float128: 7 1605ldouble: 5 1606 1607Function: "y0_towardzero": 1608double: 4 1609float: 4 1610float128: 3 1611ldouble: 8 1612 1613Function: "y0_upward": 1614double: 3 1615float: 9 1616float128: 4 1617ldouble: 7 1618 1619Function: "y1": 1620double: 3 1621float: 9 1622float128: 5 1623ldouble: 3 1624 1625Function: "y1_downward": 1626double: 6 1627float: 9 1628float128: 5 1629ldouble: 7 1630 1631Function: "y1_towardzero": 1632double: 3 1633float: 4 1634float128: 6 1635ldouble: 5 1636 1637Function: "y1_upward": 1638double: 7 1639float: 9 1640float128: 6 1641ldouble: 9 1642 1643Function: "yn": 1644double: 3 1645float: 3 1646float128: 5 1647ldouble: 4 1648 1649Function: "yn_downward": 1650double: 3 1651float: 4 1652float128: 5 1653ldouble: 5 1654 1655Function: "yn_towardzero": 1656double: 3 1657float: 3 1658float128: 5 1659ldouble: 5 1660 1661Function: "yn_upward": 1662double: 4 1663float: 5 1664float128: 5 1665ldouble: 4 1666 1667# end of automatic generation 1668