1 /* Implementation of gamma function according to ISO C.
2    Copyright (C) 1997-2021 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 #include <math.h>
20 #include <math-narrow-eval.h>
21 #include <math_private.h>
22 #include <fenv_private.h>
23 #include <math-underflow.h>
24 #include <float.h>
25 #include <libm-alias-finite.h>
26 
27 /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
28    approximation to gamma function.  */
29 
30 static const float gamma_coeff[] =
31   {
32     0x1.555556p-4f,
33     -0xb.60b61p-12f,
34     0x3.403404p-12f,
35   };
36 
37 #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
38 
39 /* Return gamma (X), for positive X less than 42, in the form R *
40    2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
41    avoid overflow or underflow in intermediate calculations.  */
42 
43 static float
gammaf_positive(float x,int * exp2_adj)44 gammaf_positive (float x, int *exp2_adj)
45 {
46   int local_signgam;
47   if (x < 0.5f)
48     {
49       *exp2_adj = 0;
50       return __ieee754_expf (__ieee754_lgammaf_r (x + 1, &local_signgam)) / x;
51     }
52   else if (x <= 1.5f)
53     {
54       *exp2_adj = 0;
55       return __ieee754_expf (__ieee754_lgammaf_r (x, &local_signgam));
56     }
57   else if (x < 2.5f)
58     {
59       *exp2_adj = 0;
60       float x_adj = x - 1;
61       return (__ieee754_expf (__ieee754_lgammaf_r (x_adj, &local_signgam))
62 	      * x_adj);
63     }
64   else
65     {
66       float eps = 0;
67       float x_eps = 0;
68       float x_adj = x;
69       float prod = 1;
70       if (x < 4.0f)
71 	{
72 	  /* Adjust into the range for applying Stirling's
73 	     approximation.  */
74 	  float n = ceilf (4.0f - x);
75 	  x_adj = math_narrow_eval (x + n);
76 	  x_eps = (x - (x_adj - n));
77 	  prod = __gamma_productf (x_adj - n, x_eps, n, &eps);
78 	}
79       /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
80 	 Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
81 	 starting by computing pow (X_ADJ, X_ADJ) with a power of 2
82 	 factored out.  */
83       float exp_adj = -eps;
84       float x_adj_int = roundf (x_adj);
85       float x_adj_frac = x_adj - x_adj_int;
86       int x_adj_log2;
87       float x_adj_mant = __frexpf (x_adj, &x_adj_log2);
88       if (x_adj_mant < (float) M_SQRT1_2)
89 	{
90 	  x_adj_log2--;
91 	  x_adj_mant *= 2.0f;
92 	}
93       *exp2_adj = x_adj_log2 * (int) x_adj_int;
94       float ret = (__ieee754_powf (x_adj_mant, x_adj)
95 		   * __ieee754_exp2f (x_adj_log2 * x_adj_frac)
96 		   * __ieee754_expf (-x_adj)
97 		   * sqrtf (2 * (float) M_PI / x_adj)
98 		   / prod);
99       exp_adj += x_eps * __ieee754_logf (x_adj);
100       float bsum = gamma_coeff[NCOEFF - 1];
101       float x_adj2 = x_adj * x_adj;
102       for (size_t i = 1; i <= NCOEFF - 1; i++)
103 	bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
104       exp_adj += bsum / x_adj;
105       return ret + ret * __expm1f (exp_adj);
106     }
107 }
108 
109 float
__ieee754_gammaf_r(float x,int * signgamp)110 __ieee754_gammaf_r (float x, int *signgamp)
111 {
112   int32_t hx;
113   float ret;
114 
115   GET_FLOAT_WORD (hx, x);
116 
117   if (__glibc_unlikely ((hx & 0x7fffffff) == 0))
118     {
119       /* Return value for x == 0 is Inf with divide by zero exception.  */
120       *signgamp = 0;
121       return 1.0 / x;
122     }
123   if (__builtin_expect (hx < 0, 0)
124       && (uint32_t) hx < 0xff800000 && rintf (x) == x)
125     {
126       /* Return value for integer x < 0 is NaN with invalid exception.  */
127       *signgamp = 0;
128       return (x - x) / (x - x);
129     }
130   if (__glibc_unlikely (hx == 0xff800000))
131     {
132       /* x == -Inf.  According to ISO this is NaN.  */
133       *signgamp = 0;
134       return x - x;
135     }
136   if (__glibc_unlikely ((hx & 0x7f800000) == 0x7f800000))
137     {
138       /* Positive infinity (return positive infinity) or NaN (return
139 	 NaN).  */
140       *signgamp = 0;
141       return x + x;
142     }
143 
144   if (x >= 36.0f)
145     {
146       /* Overflow.  */
147       *signgamp = 0;
148       ret = math_narrow_eval (FLT_MAX * FLT_MAX);
149       return ret;
150     }
151   else
152     {
153       SET_RESTORE_ROUNDF (FE_TONEAREST);
154       if (x > 0.0f)
155 	{
156 	  *signgamp = 0;
157 	  int exp2_adj;
158 	  float tret = gammaf_positive (x, &exp2_adj);
159 	  ret = __scalbnf (tret, exp2_adj);
160 	}
161       else if (x >= -FLT_EPSILON / 4.0f)
162 	{
163 	  *signgamp = 0;
164 	  ret = 1.0f / x;
165 	}
166       else
167 	{
168 	  float tx = truncf (x);
169 	  *signgamp = (tx == 2.0f * truncf (tx / 2.0f)) ? -1 : 1;
170 	  if (x <= -42.0f)
171 	    /* Underflow.  */
172 	    ret = FLT_MIN * FLT_MIN;
173 	  else
174 	    {
175 	      float frac = tx - x;
176 	      if (frac > 0.5f)
177 		frac = 1.0f - frac;
178 	      float sinpix = (frac <= 0.25f
179 			      ? __sinf ((float) M_PI * frac)
180 			      : __cosf ((float) M_PI * (0.5f - frac)));
181 	      int exp2_adj;
182 	      float tret = (float) M_PI / (-x * sinpix
183 					   * gammaf_positive (-x, &exp2_adj));
184 	      ret = __scalbnf (tret, -exp2_adj);
185 	      math_check_force_underflow_nonneg (ret);
186 	    }
187 	}
188       ret = math_narrow_eval (ret);
189     }
190   if (isinf (ret) && x != 0)
191     {
192       if (*signgamp < 0)
193 	{
194 	  ret = math_narrow_eval (-copysignf (FLT_MAX, ret) * FLT_MAX);
195 	  ret = -ret;
196 	}
197       else
198 	ret = math_narrow_eval (copysignf (FLT_MAX, ret) * FLT_MAX);
199       return ret;
200     }
201   else if (ret == 0)
202     {
203       if (*signgamp < 0)
204 	{
205 	  ret = math_narrow_eval (-copysignf (FLT_MIN, ret) * FLT_MIN);
206 	  ret = -ret;
207 	}
208       else
209 	ret = math_narrow_eval (copysignf (FLT_MIN, ret) * FLT_MIN);
210       return ret;
211     }
212   else
213     return ret;
214 }
215 libm_alias_finite (__ieee754_gammaf_r, __gammaf_r)
216