1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /* Modifications for long double are
13   Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
14   and are incorporated herein by permission of the author.  The author
15   reserves the right to distribute this material elsewhere under different
16   copying permissions.  These modifications are distributed here under
17   the following terms:
18 
19     This library is free software; you can redistribute it and/or
20     modify it under the terms of the GNU Lesser General Public
21     License as published by the Free Software Foundation; either
22     version 2.1 of the License, or (at your option) any later version.
23 
24     This library is distributed in the hope that it will be useful,
25     but WITHOUT ANY WARRANTY; without even the implied warranty of
26     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27     Lesser General Public License for more details.
28 
29     You should have received a copy of the GNU Lesser General Public
30     License along with this library; if not, see
31     <https://www.gnu.org/licenses/>.  */
32 
33 /*
34  * __ieee754_jn(n, x), __ieee754_yn(n, x)
35  * floating point Bessel's function of the 1st and 2nd kind
36  * of order n
37  *
38  * Special cases:
39  *	y0(0)=y1(0)=yn(n,0) = -inf with overflow signal;
40  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
41  * Note 2. About jn(n,x), yn(n,x)
42  *	For n=0, j0(x) is called,
43  *	for n=1, j1(x) is called,
44  *	for n<x, forward recursion us used starting
45  *	from values of j0(x) and j1(x).
46  *	for n>x, a continued fraction approximation to
47  *	j(n,x)/j(n-1,x) is evaluated and then backward
48  *	recursion is used starting from a supposed value
49  *	for j(n,x). The resulting value of j(0,x) is
50  *	compared with the actual value to correct the
51  *	supposed value of j(n,x).
52  *
53  *	yn(n,x) is similar in all respects, except
54  *	that forward recursion is used for all
55  *	values of n>1.
56  *
57  */
58 
59 #include <errno.h>
60 #include <float.h>
61 #include <math.h>
62 #include <math_private.h>
63 #include <fenv_private.h>
64 #include <math-underflow.h>
65 #include <libm-alias-finite.h>
66 
67 static const long double
68   invsqrtpi = 5.64189583547756286948079e-1L, two = 2.0e0L, one = 1.0e0L;
69 
70 static const long double zero = 0.0L;
71 
72 long double
__ieee754_jnl(int n,long double x)73 __ieee754_jnl (int n, long double x)
74 {
75   uint32_t se, i0, i1;
76   int32_t i, ix, sgn;
77   long double a, b, temp, di, ret;
78   long double z, w;
79 
80   /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
81    * Thus, J(-n,x) = J(n,-x)
82    */
83 
84   GET_LDOUBLE_WORDS (se, i0, i1, x);
85   ix = se & 0x7fff;
86 
87   /* if J(n,NaN) is NaN */
88   if (__glibc_unlikely ((ix == 0x7fff) && ((i0 & 0x7fffffff) != 0)))
89     return x + x;
90   if (n < 0)
91     {
92       n = -n;
93       x = -x;
94       se ^= 0x8000;
95     }
96   if (n == 0)
97     return (__ieee754_j0l (x));
98   if (n == 1)
99     return (__ieee754_j1l (x));
100   sgn = (n & 1) & (se >> 15);	/* even n -- 0, odd n -- sign(x) */
101   x = fabsl (x);
102   {
103     SET_RESTORE_ROUNDL (FE_TONEAREST);
104     if (__glibc_unlikely ((ix | i0 | i1) == 0 || ix >= 0x7fff))
105       /* if x is 0 or inf */
106       return sgn == 1 ? -zero : zero;
107     else if ((long double) n <= x)
108       {
109 	/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
110 	if (ix >= 0x412D)
111 	  {			/* x > 2**302 */
112 
113 	    /* ??? This might be a futile gesture.
114 	       If x exceeds X_TLOSS anyway, the wrapper function
115 	       will set the result to zero. */
116 
117 	    /* (x >> n**2)
118 	     *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
119 	     *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
120 	     *      Let s=sin(x), c=cos(x),
121 	     *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
122 	     *
123 	     *             n    sin(xn)*sqt2    cos(xn)*sqt2
124 	     *          ----------------------------------
125 	     *             0     s-c             c+s
126 	     *             1    -s-c            -c+s
127 	     *             2    -s+c            -c-s
128 	     *             3     s+c             c-s
129 	     */
130 	    long double s;
131 	    long double c;
132 	    __sincosl (x, &s, &c);
133 	    switch (n & 3)
134 	      {
135 	      case 0:
136 		temp = c + s;
137 		break;
138 	      case 1:
139 		temp = -c + s;
140 		break;
141 	      case 2:
142 		temp = -c - s;
143 		break;
144 	      case 3:
145 		temp = c - s;
146 		break;
147 	      default:
148 		__builtin_unreachable ();
149 	      }
150 	    b = invsqrtpi * temp / sqrtl (x);
151 	  }
152 	else
153 	  {
154 	    a = __ieee754_j0l (x);
155 	    b = __ieee754_j1l (x);
156 	    for (i = 1; i < n; i++)
157 	      {
158 		temp = b;
159 		b = b * ((long double) (i + i) / x) - a;	/* avoid underflow */
160 		a = temp;
161 	      }
162 	  }
163       }
164     else
165       {
166 	if (ix < 0x3fde)
167 	  {			/* x < 2**-33 */
168 	    /* x is tiny, return the first Taylor expansion of J(n,x)
169 	     * J(n,x) = 1/n!*(x/2)^n  - ...
170 	     */
171 	    if (n >= 400)		/* underflow, result < 10^-4952 */
172 	      b = zero;
173 	    else
174 	      {
175 		temp = x * 0.5;
176 		b = temp;
177 		for (a = one, i = 2; i <= n; i++)
178 		  {
179 		    a *= (long double) i;	/* a = n! */
180 		    b *= temp;	/* b = (x/2)^n */
181 		  }
182 		b = b / a;
183 	      }
184 	  }
185 	else
186 	  {
187 	    /* use backward recurrence */
188 	    /*                      x      x^2      x^2
189 	     *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
190 	     *                      2n  - 2(n+1) - 2(n+2)
191 	     *
192 	     *                      1      1        1
193 	     *  (for large x)   =  ----  ------   ------   .....
194 	     *                      2n   2(n+1)   2(n+2)
195 	     *                      -- - ------ - ------ -
196 	     *                       x     x         x
197 	     *
198 	     * Let w = 2n/x and h=2/x, then the above quotient
199 	     * is equal to the continued fraction:
200 	     *                  1
201 	     *      = -----------------------
202 	     *                     1
203 	     *         w - -----------------
204 	     *                        1
205 	     *              w+h - ---------
206 	     *                     w+2h - ...
207 	     *
208 	     * To determine how many terms needed, let
209 	     * Q(0) = w, Q(1) = w(w+h) - 1,
210 	     * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
211 	     * When Q(k) > 1e4      good for single
212 	     * When Q(k) > 1e9      good for double
213 	     * When Q(k) > 1e17     good for quadruple
214 	     */
215 	    /* determine k */
216 	    long double t, v;
217 	    long double q0, q1, h, tmp;
218 	    int32_t k, m;
219 	    w = (n + n) / (long double) x;
220 	    h = 2.0L / (long double) x;
221 	    q0 = w;
222 	    z = w + h;
223 	    q1 = w * z - 1.0L;
224 	    k = 1;
225 	    while (q1 < 1.0e11L)
226 	      {
227 		k += 1;
228 		z += h;
229 		tmp = z * q1 - q0;
230 		q0 = q1;
231 		q1 = tmp;
232 	      }
233 	    m = n + n;
234 	    for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
235 	      t = one / (i / x - t);
236 	    a = t;
237 	    b = one;
238 	    /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
239 	     *  Hence, if n*(log(2n/x)) > ...
240 	     *  single 8.8722839355e+01
241 	     *  double 7.09782712893383973096e+02
242 	     *  long double 1.1356523406294143949491931077970765006170e+04
243 	     *  then recurrent value may overflow and the result is
244 	     *  likely underflow to zero
245 	     */
246 	    tmp = n;
247 	    v = two / x;
248 	    tmp = tmp * __ieee754_logl (fabsl (v * tmp));
249 
250 	    if (tmp < 1.1356523406294143949491931077970765006170e+04L)
251 	      {
252 		for (i = n - 1, di = (long double) (i + i); i > 0; i--)
253 		  {
254 		    temp = b;
255 		    b *= di;
256 		    b = b / x - a;
257 		    a = temp;
258 		    di -= two;
259 		  }
260 	      }
261 	    else
262 	      {
263 		for (i = n - 1, di = (long double) (i + i); i > 0; i--)
264 		  {
265 		    temp = b;
266 		    b *= di;
267 		    b = b / x - a;
268 		    a = temp;
269 		    di -= two;
270 		    /* scale b to avoid spurious overflow */
271 		    if (b > 1e100L)
272 		      {
273 			a /= b;
274 			t /= b;
275 			b = one;
276 		      }
277 		  }
278 	      }
279 	    /* j0() and j1() suffer enormous loss of precision at and
280 	     * near zero; however, we know that their zero points never
281 	     * coincide, so just choose the one further away from zero.
282 	     */
283 	    z = __ieee754_j0l (x);
284 	    w = __ieee754_j1l (x);
285 	    if (fabsl (z) >= fabsl (w))
286 	      b = (t * z / b);
287 	    else
288 	      b = (t * w / a);
289 	  }
290       }
291     if (sgn == 1)
292       ret = -b;
293     else
294       ret = b;
295   }
296   if (ret == 0)
297     {
298       ret = copysignl (LDBL_MIN, ret) * LDBL_MIN;
299       __set_errno (ERANGE);
300     }
301   else
302     math_check_force_underflow (ret);
303   return ret;
304 }
libm_alias_finite(__ieee754_jnl,__jnl)305 libm_alias_finite (__ieee754_jnl, __jnl)
306 
307 long double
308 __ieee754_ynl (int n, long double x)
309 {
310   uint32_t se, i0, i1;
311   int32_t i, ix;
312   int32_t sign;
313   long double a, b, temp, ret;
314 
315 
316   GET_LDOUBLE_WORDS (se, i0, i1, x);
317   ix = se & 0x7fff;
318   /* if Y(n,NaN) is NaN */
319   if (__builtin_expect ((ix == 0x7fff) && ((i0 & 0x7fffffff) != 0), 0))
320     return x + x;
321   if (__builtin_expect ((ix | i0 | i1) == 0, 0))
322     /* -inf or inf and divide-by-zero exception.  */
323     return ((n < 0 && (n & 1) != 0) ? 1.0L : -1.0L) / 0.0L;
324   if (__builtin_expect (se & 0x8000, 0))
325     return zero / (zero * x);
326   sign = 1;
327   if (n < 0)
328     {
329       n = -n;
330       sign = 1 - ((n & 1) << 1);
331     }
332   if (n == 0)
333     return (__ieee754_y0l (x));
334   {
335     SET_RESTORE_ROUNDL (FE_TONEAREST);
336     if (n == 1)
337       {
338 	ret = sign * __ieee754_y1l (x);
339 	goto out;
340       }
341     if (__glibc_unlikely (ix == 0x7fff))
342       return zero;
343     if (ix >= 0x412D)
344       {				/* x > 2**302 */
345 
346 	/* ??? See comment above on the possible futility of this.  */
347 
348 	/* (x >> n**2)
349 	 *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
350 	 *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
351 	 *      Let s=sin(x), c=cos(x),
352 	 *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
353 	 *
354 	 *             n    sin(xn)*sqt2    cos(xn)*sqt2
355 	 *          ----------------------------------
356 	 *             0     s-c             c+s
357 	 *             1    -s-c            -c+s
358 	 *             2    -s+c            -c-s
359 	 *             3     s+c             c-s
360 	 */
361 	long double s;
362 	long double c;
363 	__sincosl (x, &s, &c);
364 	switch (n & 3)
365 	  {
366 	  case 0:
367 	    temp = s - c;
368 	    break;
369 	  case 1:
370 	    temp = -s - c;
371 	    break;
372 	  case 2:
373 	    temp = -s + c;
374 	    break;
375 	  case 3:
376 	    temp = s + c;
377 	    break;
378 	  default:
379 	    __builtin_unreachable ();
380 	  }
381 	b = invsqrtpi * temp / sqrtl (x);
382       }
383     else
384       {
385 	a = __ieee754_y0l (x);
386 	b = __ieee754_y1l (x);
387 	/* quit if b is -inf */
388 	GET_LDOUBLE_WORDS (se, i0, i1, b);
389 	/* Use 0xffffffff since GET_LDOUBLE_WORDS sign-extends SE.  */
390 	for (i = 1; i < n && se != 0xffffffff; i++)
391 	  {
392 	    temp = b;
393 	    b = ((long double) (i + i) / x) * b - a;
394 	    GET_LDOUBLE_WORDS (se, i0, i1, b);
395 	    a = temp;
396 	  }
397       }
398     /* If B is +-Inf, set up errno accordingly.  */
399     if (! isfinite (b))
400       __set_errno (ERANGE);
401     if (sign > 0)
402       ret = b;
403     else
404       ret = -b;
405   }
406  out:
407   if (isinf (ret))
408     ret = copysignl (LDBL_MAX, ret) * LDBL_MAX;
409   return ret;
410 }
411 libm_alias_finite (__ieee754_ynl, __ynl)
412