1 /* Double-precision log2(x) function.
2    Copyright (C) 2018-2021 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 #include <math.h>
20 #include <stdint.h>
21 #include <math-svid-compat.h>
22 #include <libm-alias-finite.h>
23 #include <libm-alias-double.h>
24 #include "math_config.h"
25 
26 #define T __log2_data.tab
27 #define T2 __log2_data.tab2
28 #define B __log2_data.poly1
29 #define A __log2_data.poly
30 #define InvLn2hi __log2_data.invln2hi
31 #define InvLn2lo __log2_data.invln2lo
32 #define N (1 << LOG2_TABLE_BITS)
33 #define OFF 0x3fe6000000000000
34 
35 /* Top 16 bits of a double.  */
36 static inline uint32_t
top16(double x)37 top16 (double x)
38 {
39   return asuint64 (x) >> 48;
40 }
41 
42 double
__log2(double x)43 __log2 (double x)
44 {
45   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
46   double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p;
47   uint64_t ix, iz, tmp;
48   uint32_t top;
49   int k, i;
50 
51   ix = asuint64 (x);
52   top = top16 (x);
53 
54 #define LO asuint64 (1.0 - 0x1.5b51p-5)
55 #define HI asuint64 (1.0 + 0x1.6ab2p-5)
56   if (__glibc_unlikely (ix - LO < HI - LO))
57     {
58       /* Handle close to 1.0 inputs separately.  */
59       /* Fix sign of zero with downward rounding when x==1.  */
60       if (WANT_ROUNDING && __glibc_unlikely (ix == asuint64 (1.0)))
61 	return 0;
62       r = x - 1.0;
63 #ifdef __FP_FAST_FMA
64       hi = r * InvLn2hi;
65       lo = r * InvLn2lo + __builtin_fma (r, InvLn2hi, -hi);
66 #else
67       double_t rhi, rlo;
68       rhi = asdouble (asuint64 (r) & -1ULL << 32);
69       rlo = r - rhi;
70       hi = rhi * InvLn2hi;
71       lo = rlo * InvLn2hi + r * InvLn2lo;
72 #endif
73       r2 = r * r; /* rounding error: 0x1p-62.  */
74       r4 = r2 * r2;
75       /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma).  */
76       p = r2 * (B[0] + r * B[1]);
77       y = hi + p;
78       lo += hi - y + p;
79       lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5])
80 		  + r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9])));
81       y += lo;
82       return y;
83     }
84   if (__glibc_unlikely (top - 0x0010 >= 0x7ff0 - 0x0010))
85     {
86       /* x < 0x1p-1022 or inf or nan.  */
87       if (ix * 2 == 0)
88 	return __math_divzero (1);
89       if (ix == asuint64 (INFINITY)) /* log(inf) == inf.  */
90 	return x;
91       if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
92 	return __math_invalid (x);
93       /* x is subnormal, normalize it.  */
94       ix = asuint64 (x * 0x1p52);
95       ix -= 52ULL << 52;
96     }
97 
98   /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
99      The range is split into N subintervals.
100      The ith subinterval contains z and c is near its center.  */
101   tmp = ix - OFF;
102   i = (tmp >> (52 - LOG2_TABLE_BITS)) % N;
103   k = (int64_t) tmp >> 52; /* arithmetic shift */
104   iz = ix - (tmp & 0xfffULL << 52);
105   invc = T[i].invc;
106   logc = T[i].logc;
107   z = asdouble (iz);
108   kd = (double_t) k;
109 
110   /* log2(x) = log2(z/c) + log2(c) + k.  */
111   /* r ~= z/c - 1, |r| < 1/(2*N).  */
112 #ifdef __FP_FAST_FMA
113   /* rounding error: 0x1p-55/N.  */
114   r = __builtin_fma (z, invc, -1.0);
115   t1 = r * InvLn2hi;
116   t2 = r * InvLn2lo + __builtin_fma (r, InvLn2hi, -t1);
117 #else
118   double_t rhi, rlo;
119   /* rounding error: 0x1p-55/N + 0x1p-65.  */
120   r = (z - T2[i].chi - T2[i].clo) * invc;
121   rhi = asdouble (asuint64 (r) & -1ULL << 32);
122   rlo = r - rhi;
123   t1 = rhi * InvLn2hi;
124   t2 = rlo * InvLn2hi + r * InvLn2lo;
125 #endif
126 
127   /* hi + lo = r/ln2 + log2(c) + k.  */
128   t3 = kd + logc;
129   hi = t3 + t1;
130   lo = t3 - hi + t1 + t2;
131 
132   /* log2(r+1) = r/ln2 + r^2*poly(r).  */
133   /* Evaluation is optimized assuming superscalar pipelined execution.  */
134   r2 = r * r; /* rounding error: 0x1p-54/N^2.  */
135   r4 = r2 * r2;
136   /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma).
137      ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma).  */
138   p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]);
139   y = lo + r2 * p + hi;
140   return y;
141 }
142 #ifndef __log2
143 strong_alias (__log2, __ieee754_log2)
144 libm_alias_finite (__ieee754_log2, __log2)
145 # if LIBM_SVID_COMPAT
146 versioned_symbol (libm, __log2, log2, GLIBC_2_29);
147 libm_alias_double_other (__log2, log2)
148 # else
149 libm_alias_double (__log2, log2)
150 # endif
151 #endif
152