1 /* @(#)e_jn.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /*
14  * __ieee754_jn(n, x), __ieee754_yn(n, x)
15  * floating point Bessel's function of the 1st and 2nd kind
16  * of order n
17  *
18  * Special cases:
19  *	y0(0)=y1(0)=yn(n,0) = -inf with overflow signal;
20  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
21  * Note 2. About jn(n,x), yn(n,x)
22  *	For n=0, j0(x) is called,
23  *	for n=1, j1(x) is called,
24  *	for n<x, forward recursion us used starting
25  *	from values of j0(x) and j1(x).
26  *	for n>x, a continued fraction approximation to
27  *	j(n,x)/j(n-1,x) is evaluated and then backward
28  *	recursion is used starting from a supposed value
29  *	for j(n,x). The resulting value of j(0,x) is
30  *	compared with the actual value to correct the
31  *	supposed value of j(n,x).
32  *
33  *	yn(n,x) is similar in all respects, except
34  *	that forward recursion is used for all
35  *	values of n>1.
36  *
37  */
38 
39 #include <errno.h>
40 #include <float.h>
41 #include <math.h>
42 #include <math-narrow-eval.h>
43 #include <math_private.h>
44 #include <fenv_private.h>
45 #include <math-underflow.h>
46 #include <libm-alias-finite.h>
47 
48 static const double
49   invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
50   two = 2.00000000000000000000e+00,  /* 0x40000000, 0x00000000 */
51   one = 1.00000000000000000000e+00;  /* 0x3FF00000, 0x00000000 */
52 
53 static const double zero = 0.00000000000000000000e+00;
54 
55 double
__ieee754_jn(int n,double x)56 __ieee754_jn (int n, double x)
57 {
58   int32_t i, hx, ix, lx, sgn;
59   double a, b, temp, di, ret;
60   double z, w;
61 
62   /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
63    * Thus, J(-n,x) = J(n,-x)
64    */
65   EXTRACT_WORDS (hx, lx, x);
66   ix = 0x7fffffff & hx;
67   /* if J(n,NaN) is NaN */
68   if (__glibc_unlikely ((ix | ((uint32_t) (lx | -lx)) >> 31) > 0x7ff00000))
69     return x + x;
70   if (n < 0)
71     {
72       n = -n;
73       x = -x;
74       hx ^= 0x80000000;
75     }
76   if (n == 0)
77     return (__ieee754_j0 (x));
78   if (n == 1)
79     return (__ieee754_j1 (x));
80   sgn = (n & 1) & (hx >> 31);   /* even n -- 0, odd n -- sign(x) */
81   x = fabs (x);
82   {
83     SET_RESTORE_ROUND (FE_TONEAREST);
84     if (__glibc_unlikely ((ix | lx) == 0 || ix >= 0x7ff00000))
85       /* if x is 0 or inf */
86       return sgn == 1 ? -zero : zero;
87     else if ((double) n <= x)
88       {
89 	/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
90 	if (ix >= 0x52D00000)      /* x > 2**302 */
91 	  { /* (x >> n**2)
92 			 *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
93 			 *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
94 			 *	    Let s=sin(x), c=cos(x),
95 			 *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
96 			 *
97 			 *		   n	sin(xn)*sqt2	cos(xn)*sqt2
98 			 *		----------------------------------
99 			 *		   0	 s-c		 c+s
100 			 *		   1	-s-c		-c+s
101 			 *		   2	-s+c		-c-s
102 			 *		   3	 s+c		 c-s
103 			 */
104 	    double s;
105 	    double c;
106 	    __sincos (x, &s, &c);
107 	    switch (n & 3)
108 	      {
109 	      case 0: temp = c + s; break;
110 	      case 1: temp = -c + s; break;
111 	      case 2: temp = -c - s; break;
112 	      case 3: temp = c - s; break;
113 	      default: __builtin_unreachable ();
114 	      }
115 	    b = invsqrtpi * temp / sqrt (x);
116 	  }
117 	else
118 	  {
119 	    a = __ieee754_j0 (x);
120 	    b = __ieee754_j1 (x);
121 	    for (i = 1; i < n; i++)
122 	      {
123 		temp = b;
124 		b = b * ((double) (i + i) / x) - a; /* avoid underflow */
125 		a = temp;
126 	      }
127 	  }
128       }
129     else
130       {
131 	if (ix < 0x3e100000)      /* x < 2**-29 */
132 	  { /* x is tiny, return the first Taylor expansion of J(n,x)
133 			 * J(n,x) = 1/n!*(x/2)^n  - ...
134 			 */
135 	    if (n > 33)           /* underflow */
136 	      b = zero;
137 	    else
138 	      {
139 		temp = x * 0.5; b = temp;
140 		for (a = one, i = 2; i <= n; i++)
141 		  {
142 		    a *= (double) i;              /* a = n! */
143 		    b *= temp;                    /* b = (x/2)^n */
144 		  }
145 		b = b / a;
146 	      }
147 	  }
148 	else
149 	  {
150 	    /* use backward recurrence */
151 	    /*			x      x^2      x^2
152 	     *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
153 	     *			2n  - 2(n+1) - 2(n+2)
154 	     *
155 	     *			1      1        1
156 	     *  (for large x)   =  ----  ------   ------   .....
157 	     *			2n   2(n+1)   2(n+2)
158 	     *			-- - ------ - ------ -
159 	     *			 x     x         x
160 	     *
161 	     * Let w = 2n/x and h=2/x, then the above quotient
162 	     * is equal to the continued fraction:
163 	     *		    1
164 	     *	= -----------------------
165 	     *		       1
166 	     *	   w - -----------------
167 	     *			  1
168 	     *		w+h - ---------
169 	     *		       w+2h - ...
170 	     *
171 	     * To determine how many terms needed, let
172 	     * Q(0) = w, Q(1) = w(w+h) - 1,
173 	     * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
174 	     * When Q(k) > 1e4	good for single
175 	     * When Q(k) > 1e9	good for double
176 	     * When Q(k) > 1e17	good for quadruple
177 	     */
178 	    /* determine k */
179 	    double t, v;
180 	    double q0, q1, h, tmp; int32_t k, m;
181 	    w = (n + n) / (double) x; h = 2.0 / (double) x;
182 	    q0 = w;  z = w + h; q1 = w * z - 1.0; k = 1;
183 	    while (q1 < 1.0e9)
184 	      {
185 		k += 1; z += h;
186 		tmp = z * q1 - q0;
187 		q0 = q1;
188 		q1 = tmp;
189 	      }
190 	    m = n + n;
191 	    for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
192 	      t = one / (i / x - t);
193 	    a = t;
194 	    b = one;
195 	    /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
196 	     *  Hence, if n*(log(2n/x)) > ...
197 	     *  single 8.8722839355e+01
198 	     *  double 7.09782712893383973096e+02
199 	     *  long double 1.1356523406294143949491931077970765006170e+04
200 	     *  then recurrent value may overflow and the result is
201 	     *  likely underflow to zero
202 	     */
203 	    tmp = n;
204 	    v = two / x;
205 	    tmp = tmp * __ieee754_log (fabs (v * tmp));
206 	    if (tmp < 7.09782712893383973096e+02)
207 	      {
208 		for (i = n - 1, di = (double) (i + i); i > 0; i--)
209 		  {
210 		    temp = b;
211 		    b *= di;
212 		    b = b / x - a;
213 		    a = temp;
214 		    di -= two;
215 		  }
216 	      }
217 	    else
218 	      {
219 		for (i = n - 1, di = (double) (i + i); i > 0; i--)
220 		  {
221 		    temp = b;
222 		    b *= di;
223 		    b = b / x - a;
224 		    a = temp;
225 		    di -= two;
226 		    /* scale b to avoid spurious overflow */
227 		    if (b > 1e100)
228 		      {
229 			a /= b;
230 			t /= b;
231 			b = one;
232 		      }
233 		  }
234 	      }
235 	    /* j0() and j1() suffer enormous loss of precision at and
236 	     * near zero; however, we know that their zero points never
237 	     * coincide, so just choose the one further away from zero.
238 	     */
239 	    z = __ieee754_j0 (x);
240 	    w = __ieee754_j1 (x);
241 	    if (fabs (z) >= fabs (w))
242 	      b = (t * z / b);
243 	    else
244 	      b = (t * w / a);
245 	  }
246       }
247     if (sgn == 1)
248       ret = -b;
249     else
250       ret = b;
251     ret = math_narrow_eval (ret);
252   }
253   if (ret == 0)
254     {
255       ret = math_narrow_eval (copysign (DBL_MIN, ret) * DBL_MIN);
256       __set_errno (ERANGE);
257     }
258   else
259     math_check_force_underflow (ret);
260   return ret;
261 }
libm_alias_finite(__ieee754_jn,__jn)262 libm_alias_finite (__ieee754_jn, __jn)
263 
264 double
265 __ieee754_yn (int n, double x)
266 {
267   int32_t i, hx, ix, lx;
268   int32_t sign;
269   double a, b, temp, ret;
270 
271   EXTRACT_WORDS (hx, lx, x);
272   ix = 0x7fffffff & hx;
273   /* if Y(n,NaN) is NaN */
274   if (__glibc_unlikely ((ix | ((uint32_t) (lx | -lx)) >> 31) > 0x7ff00000))
275     return x + x;
276   sign = 1;
277   if (n < 0)
278     {
279       n = -n;
280       sign = 1 - ((n & 1) << 1);
281     }
282   if (n == 0)
283     return (__ieee754_y0 (x));
284   if (__glibc_unlikely ((ix | lx) == 0))
285     return -sign / zero;
286   /* -inf and overflow exception.  */;
287   if (__glibc_unlikely (hx < 0))
288     return zero / (zero * x);
289   {
290     SET_RESTORE_ROUND (FE_TONEAREST);
291     if (n == 1)
292       {
293 	ret = sign * __ieee754_y1 (x);
294 	goto out;
295       }
296     if (__glibc_unlikely (ix == 0x7ff00000))
297       return zero;
298     if (ix >= 0x52D00000)      /* x > 2**302 */
299       { /* (x >> n**2)
300 	 *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
301 	 *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
302 	 *	    Let s=sin(x), c=cos(x),
303 	 *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
304 	 *
305 	 *		   n	sin(xn)*sqt2	cos(xn)*sqt2
306 	 *		----------------------------------
307 	 *		   0	 s-c		 c+s
308 	 *		   1	-s-c		-c+s
309 	 *		   2	-s+c		-c-s
310 	 *		   3	 s+c		 c-s
311 	 */
312 	double c;
313 	double s;
314 	__sincos (x, &s, &c);
315 	switch (n & 3)
316 	  {
317 	  case 0: temp = s - c; break;
318 	  case 1: temp = -s - c; break;
319 	  case 2: temp = -s + c; break;
320 	  case 3: temp = s + c; break;
321 	  default: __builtin_unreachable ();
322 	  }
323 	b = invsqrtpi * temp / sqrt (x);
324       }
325     else
326       {
327 	uint32_t high;
328 	a = __ieee754_y0 (x);
329 	b = __ieee754_y1 (x);
330 	/* quit if b is -inf */
331 	GET_HIGH_WORD (high, b);
332 	for (i = 1; i < n && high != 0xfff00000; i++)
333 	  {
334 	    temp = b;
335 	    b = ((double) (i + i) / x) * b - a;
336 	    GET_HIGH_WORD (high, b);
337 	    a = temp;
338 	  }
339 	/* If B is +-Inf, set up errno accordingly.  */
340 	if (!isfinite (b))
341 	  __set_errno (ERANGE);
342       }
343     if (sign > 0)
344       ret = b;
345     else
346       ret = -b;
347   }
348  out:
349   if (isinf (ret))
350     ret = copysign (DBL_MAX, ret) * DBL_MAX;
351   return ret;
352 }
353 libm_alias_finite (__ieee754_yn, __yn)
354