1 /*							log10l.c
2  *
3  *	Common logarithm, 128-bit long double precision
4  *
5  *
6  *
7  * SYNOPSIS:
8  *
9  * long double x, y, log10l();
10  *
11  * y = log10l( x );
12  *
13  *
14  *
15  * DESCRIPTION:
16  *
17  * Returns the base 10 logarithm of x.
18  *
19  * The argument is separated into its exponent and fractional
20  * parts.  If the exponent is between -1 and +1, the logarithm
21  * of the fraction is approximated by
22  *
23  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
24  *
25  * Otherwise, setting  z = 2(x-1)/x+1),
26  *
27  *     log(x) = z + z^3 P(z)/Q(z).
28  *
29  *
30  *
31  * ACCURACY:
32  *
33  *                      Relative error:
34  * arithmetic   domain     # trials      peak         rms
35  *    IEEE      0.5, 2.0     30000      2.3e-34     4.9e-35
36  *    IEEE     exp(+-10000)  30000      1.0e-34     4.1e-35
37  *
38  * In the tests over the interval exp(+-10000), the logarithms
39  * of the random arguments were uniformly distributed over
40  * [-10000, +10000].
41  *
42  */
43 
44 /*
45    Cephes Math Library Release 2.2:  January, 1991
46    Copyright 1984, 1991 by Stephen L. Moshier
47    Adapted for glibc November, 2001
48 
49     This library is free software; you can redistribute it and/or
50     modify it under the terms of the GNU Lesser General Public
51     License as published by the Free Software Foundation; either
52     version 2.1 of the License, or (at your option) any later version.
53 
54     This library is distributed in the hope that it will be useful,
55     but WITHOUT ANY WARRANTY; without even the implied warranty of
56     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
57     Lesser General Public License for more details.
58 
59     You should have received a copy of the GNU Lesser General Public
60     License along with this library; if not, see <https://www.gnu.org/licenses/>.
61  */
62 
63 #include <math.h>
64 #include <math_private.h>
65 #include <libm-alias-finite.h>
66 
67 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
68  * 1/sqrt(2) <= x < sqrt(2)
69  * Theoretical peak relative error = 5.3e-37,
70  * relative peak error spread = 2.3e-14
71  */
72 static const _Float128 P[13] =
73 {
74   L(1.313572404063446165910279910527789794488E4),
75   L(7.771154681358524243729929227226708890930E4),
76   L(2.014652742082537582487669938141683759923E5),
77   L(3.007007295140399532324943111654767187848E5),
78   L(2.854829159639697837788887080758954924001E5),
79   L(1.797628303815655343403735250238293741397E5),
80   L(7.594356839258970405033155585486712125861E4),
81   L(2.128857716871515081352991964243375186031E4),
82   L(3.824952356185897735160588078446136783779E3),
83   L(4.114517881637811823002128927449878962058E2),
84   L(2.321125933898420063925789532045674660756E1),
85   L(4.998469661968096229986658302195402690910E-1),
86   L(1.538612243596254322971797716843006400388E-6)
87 };
88 static const _Float128 Q[12] =
89 {
90   L(3.940717212190338497730839731583397586124E4),
91   L(2.626900195321832660448791748036714883242E5),
92   L(7.777690340007566932935753241556479363645E5),
93   L(1.347518538384329112529391120390701166528E6),
94   L(1.514882452993549494932585972882995548426E6),
95   L(1.158019977462989115839826904108208787040E6),
96   L(6.132189329546557743179177159925690841200E5),
97   L(2.248234257620569139969141618556349415120E5),
98   L(5.605842085972455027590989944010492125825E4),
99   L(9.147150349299596453976674231612674085381E3),
100   L(9.104928120962988414618126155557301584078E2),
101   L(4.839208193348159620282142911143429644326E1)
102 /* 1.000000000000000000000000000000000000000E0L, */
103 };
104 
105 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
106  * where z = 2(x-1)/(x+1)
107  * 1/sqrt(2) <= x < sqrt(2)
108  * Theoretical peak relative error = 1.1e-35,
109  * relative peak error spread 1.1e-9
110  */
111 static const _Float128 R[6] =
112 {
113   L(1.418134209872192732479751274970992665513E5),
114  L(-8.977257995689735303686582344659576526998E4),
115   L(2.048819892795278657810231591630928516206E4),
116  L(-2.024301798136027039250415126250455056397E3),
117   L(8.057002716646055371965756206836056074715E1),
118  L(-8.828896441624934385266096344596648080902E-1)
119 };
120 static const _Float128 S[6] =
121 {
122   L(1.701761051846631278975701529965589676574E6),
123  L(-1.332535117259762928288745111081235577029E6),
124   L(4.001557694070773974936904547424676279307E5),
125  L(-5.748542087379434595104154610899551484314E4),
126   L(3.998526750980007367835804959888064681098E3),
127  L(-1.186359407982897997337150403816839480438E2)
128 /* 1.000000000000000000000000000000000000000E0L, */
129 };
130 
131 static const _Float128
132 /* log10(2) */
133 L102A = L(0.3125),
134 L102B = L(-1.14700043360188047862611052755069732318101185E-2),
135 /* log10(e) */
136 L10EA = L(0.5),
137 L10EB = L(-6.570551809674817234887108108339491770560299E-2),
138 /* sqrt(2)/2 */
139 SQRTH = L(7.071067811865475244008443621048490392848359E-1);
140 
141 
142 
143 /* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
144 
145 static _Float128
neval(_Float128 x,const _Float128 * p,int n)146 neval (_Float128 x, const _Float128 *p, int n)
147 {
148   _Float128 y;
149 
150   p += n;
151   y = *p--;
152   do
153     {
154       y = y * x + *p--;
155     }
156   while (--n > 0);
157   return y;
158 }
159 
160 
161 /* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
162 
163 static _Float128
deval(_Float128 x,const _Float128 * p,int n)164 deval (_Float128 x, const _Float128 *p, int n)
165 {
166   _Float128 y;
167 
168   p += n;
169   y = x + *p--;
170   do
171     {
172       y = y * x + *p--;
173     }
174   while (--n > 0);
175   return y;
176 }
177 
178 
179 
180 _Float128
__ieee754_log10l(_Float128 x)181 __ieee754_log10l (_Float128 x)
182 {
183   _Float128 z;
184   _Float128 y;
185   int e;
186   int64_t hx, lx;
187 
188 /* Test for domain */
189   GET_LDOUBLE_WORDS64 (hx, lx, x);
190   if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
191     return (-1 / fabsl (x));		/* log10l(+-0)=-inf  */
192   if (hx < 0)
193     return (x - x) / (x - x);
194   if (hx >= 0x7fff000000000000LL)
195     return (x + x);
196 
197   if (x == 1)
198     return 0;
199 
200 /* separate mantissa from exponent */
201 
202 /* Note, frexp is used so that denormal numbers
203  * will be handled properly.
204  */
205   x = __frexpl (x, &e);
206 
207 
208 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
209  * where z = 2(x-1)/x+1)
210  */
211   if ((e > 2) || (e < -2))
212     {
213       if (x < SQRTH)
214 	{			/* 2( 2x-1 )/( 2x+1 ) */
215 	  e -= 1;
216 	  z = x - L(0.5);
217 	  y = L(0.5) * z + L(0.5);
218 	}
219       else
220 	{			/*  2 (x-1)/(x+1)   */
221 	  z = x - L(0.5);
222 	  z -= L(0.5);
223 	  y = L(0.5) * x + L(0.5);
224 	}
225       x = z / y;
226       z = x * x;
227       y = x * (z * neval (z, R, 5) / deval (z, S, 5));
228       goto done;
229     }
230 
231 
232 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
233 
234   if (x < SQRTH)
235     {
236       e -= 1;
237       x = 2.0 * x - 1;	/*  2x - 1  */
238     }
239   else
240     {
241       x = x - 1;
242     }
243   z = x * x;
244   y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
245   y = y - 0.5 * z;
246 
247 done:
248 
249   /* Multiply log of fraction by log10(e)
250    * and base 2 exponent by log10(2).
251    */
252   z = y * L10EB;
253   z += x * L10EB;
254   z += e * L102B;
255   z += y * L10EA;
256   z += x * L10EA;
257   z += e * L102A;
258   return (z);
259 }
260 libm_alias_finite (__ieee754_log10l, __log10l)
261