1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5double: 1
6float128: 1
7ldouble: 2
8
9Function: "acos_downward":
10float128: 1
11ldouble: 2
12
13Function: "acos_towardzero":
14float128: 1
15ldouble: 2
16
17Function: "acos_upward":
18double: 1
19float128: 1
20ldouble: 2
21
22Function: "acosh":
23double: 1
24float128: 4
25ldouble: 3
26
27Function: "acosh_downward":
28double: 1
29float128: 3
30ldouble: 4
31
32Function: "acosh_towardzero":
33double: 1
34float128: 2
35ldouble: 4
36
37Function: "acosh_upward":
38double: 1
39float128: 3
40ldouble: 3
41
42Function: "asin":
43double: 1
44float128: 1
45ldouble: 1
46
47Function: "asin_downward":
48double: 1
49float128: 2
50ldouble: 2
51
52Function: "asin_towardzero":
53double: 1
54float128: 1
55ldouble: 1
56
57Function: "asin_upward":
58double: 1
59float: 1
60float128: 2
61ldouble: 1
62
63Function: "asinh":
64double: 1
65float128: 4
66ldouble: 3
67
68Function: "asinh_downward":
69double: 1
70float: 1
71float128: 4
72ldouble: 5
73
74Function: "asinh_towardzero":
75double: 1
76float: 1
77float128: 2
78ldouble: 4
79
80Function: "asinh_upward":
81double: 1
82float: 1
83float128: 4
84ldouble: 5
85
86Function: "atan":
87double: 1
88float128: 1
89ldouble: 1
90
91Function: "atan2":
92double: 1
93float128: 2
94ldouble: 1
95
96Function: "atan2_downward":
97double: 1
98float: 1
99float128: 2
100ldouble: 1
101
102Function: "atan2_towardzero":
103double: 1
104float: 1
105float128: 3
106ldouble: 1
107
108Function: "atan2_upward":
109double: 1
110float: 1
111float128: 2
112ldouble: 1
113
114Function: "atan_downward":
115double: 1
116float: 1
117float128: 2
118ldouble: 1
119
120Function: "atan_towardzero":
121double: 1
122float: 1
123float128: 1
124ldouble: 1
125
126Function: "atan_upward":
127double: 1
128float: 1
129float128: 2
130ldouble: 1
131
132Function: "atanh":
133double: 1
134float128: 4
135ldouble: 3
136
137Function: "atanh_downward":
138double: 1
139float: 1
140float128: 4
141ldouble: 4
142
143Function: "atanh_towardzero":
144double: 1
145float: 1
146float128: 2
147ldouble: 3
148
149Function: "atanh_upward":
150double: 1
151float: 1
152float128: 4
153ldouble: 5
154
155Function: "cabs":
156double: 1
157float128: 1
158ldouble: 1
159
160Function: "cabs_downward":
161double: 1
162float128: 1
163ldouble: 1
164
165Function: "cabs_towardzero":
166double: 1
167float128: 1
168ldouble: 1
169
170Function: "cabs_upward":
171double: 1
172float128: 1
173ldouble: 1
174
175Function: Real part of "cacos":
176double: 1
177float: 2
178float128: 2
179ldouble: 1
180
181Function: Imaginary part of "cacos":
182double: 2
183float: 2
184float128: 2
185ldouble: 2
186
187Function: Real part of "cacos_downward":
188double: 2
189float: 1
190float128: 3
191ldouble: 2
192
193Function: Imaginary part of "cacos_downward":
194double: 5
195float: 3
196float128: 6
197ldouble: 6
198
199Function: Real part of "cacos_towardzero":
200double: 2
201float: 1
202float128: 3
203ldouble: 2
204
205Function: Imaginary part of "cacos_towardzero":
206double: 4
207float: 3
208float128: 5
209ldouble: 5
210
211Function: Real part of "cacos_upward":
212double: 2
213float: 2
214float128: 3
215ldouble: 2
216
217Function: Imaginary part of "cacos_upward":
218double: 7
219float: 7
220float128: 7
221ldouble: 7
222
223Function: Real part of "cacosh":
224double: 2
225float: 2
226float128: 2
227ldouble: 2
228
229Function: Imaginary part of "cacosh":
230double: 1
231float: 2
232float128: 2
233ldouble: 1
234
235Function: Real part of "cacosh_downward":
236double: 4
237float: 3
238float128: 5
239ldouble: 5
240
241Function: Imaginary part of "cacosh_downward":
242double: 2
243float: 2
244float128: 4
245ldouble: 3
246
247Function: Real part of "cacosh_towardzero":
248double: 4
249float: 3
250float128: 5
251ldouble: 5
252
253Function: Imaginary part of "cacosh_towardzero":
254double: 2
255float: 1
256float128: 3
257ldouble: 2
258
259Function: Real part of "cacosh_upward":
260double: 5
261float: 4
262float128: 6
263ldouble: 5
264
265Function: Imaginary part of "cacosh_upward":
266double: 3
267float: 2
268float128: 4
269ldouble: 3
270
271Function: "carg":
272double: 1
273float128: 2
274ldouble: 1
275
276Function: "carg_downward":
277double: 1
278float: 1
279float128: 2
280ldouble: 1
281
282Function: "carg_towardzero":
283double: 1
284float: 1
285float128: 3
286ldouble: 1
287
288Function: "carg_upward":
289double: 1
290float: 1
291float128: 2
292ldouble: 1
293
294Function: Real part of "casin":
295double: 1
296float: 1
297float128: 2
298ldouble: 1
299
300Function: Imaginary part of "casin":
301double: 2
302float: 2
303float128: 2
304ldouble: 2
305
306Function: Real part of "casin_downward":
307double: 3
308float: 2
309float128: 3
310ldouble: 3
311
312Function: Imaginary part of "casin_downward":
313double: 5
314float: 3
315float128: 6
316ldouble: 6
317
318Function: Real part of "casin_towardzero":
319double: 3
320float: 1
321float128: 3
322ldouble: 3
323
324Function: Imaginary part of "casin_towardzero":
325double: 4
326float: 3
327float128: 5
328ldouble: 5
329
330Function: Real part of "casin_upward":
331double: 2
332float: 2
333float128: 3
334ldouble: 2
335
336Function: Imaginary part of "casin_upward":
337double: 7
338float: 7
339float128: 7
340ldouble: 7
341
342Function: Real part of "casinh":
343double: 2
344float: 2
345float128: 2
346ldouble: 2
347
348Function: Imaginary part of "casinh":
349double: 1
350float: 1
351float128: 2
352ldouble: 1
353
354Function: Real part of "casinh_downward":
355double: 5
356float: 3
357float128: 6
358ldouble: 6
359
360Function: Imaginary part of "casinh_downward":
361double: 3
362float: 2
363float128: 3
364ldouble: 3
365
366Function: Real part of "casinh_towardzero":
367double: 4
368float: 3
369float128: 5
370ldouble: 5
371
372Function: Imaginary part of "casinh_towardzero":
373double: 3
374float: 1
375float128: 3
376ldouble: 3
377
378Function: Real part of "casinh_upward":
379double: 7
380float: 7
381float128: 7
382ldouble: 7
383
384Function: Imaginary part of "casinh_upward":
385double: 2
386float: 2
387float128: 3
388ldouble: 2
389
390Function: Real part of "catan":
391double: 1
392float128: 1
393ldouble: 1
394
395Function: Imaginary part of "catan":
396double: 1
397float: 1
398float128: 1
399ldouble: 1
400
401Function: Real part of "catan_downward":
402double: 1
403float: 1
404float128: 2
405ldouble: 1
406
407Function: Imaginary part of "catan_downward":
408double: 2
409float: 1
410float128: 2
411ldouble: 4
412
413Function: Real part of "catan_towardzero":
414double: 1
415float: 1
416float128: 2
417ldouble: 1
418
419Function: Imaginary part of "catan_towardzero":
420double: 2
421float: 1
422float128: 2
423ldouble: 4
424
425Function: Real part of "catan_upward":
426double: 1
427float: 1
428float128: 2
429ldouble: 1
430
431Function: Imaginary part of "catan_upward":
432double: 2
433float: 2
434float128: 3
435ldouble: 3
436
437Function: Real part of "catanh":
438double: 1
439float: 1
440float128: 1
441ldouble: 1
442
443Function: Imaginary part of "catanh":
444double: 1
445float128: 1
446ldouble: 1
447
448Function: Real part of "catanh_downward":
449double: 2
450float: 1
451float128: 2
452ldouble: 4
453
454Function: Imaginary part of "catanh_downward":
455double: 1
456float: 1
457float128: 2
458ldouble: 1
459
460Function: Real part of "catanh_towardzero":
461double: 2
462float: 1
463float128: 2
464ldouble: 4
465
466Function: Imaginary part of "catanh_towardzero":
467double: 1
468float: 1
469float128: 2
470ldouble: 1
471
472Function: Real part of "catanh_upward":
473double: 4
474float: 4
475float128: 4
476ldouble: 4
477
478Function: Imaginary part of "catanh_upward":
479double: 1
480float: 1
481float128: 2
482ldouble: 1
483
484Function: "cbrt":
485double: 1
486float: 1
487float128: 1
488ldouble: 3
489
490Function: "cbrt_downward":
491double: 1
492float: 1
493float128: 1
494ldouble: 4
495
496Function: "cbrt_towardzero":
497double: 1
498float: 1
499float128: 1
500ldouble: 3
501
502Function: "cbrt_upward":
503double: 1
504float: 1
505float128: 1
506ldouble: 4
507
508Function: Real part of "ccos":
509double: 1
510float: 1
511float128: 1
512ldouble: 1
513
514Function: Imaginary part of "ccos":
515double: 1
516float: 1
517float128: 1
518ldouble: 1
519
520Function: Real part of "ccos_downward":
521double: 1
522float: 1
523float128: 2
524ldouble: 3
525
526Function: Imaginary part of "ccos_downward":
527double: 3
528float: 3
529float128: 2
530ldouble: 3
531
532Function: Real part of "ccos_towardzero":
533double: 1
534float: 2
535float128: 2
536ldouble: 3
537
538Function: Imaginary part of "ccos_towardzero":
539double: 3
540float: 3
541float128: 2
542ldouble: 3
543
544Function: Real part of "ccos_upward":
545double: 2
546float: 2
547float128: 3
548ldouble: 2
549
550Function: Imaginary part of "ccos_upward":
551double: 2
552float: 2
553float128: 2
554ldouble: 2
555
556Function: Real part of "ccosh":
557double: 1
558float: 1
559float128: 1
560ldouble: 1
561
562Function: Imaginary part of "ccosh":
563double: 1
564float: 1
565float128: 1
566ldouble: 1
567
568Function: Real part of "ccosh_downward":
569double: 2
570float: 2
571float128: 2
572ldouble: 3
573
574Function: Imaginary part of "ccosh_downward":
575double: 3
576float: 3
577float128: 2
578ldouble: 3
579
580Function: Real part of "ccosh_towardzero":
581double: 2
582float: 3
583float128: 2
584ldouble: 3
585
586Function: Imaginary part of "ccosh_towardzero":
587double: 3
588float: 3
589float128: 2
590ldouble: 3
591
592Function: Real part of "ccosh_upward":
593double: 2
594float: 2
595float128: 3
596ldouble: 2
597
598Function: Imaginary part of "ccosh_upward":
599double: 3
600float: 2
601float128: 2
602ldouble: 2
603
604Function: Real part of "cexp":
605double: 2
606float: 1
607float128: 1
608ldouble: 1
609
610Function: Imaginary part of "cexp":
611double: 1
612float: 2
613float128: 1
614ldouble: 1
615
616Function: Real part of "cexp_downward":
617double: 2
618float: 2
619float128: 2
620ldouble: 3
621
622Function: Imaginary part of "cexp_downward":
623double: 3
624float: 3
625float128: 2
626ldouble: 3
627
628Function: Real part of "cexp_towardzero":
629double: 2
630float: 2
631float128: 2
632ldouble: 3
633
634Function: Imaginary part of "cexp_towardzero":
635double: 3
636float: 3
637float128: 2
638ldouble: 3
639
640Function: Real part of "cexp_upward":
641double: 1
642float: 2
643float128: 3
644ldouble: 2
645
646Function: Imaginary part of "cexp_upward":
647double: 3
648float: 2
649float128: 3
650ldouble: 3
651
652Function: Real part of "clog":
653double: 2
654float: 3
655float128: 2
656ldouble: 3
657
658Function: Imaginary part of "clog":
659double: 1
660float128: 1
661ldouble: 1
662
663Function: Real part of "clog10":
664double: 3
665float: 4
666float128: 2
667ldouble: 4
668
669Function: Imaginary part of "clog10":
670double: 2
671float: 1
672float128: 2
673ldouble: 2
674
675Function: Real part of "clog10_downward":
676double: 4
677float: 4
678float128: 3
679ldouble: 8
680
681Function: Imaginary part of "clog10_downward":
682double: 2
683float: 2
684float128: 3
685ldouble: 3
686
687Function: Real part of "clog10_towardzero":
688double: 5
689float: 5
690float128: 4
691ldouble: 8
692
693Function: Imaginary part of "clog10_towardzero":
694double: 2
695float: 2
696float128: 3
697ldouble: 3
698
699Function: Real part of "clog10_upward":
700double: 4
701float: 5
702float128: 4
703ldouble: 8
704
705Function: Imaginary part of "clog10_upward":
706double: 2
707float: 2
708float128: 3
709ldouble: 3
710
711Function: Real part of "clog_downward":
712double: 3
713float: 3
714float128: 3
715ldouble: 5
716
717Function: Imaginary part of "clog_downward":
718double: 1
719float: 1
720float128: 2
721ldouble: 1
722
723Function: Real part of "clog_towardzero":
724double: 3
725float: 4
726float128: 3
727ldouble: 5
728
729Function: Imaginary part of "clog_towardzero":
730double: 1
731float: 1
732float128: 2
733ldouble: 1
734
735Function: Real part of "clog_upward":
736double: 2
737float: 3
738float128: 4
739ldouble: 4
740
741Function: Imaginary part of "clog_upward":
742double: 1
743float: 1
744float128: 2
745ldouble: 1
746
747Function: "cos":
748double: 1
749float128: 2
750ldouble: 1
751
752Function: "cos_downward":
753double: 1
754float128: 3
755ldouble: 3
756
757Function: "cos_towardzero":
758double: 1
759float128: 1
760ldouble: 2
761
762Function: "cos_upward":
763double: 1
764float128: 2
765ldouble: 2
766
767Function: "cosh":
768double: 1
769float: 2
770float128: 2
771ldouble: 3
772
773Function: "cosh_downward":
774double: 3
775float: 1
776float128: 3
777ldouble: 3
778
779Function: "cosh_towardzero":
780double: 3
781float: 1
782float128: 3
783ldouble: 3
784
785Function: "cosh_upward":
786double: 4
787float: 2
788float128: 3
789ldouble: 3
790
791Function: Real part of "cpow":
792double: 2
793float: 5
794float128: 4
795ldouble: 3
796
797Function: Imaginary part of "cpow":
798double: 1
799float: 2
800float128: 1
801ldouble: 4
802
803Function: Real part of "cpow_downward":
804double: 5
805float: 8
806float128: 6
807ldouble: 7
808
809Function: Imaginary part of "cpow_downward":
810double: 2
811float: 2
812float128: 2
813ldouble: 2
814
815Function: Real part of "cpow_towardzero":
816double: 5
817float: 8
818float128: 6
819ldouble: 7
820
821Function: Imaginary part of "cpow_towardzero":
822double: 2
823float: 2
824float128: 2
825ldouble: 1
826
827Function: Real part of "cpow_upward":
828double: 4
829float: 1
830float128: 3
831ldouble: 2
832
833Function: Imaginary part of "cpow_upward":
834double: 1
835float: 2
836float128: 2
837ldouble: 2
838
839Function: Real part of "csin":
840double: 1
841float: 1
842float128: 1
843ldouble: 1
844
845Function: Imaginary part of "csin":
846double: 1
847float: 1
848float128: 1
849
850Function: Real part of "csin_downward":
851double: 3
852float: 3
853float128: 2
854ldouble: 3
855
856Function: Imaginary part of "csin_downward":
857double: 1
858float: 1
859float128: 2
860ldouble: 3
861
862Function: Real part of "csin_towardzero":
863double: 3
864float: 3
865float128: 2
866ldouble: 3
867
868Function: Imaginary part of "csin_towardzero":
869double: 1
870float: 1
871float128: 2
872ldouble: 3
873
874Function: Real part of "csin_upward":
875double: 3
876float: 2
877float128: 2
878ldouble: 3
879
880Function: Imaginary part of "csin_upward":
881double: 2
882float: 2
883float128: 3
884ldouble: 3
885
886Function: Real part of "csinh":
887double: 1
888float: 1
889float128: 1
890ldouble: 1
891
892Function: Imaginary part of "csinh":
893double: 1
894float: 1
895float128: 1
896ldouble: 1
897
898Function: Real part of "csinh_downward":
899double: 2
900float: 2
901float128: 2
902ldouble: 3
903
904Function: Imaginary part of "csinh_downward":
905double: 3
906float: 3
907float128: 2
908ldouble: 3
909
910Function: Real part of "csinh_towardzero":
911double: 2
912float: 2
913float128: 2
914ldouble: 3
915
916Function: Imaginary part of "csinh_towardzero":
917double: 3
918float: 3
919float128: 2
920ldouble: 3
921
922Function: Real part of "csinh_upward":
923double: 2
924float: 2
925float128: 3
926ldouble: 3
927
928Function: Imaginary part of "csinh_upward":
929double: 3
930float: 2
931float128: 2
932ldouble: 3
933
934Function: Real part of "csqrt":
935double: 2
936float: 2
937float128: 2
938ldouble: 2
939
940Function: Imaginary part of "csqrt":
941double: 2
942float: 2
943float128: 2
944ldouble: 2
945
946Function: Real part of "csqrt_downward":
947double: 4
948float: 4
949float128: 4
950ldouble: 5
951
952Function: Imaginary part of "csqrt_downward":
953double: 3
954float: 3
955float128: 3
956ldouble: 4
957
958Function: Real part of "csqrt_towardzero":
959double: 3
960float: 3
961float128: 3
962ldouble: 4
963
964Function: Imaginary part of "csqrt_towardzero":
965double: 3
966float: 3
967float128: 3
968ldouble: 4
969
970Function: Real part of "csqrt_upward":
971double: 4
972float: 4
973float128: 4
974ldouble: 5
975
976Function: Imaginary part of "csqrt_upward":
977double: 3
978float: 3
979float128: 3
980ldouble: 4
981
982Function: Real part of "ctan":
983double: 1
984float: 1
985float128: 3
986ldouble: 2
987
988Function: Imaginary part of "ctan":
989double: 2
990float: 2
991float128: 3
992ldouble: 1
993
994Function: Real part of "ctan_downward":
995double: 6
996float: 5
997float128: 4
998ldouble: 5
999
1000Function: Imaginary part of "ctan_downward":
1001double: 2
1002float: 2
1003float128: 5
1004ldouble: 4
1005
1006Function: Real part of "ctan_towardzero":
1007double: 5
1008float: 3
1009float128: 4
1010ldouble: 5
1011
1012Function: Imaginary part of "ctan_towardzero":
1013double: 2
1014float: 2
1015float128: 5
1016ldouble: 4
1017
1018Function: Real part of "ctan_upward":
1019double: 3
1020float: 4
1021float128: 5
1022ldouble: 3
1023
1024Function: Imaginary part of "ctan_upward":
1025double: 2
1026float: 1
1027float128: 5
1028ldouble: 3
1029
1030Function: Real part of "ctanh":
1031double: 2
1032float: 2
1033float128: 3
1034ldouble: 1
1035
1036Function: Imaginary part of "ctanh":
1037double: 2
1038float: 2
1039float128: 3
1040ldouble: 2
1041
1042Function: Real part of "ctanh_downward":
1043double: 2
1044float: 2
1045float128: 5
1046ldouble: 4
1047
1048Function: Imaginary part of "ctanh_downward":
1049double: 6
1050float: 5
1051float128: 4
1052ldouble: 4
1053
1054Function: Real part of "ctanh_towardzero":
1055double: 2
1056float: 2
1057float128: 5
1058ldouble: 4
1059
1060Function: Imaginary part of "ctanh_towardzero":
1061double: 5
1062float: 3
1063float128: 3
1064ldouble: 3
1065
1066Function: Real part of "ctanh_upward":
1067double: 2
1068float: 2
1069float128: 5
1070ldouble: 3
1071
1072Function: Imaginary part of "ctanh_upward":
1073double: 3
1074float: 3
1075float128: 5
1076ldouble: 3
1077
1078Function: "erf":
1079double: 1
1080float: 1
1081float128: 1
1082ldouble: 1
1083
1084Function: "erf_downward":
1085double: 1
1086float: 1
1087float128: 2
1088ldouble: 1
1089
1090Function: "erf_towardzero":
1091double: 1
1092float: 1
1093float128: 1
1094ldouble: 1
1095
1096Function: "erf_upward":
1097double: 1
1098float: 1
1099float128: 2
1100ldouble: 1
1101
1102Function: "erfc":
1103double: 5
1104float: 3
1105float128: 4
1106ldouble: 5
1107
1108Function: "erfc_downward":
1109double: 5
1110float: 6
1111float128: 5
1112ldouble: 4
1113
1114Function: "erfc_towardzero":
1115double: 3
1116float: 4
1117float128: 4
1118ldouble: 4
1119
1120Function: "erfc_upward":
1121double: 5
1122float: 6
1123float128: 5
1124ldouble: 5
1125
1126Function: "exp":
1127double: 1
1128float: 1
1129float128: 1
1130ldouble: 1
1131
1132Function: "exp10":
1133double: 1
1134float128: 2
1135ldouble: 1
1136
1137Function: "exp10_downward":
1138double: 1
1139float: 1
1140float128: 3
1141ldouble: 2
1142
1143Function: "exp10_towardzero":
1144double: 1
1145float: 1
1146float128: 3
1147ldouble: 2
1148
1149Function: "exp10_upward":
1150double: 1
1151float: 1
1152float128: 3
1153ldouble: 2
1154
1155Function: "exp2":
1156double: 1
1157float128: 1
1158ldouble: 1
1159
1160Function: "exp2_downward":
1161float128: 1
1162ldouble: 1
1163
1164Function: "exp2_towardzero":
1165double: 1
1166float128: 1
1167ldouble: 1
1168
1169Function: "exp2_upward":
1170float: 1
1171float128: 2
1172ldouble: 1
1173
1174Function: "exp_downward":
1175double: 1
1176float: 1
1177ldouble: 1
1178
1179Function: "exp_towardzero":
1180double: 1
1181float: 1
1182ldouble: 2
1183
1184Function: "exp_upward":
1185double: 1
1186float: 1
1187ldouble: 1
1188
1189Function: "expm1":
1190double: 1
1191float128: 2
1192ldouble: 3
1193
1194Function: "expm1_downward":
1195double: 1
1196float: 1
1197float128: 2
1198ldouble: 4
1199
1200Function: "expm1_towardzero":
1201double: 1
1202float: 1
1203float128: 4
1204ldouble: 4
1205
1206Function: "expm1_upward":
1207double: 1
1208float: 1
1209float128: 3
1210ldouble: 4
1211
1212Function: "gamma":
1213double: 4
1214float: 5
1215ldouble: 4
1216
1217Function: "gamma_downward":
1218double: 5
1219float: 5
1220ldouble: 7
1221
1222Function: "gamma_towardzero":
1223double: 5
1224float: 6
1225ldouble: 7
1226
1227Function: "gamma_upward":
1228double: 5
1229float: 6
1230ldouble: 6
1231
1232Function: "hypot":
1233double: 1
1234float128: 1
1235ldouble: 1
1236
1237Function: "hypot_downward":
1238double: 1
1239float128: 1
1240ldouble: 1
1241
1242Function: "hypot_towardzero":
1243double: 1
1244float128: 1
1245ldouble: 1
1246
1247Function: "hypot_upward":
1248double: 1
1249float128: 1
1250ldouble: 1
1251
1252Function: "j0":
1253double: 5
1254float: 9
1255float128: 2
1256ldouble: 8
1257
1258Function: "j0_downward":
1259double: 5
1260float: 9
1261float128: 9
1262ldouble: 6
1263
1264Function: "j0_towardzero":
1265double: 6
1266float: 9
1267float128: 9
1268ldouble: 6
1269
1270Function: "j0_upward":
1271double: 9
1272float: 9
1273float128: 7
1274ldouble: 6
1275
1276Function: "j1":
1277double: 4
1278float: 9
1279float128: 4
1280ldouble: 9
1281
1282Function: "j1_downward":
1283double: 5
1284float: 6
1285float128: 4
1286ldouble: 4
1287
1288Function: "j1_towardzero":
1289double: 4
1290float: 6
1291float128: 4
1292ldouble: 4
1293
1294Function: "j1_upward":
1295double: 9
1296float: 9
1297float128: 3
1298ldouble: 3
1299
1300Function: "jn":
1301double: 4
1302float: 4
1303float128: 7
1304ldouble: 4
1305
1306Function: "jn_downward":
1307double: 5
1308float: 5
1309float128: 8
1310ldouble: 4
1311
1312Function: "jn_towardzero":
1313double: 5
1314float: 5
1315float128: 8
1316ldouble: 5
1317
1318Function: "jn_upward":
1319double: 5
1320float: 5
1321float128: 7
1322ldouble: 5
1323
1324Function: "lgamma":
1325double: 4
1326float: 5
1327float128: 5
1328ldouble: 4
1329
1330Function: "lgamma_downward":
1331double: 5
1332float: 5
1333float128: 8
1334ldouble: 7
1335
1336Function: "lgamma_towardzero":
1337double: 5
1338float: 6
1339float128: 5
1340ldouble: 7
1341
1342Function: "lgamma_upward":
1343double: 5
1344float: 6
1345float128: 8
1346ldouble: 6
1347
1348Function: "log":
1349double: 1
1350float128: 1
1351ldouble: 1
1352
1353Function: "log10":
1354double: 1
1355float128: 2
1356ldouble: 1
1357
1358Function: "log10_downward":
1359double: 1
1360float: 1
1361float128: 1
1362ldouble: 2
1363
1364Function: "log10_towardzero":
1365double: 1
1366float: 1
1367float128: 1
1368ldouble: 2
1369
1370Function: "log10_upward":
1371double: 1
1372float: 1
1373float128: 1
1374ldouble: 1
1375
1376Function: "log1p":
1377double: 1
1378float128: 3
1379ldouble: 2
1380
1381Function: "log1p_downward":
1382double: 1
1383float: 1
1384float128: 3
1385ldouble: 4
1386
1387Function: "log1p_towardzero":
1388double: 1
1389float: 1
1390float128: 3
1391ldouble: 4
1392
1393Function: "log1p_upward":
1394double: 1
1395float: 1
1396float128: 2
1397ldouble: 3
1398
1399Function: "log2":
1400double: 1
1401float: 1
1402float128: 3
1403ldouble: 1
1404
1405Function: "log2_downward":
1406double: 1
1407float128: 3
1408ldouble: 1
1409
1410Function: "log2_towardzero":
1411double: 1
1412float: 1
1413float128: 1
1414ldouble: 1
1415
1416Function: "log2_upward":
1417double: 1
1418float: 1
1419float128: 1
1420ldouble: 1
1421
1422Function: "log_downward":
1423double: 1
1424float128: 1
1425ldouble: 2
1426
1427Function: "log_towardzero":
1428double: 1
1429float128: 2
1430ldouble: 2
1431
1432Function: "log_upward":
1433double: 1
1434float128: 1
1435ldouble: 1
1436
1437Function: "pow":
1438double: 1
1439float128: 2
1440ldouble: 1
1441
1442Function: "pow_downward":
1443double: 1
1444float: 1
1445float128: 2
1446ldouble: 4
1447
1448Function: "pow_towardzero":
1449double: 1
1450float: 1
1451float128: 2
1452ldouble: 4
1453
1454Function: "pow_upward":
1455double: 1
1456float: 1
1457float128: 2
1458ldouble: 4
1459
1460Function: "sin":
1461double: 1
1462float128: 2
1463ldouble: 2
1464
1465Function: "sin_downward":
1466double: 1
1467float128: 3
1468ldouble: 3
1469
1470Function: "sin_towardzero":
1471double: 1
1472float128: 2
1473ldouble: 2
1474
1475Function: "sin_upward":
1476double: 1
1477float128: 3
1478ldouble: 3
1479
1480Function: "sincos":
1481double: 1
1482float128: 1
1483ldouble: 1
1484
1485Function: "sincos_downward":
1486double: 1
1487float128: 3
1488ldouble: 3
1489
1490Function: "sincos_towardzero":
1491double: 1
1492float128: 2
1493ldouble: 2
1494
1495Function: "sincos_upward":
1496double: 1
1497float128: 3
1498ldouble: 3
1499
1500Function: "sinh":
1501double: 2
1502float: 2
1503float128: 2
1504ldouble: 3
1505
1506Function: "sinh_downward":
1507double: 3
1508float: 3
1509float128: 3
1510ldouble: 5
1511
1512Function: "sinh_towardzero":
1513double: 3
1514float: 2
1515float128: 3
1516ldouble: 4
1517
1518Function: "sinh_upward":
1519double: 4
1520float: 3
1521float128: 4
1522ldouble: 5
1523
1524Function: "tan":
1525float: 1
1526float128: 1
1527ldouble: 2
1528
1529Function: "tan_downward":
1530double: 1
1531float: 2
1532float128: 1
1533ldouble: 3
1534
1535Function: "tan_towardzero":
1536double: 1
1537float: 2
1538float128: 1
1539ldouble: 3
1540
1541Function: "tan_upward":
1542double: 1
1543float: 2
1544float128: 1
1545ldouble: 2
1546
1547Function: "tanh":
1548double: 2
1549float: 2
1550float128: 2
1551ldouble: 3
1552
1553Function: "tanh_downward":
1554double: 3
1555float: 3
1556float128: 4
1557ldouble: 4
1558
1559Function: "tanh_towardzero":
1560double: 2
1561float: 2
1562float128: 3
1563ldouble: 3
1564
1565Function: "tanh_upward":
1566double: 3
1567float: 3
1568float128: 3
1569ldouble: 4
1570
1571Function: "tgamma":
1572double: 9
1573float: 8
1574float128: 4
1575ldouble: 5
1576
1577Function: "tgamma_downward":
1578double: 9
1579float: 7
1580float128: 5
1581ldouble: 6
1582
1583Function: "tgamma_towardzero":
1584double: 9
1585float: 7
1586float128: 5
1587ldouble: 6
1588
1589Function: "tgamma_upward":
1590double: 8
1591float: 8
1592float128: 4
1593ldouble: 5
1594
1595Function: "y0":
1596double: 3
1597float: 9
1598float128: 3
1599ldouble: 2
1600
1601Function: "y0_downward":
1602double: 3
1603float: 9
1604float128: 7
1605ldouble: 5
1606
1607Function: "y0_towardzero":
1608double: 4
1609float: 4
1610float128: 3
1611ldouble: 8
1612
1613Function: "y0_upward":
1614double: 3
1615float: 9
1616float128: 4
1617ldouble: 7
1618
1619Function: "y1":
1620double: 3
1621float: 9
1622float128: 5
1623ldouble: 3
1624
1625Function: "y1_downward":
1626double: 6
1627float: 9
1628float128: 5
1629ldouble: 7
1630
1631Function: "y1_towardzero":
1632double: 3
1633float: 4
1634float128: 6
1635ldouble: 5
1636
1637Function: "y1_upward":
1638double: 7
1639float: 9
1640float128: 6
1641ldouble: 9
1642
1643Function: "yn":
1644double: 3
1645float: 3
1646float128: 5
1647ldouble: 4
1648
1649Function: "yn_downward":
1650double: 3
1651float: 4
1652float128: 5
1653ldouble: 5
1654
1655Function: "yn_towardzero":
1656double: 3
1657float: 3
1658float128: 5
1659ldouble: 5
1660
1661Function: "yn_upward":
1662double: 4
1663float: 5
1664float128: 5
1665ldouble: 4
1666
1667# end of automatic generation
1668