1 /* lgammal expanding around zeros.
2    Copyright (C) 2015-2021 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 #include <float.h>
20 #include <math.h>
21 #include <math_private.h>
22 #include <fenv_private.h>
23 
24 static const long double lgamma_zeros[][2] =
25   {
26     { -0x2.74ff92c01f0d82acp+0L, 0x1.360cea0e5f8ed3ccp-68L },
27     { -0x2.bf6821437b201978p+0L, -0x1.95a4b4641eaebf4cp-64L },
28     { -0x3.24c1b793cb35efb8p+0L, -0xb.e699ad3d9ba6545p-68L },
29     { -0x3.f48e2a8f85fca17p+0L, -0xd.4561291236cc321p-68L },
30     { -0x4.0a139e16656030cp+0L, -0x3.9f0b0de18112ac18p-64L },
31     { -0x4.fdd5de9bbabf351p+0L, -0xd.0aa4076988501d8p-68L },
32     { -0x5.021a95fc2db64328p+0L, -0x2.4c56e595394decc8p-64L },
33     { -0x5.ffa4bd647d0357ep+0L, 0x2.b129d342ce12071cp-64L },
34     { -0x6.005ac9625f233b6p+0L, -0x7.c2d96d16385cb868p-68L },
35     { -0x6.fff2fddae1bbff4p+0L, 0x2.9d949a3dc02de0cp-64L },
36     { -0x7.000cff7b7f87adf8p+0L, 0x3.b7d23246787d54d8p-64L },
37     { -0x7.fffe5fe05673c3c8p+0L, -0x2.9e82b522b0ca9d3p-64L },
38     { -0x8.0001a01459fc9f6p+0L, -0xc.b3cec1cec857667p-68L },
39     { -0x8.ffffd1c425e81p+0L, 0x3.79b16a8b6da6181cp-64L },
40     { -0x9.00002e3bb47d86dp+0L, -0x6.d843fedc351deb78p-64L },
41     { -0x9.fffffb606bdfdcdp+0L, -0x6.2ae77a50547c69dp-68L },
42     { -0xa.0000049f93bb992p+0L, -0x7.b45d95e15441e03p-64L },
43     { -0xa.ffffff9466e9f1bp+0L, -0x3.6dacd2adbd18d05cp-64L },
44     { -0xb.0000006b9915316p+0L, 0x2.69a590015bf1b414p-64L },
45     { -0xb.fffffff70893874p+0L, 0x7.821be533c2c36878p-64L },
46     { -0xc.00000008f76c773p+0L, -0x1.567c0f0250f38792p-64L },
47     { -0xc.ffffffff4f6dcf6p+0L, -0x1.7f97a5ffc757d548p-64L },
48     { -0xd.00000000b09230ap+0L, 0x3.f997c22e46fc1c9p-64L },
49     { -0xd.fffffffff36345bp+0L, 0x4.61e7b5c1f62ee89p-64L },
50     { -0xe.000000000c9cba5p+0L, -0x4.5e94e75ec5718f78p-64L },
51     { -0xe.ffffffffff28c06p+0L, -0xc.6604ef30371f89dp-68L },
52     { -0xf.0000000000d73fap+0L, 0xc.6642f1bdf07a161p-68L },
53     { -0xf.fffffffffff28cp+0L, -0x6.0c6621f512e72e5p-64L },
54     { -0x1.000000000000d74p+4L, 0x6.0c6625ebdb406c48p-64L },
55     { -0x1.0ffffffffffff356p+4L, -0x9.c47e7a93e1c46a1p-64L },
56     { -0x1.1000000000000caap+4L, 0x9.c47e7a97778935ap-64L },
57     { -0x1.1fffffffffffff4cp+4L, 0x1.3c31dcbecd2f74d4p-64L },
58     { -0x1.20000000000000b4p+4L, -0x1.3c31dcbeca4c3b3p-64L },
59     { -0x1.2ffffffffffffff6p+4L, -0x8.5b25cbf5f545ceep-64L },
60     { -0x1.300000000000000ap+4L, 0x8.5b25cbf5f547e48p-64L },
61     { -0x1.4p+4L, 0x7.950ae90080894298p-64L },
62     { -0x1.4p+4L, -0x7.950ae9008089414p-64L },
63     { -0x1.5p+4L, 0x5.c6e3bdb73d5c63p-68L },
64     { -0x1.5p+4L, -0x5.c6e3bdb73d5c62f8p-68L },
65     { -0x1.6p+4L, 0x4.338e5b6dfe14a518p-72L },
66     { -0x1.6p+4L, -0x4.338e5b6dfe14a51p-72L },
67     { -0x1.7p+4L, 0x2.ec368262c7033b3p-76L },
68     { -0x1.7p+4L, -0x2.ec368262c7033b3p-76L },
69     { -0x1.8p+4L, 0x1.f2cf01972f577ccap-80L },
70     { -0x1.8p+4L, -0x1.f2cf01972f577ccap-80L },
71     { -0x1.9p+4L, 0x1.3f3ccdd165fa8d4ep-84L },
72     { -0x1.9p+4L, -0x1.3f3ccdd165fa8d4ep-84L },
73     { -0x1.ap+4L, 0xc.4742fe35272cd1cp-92L },
74     { -0x1.ap+4L, -0xc.4742fe35272cd1cp-92L },
75     { -0x1.bp+4L, 0x7.46ac70b733a8c828p-96L },
76     { -0x1.bp+4L, -0x7.46ac70b733a8c828p-96L },
77     { -0x1.cp+4L, 0x4.2862898d42174ddp-100L },
78     { -0x1.cp+4L, -0x4.2862898d42174ddp-100L },
79     { -0x1.dp+4L, 0x2.4b3f31686b15af58p-104L },
80     { -0x1.dp+4L, -0x2.4b3f31686b15af58p-104L },
81     { -0x1.ep+4L, 0x1.3932c5047d60e60cp-108L },
82     { -0x1.ep+4L, -0x1.3932c5047d60e60cp-108L },
83     { -0x1.fp+4L, 0xa.1a6973c1fade217p-116L },
84     { -0x1.fp+4L, -0xa.1a6973c1fade217p-116L },
85     { -0x2p+4L, 0x5.0d34b9e0fd6f10b8p-120L },
86     { -0x2p+4L, -0x5.0d34b9e0fd6f10b8p-120L },
87     { -0x2.1p+4L, 0x2.73024a9ba1aa36a8p-124L },
88   };
89 
90 static const long double e_hi = 0x2.b7e151628aed2a6cp+0L;
91 static const long double e_lo = -0x1.408ea77f630b0c38p-64L;
92 
93 /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) in Stirling's
94    approximation to lgamma function.  */
95 
96 static const long double lgamma_coeff[] =
97   {
98     0x1.5555555555555556p-4L,
99     -0xb.60b60b60b60b60bp-12L,
100     0x3.4034034034034034p-12L,
101     -0x2.7027027027027028p-12L,
102     0x3.72a3c5631fe46aep-12L,
103     -0x7.daac36664f1f208p-12L,
104     0x1.a41a41a41a41a41ap-8L,
105     -0x7.90a1b2c3d4e5f708p-8L,
106     0x2.dfd2c703c0cfff44p-4L,
107     -0x1.6476701181f39edcp+0L,
108     0xd.672219167002d3ap+0L,
109     -0x9.cd9292e6660d55bp+4L,
110     0x8.911a740da740da7p+8L,
111     -0x8.d0cc570e255bf5ap+12L,
112     0xa.8d1044d3708d1c2p+16L,
113     -0xe.8844d8a169abbc4p+20L,
114   };
115 
116 #define NCOEFF (sizeof (lgamma_coeff) / sizeof (lgamma_coeff[0]))
117 
118 /* Polynomial approximations to (|gamma(x)|-1)(x-n)/(x-x0), where n is
119    the integer end-point of the half-integer interval containing x and
120    x0 is the zero of lgamma in that half-integer interval.  Each
121    polynomial is expressed in terms of x-xm, where xm is the midpoint
122    of the interval for which the polynomial applies.  */
123 
124 static const long double poly_coeff[] =
125   {
126     /* Interval [-2.125, -2] (polynomial degree 13).  */
127     -0x1.0b71c5c54d42eb6cp+0L,
128     -0xc.73a1dc05f349517p-4L,
129     -0x1.ec841408528b6baep-4L,
130     -0xe.37c9da26fc3b492p-4L,
131     -0x1.03cd87c5178991ap-4L,
132     -0xe.ae9ada65ece2f39p-4L,
133     0x9.b1185505edac18dp-8L,
134     -0xe.f28c130b54d3cb2p-4L,
135     0x2.6ec1666cf44a63bp-4L,
136     -0xf.57cb2774193bbd5p-4L,
137     0x4.5ae64671a41b1c4p-4L,
138     -0xf.f48ea8b5bd3a7cep-4L,
139     0x6.7d73788a8d30ef58p-4L,
140     -0x1.11e0e4b506bd272ep+0L,
141     /* Interval [-2.25, -2.125] (polynomial degree 13).  */
142     -0xf.2930890d7d675a8p-4L,
143     -0xc.a5cfde054eab5cdp-4L,
144     0x3.9c9e0fdebb0676e4p-4L,
145     -0x1.02a5ad35605f0d8cp+0L,
146     0x9.6e9b1185d0b92edp-4L,
147     -0x1.4d8332f3d6a3959p+0L,
148     0x1.1c0c8cacd0ced3eap+0L,
149     -0x1.c9a6f592a67b1628p+0L,
150     0x1.d7e9476f96aa4bd6p+0L,
151     -0x2.921cedb488bb3318p+0L,
152     0x2.e8b3fd6ca193e4c8p+0L,
153     -0x3.cb69d9d6628e4a2p+0L,
154     0x4.95f12c73b558638p+0L,
155     -0x5.d392d0b97c02ab6p+0L,
156     /* Interval [-2.375, -2.25] (polynomial degree 14).  */
157     -0xd.7d28d505d618122p-4L,
158     -0xe.69649a304098532p-4L,
159     0xb.0d74a2827d055c5p-4L,
160     -0x1.924b09228531c00ep+0L,
161     0x1.d49b12bccee4f888p+0L,
162     -0x3.0898bb7dbb21e458p+0L,
163     0x4.207a6cad6fa10a2p+0L,
164     -0x6.39ee630b46093ad8p+0L,
165     0x8.e2e25211a3fb5ccp+0L,
166     -0xd.0e85ccd8e79c08p+0L,
167     0x1.2e45882bc17f9e16p+4L,
168     -0x1.b8b6e841815ff314p+4L,
169     0x2.7ff8bf7504fa04dcp+4L,
170     -0x3.c192e9c903352974p+4L,
171     0x5.8040b75f4ef07f98p+4L,
172     /* Interval [-2.5, -2.375] (polynomial degree 15).  */
173     -0xb.74ea1bcfff94b2cp-4L,
174     -0x1.2a82bd590c375384p+0L,
175     0x1.88020f828b968634p+0L,
176     -0x3.32279f040eb80fa4p+0L,
177     0x5.57ac825175943188p+0L,
178     -0x9.c2aedcfe10f129ep+0L,
179     0x1.12c132f2df02881ep+4L,
180     -0x1.ea94e26c0b6ffa6p+4L,
181     0x3.66b4a8bb0290013p+4L,
182     -0x6.0cf735e01f5990bp+4L,
183     0xa.c10a8db7ae99343p+4L,
184     -0x1.31edb212b315feeap+8L,
185     0x2.1f478592298b3ebp+8L,
186     -0x3.c546da5957ace6ccp+8L,
187     0x7.0e3d2a02579ba4bp+8L,
188     -0xc.b1ea961c39302f8p+8L,
189     /* Interval [-2.625, -2.5] (polynomial degree 16).  */
190     -0x3.d10108c27ebafad4p-4L,
191     0x1.cd557caff7d2b202p+0L,
192     0x3.819b4856d3995034p+0L,
193     0x6.8505cbad03dd3bd8p+0L,
194     0xb.c1b2e653aa0b924p+0L,
195     0x1.50a53a38f05f72d6p+4L,
196     0x2.57ae00cbd06efb34p+4L,
197     0x4.2b1563077a577e9p+4L,
198     0x7.6989ed790138a7f8p+4L,
199     0xd.2dd28417b4f8406p+4L,
200     0x1.76e1b71f0710803ap+8L,
201     0x2.9a7a096254ac032p+8L,
202     0x4.a0e6109e2a039788p+8L,
203     0x8.37ea17a93c877b2p+8L,
204     0xe.9506a641143612bp+8L,
205     0x1.b680ed4ea386d52p+12L,
206     0x3.28a2130c8de0ae84p+12L,
207     /* Interval [-2.75, -2.625] (polynomial degree 15).  */
208     -0x6.b5d252a56e8a7548p-4L,
209     0x1.28d60383da3ac72p+0L,
210     0x1.db6513ada8a6703ap+0L,
211     0x2.e217118f9d34aa7cp+0L,
212     0x4.450112c5cbd6256p+0L,
213     0x6.4af99151e972f92p+0L,
214     0x9.2db598b5b183cd6p+0L,
215     0xd.62bef9c9adcff6ap+0L,
216     0x1.379f290d743d9774p+4L,
217     0x1.c58271ff823caa26p+4L,
218     0x2.93a871b87a06e73p+4L,
219     0x3.bf9db66103d7ec98p+4L,
220     0x5.73247c111fbf197p+4L,
221     0x7.ec8b9973ba27d008p+4L,
222     0xb.eca5f9619b39c03p+4L,
223     0x1.18f2e46411c78b1cp+8L,
224     /* Interval [-2.875, -2.75] (polynomial degree 14).  */
225     -0x8.a41b1e4f36ff88ep-4L,
226     0xc.da87d3b69dc0f34p-4L,
227     0x1.1474ad5c36158ad2p+0L,
228     0x1.761ecb90c5553996p+0L,
229     0x1.d279bff9ae234f8p+0L,
230     0x2.4e5d0055a16c5414p+0L,
231     0x2.d57545a783902f8cp+0L,
232     0x3.8514eec263aa9f98p+0L,
233     0x4.5235e338245f6fe8p+0L,
234     0x5.562b1ef200b256c8p+0L,
235     0x6.8ec9782b93bd565p+0L,
236     0x8.14baf4836483508p+0L,
237     0x9.efaf35dc712ea79p+0L,
238     0xc.8431f6a226507a9p+0L,
239     0xf.80358289a768401p+0L,
240     /* Interval [-3, -2.875] (polynomial degree 13).  */
241     -0xa.046d667e468f3e4p-4L,
242     0x9.70b88dcc006c216p-4L,
243     0xa.a8a39421c86ce9p-4L,
244     0xd.2f4d1363f321e89p-4L,
245     0xd.ca9aa1a3ab2f438p-4L,
246     0xf.cf09c31f05d02cbp-4L,
247     0x1.04b133a195686a38p+0L,
248     0x1.22b54799d0072024p+0L,
249     0x1.2c5802b869a36ae8p+0L,
250     0x1.4aadf23055d7105ep+0L,
251     0x1.5794078dd45c55d6p+0L,
252     0x1.7759069da18bcf0ap+0L,
253     0x1.8e672cefa4623f34p+0L,
254     0x1.b2acfa32c17145e6p+0L,
255   };
256 
257 static const size_t poly_deg[] =
258   {
259     13,
260     13,
261     14,
262     15,
263     16,
264     15,
265     14,
266     13,
267   };
268 
269 static const size_t poly_end[] =
270   {
271     13,
272     27,
273     42,
274     58,
275     75,
276     91,
277     106,
278     120,
279   };
280 
281 /* Compute sin (pi * X) for -0.25 <= X <= 0.5.  */
282 
283 static long double
lg_sinpi(long double x)284 lg_sinpi (long double x)
285 {
286   if (x <= 0.25L)
287     return __sinl (M_PIl * x);
288   else
289     return __cosl (M_PIl * (0.5L - x));
290 }
291 
292 /* Compute cos (pi * X) for -0.25 <= X <= 0.5.  */
293 
294 static long double
lg_cospi(long double x)295 lg_cospi (long double x)
296 {
297   if (x <= 0.25L)
298     return __cosl (M_PIl * x);
299   else
300     return __sinl (M_PIl * (0.5L - x));
301 }
302 
303 /* Compute cot (pi * X) for -0.25 <= X <= 0.5.  */
304 
305 static long double
lg_cotpi(long double x)306 lg_cotpi (long double x)
307 {
308   return lg_cospi (x) / lg_sinpi (x);
309 }
310 
311 /* Compute lgamma of a negative argument -33 < X < -2, setting
312    *SIGNGAMP accordingly.  */
313 
314 long double
__lgamma_negl(long double x,int * signgamp)315 __lgamma_negl (long double x, int *signgamp)
316 {
317   /* Determine the half-integer region X lies in, handle exact
318      integers and determine the sign of the result.  */
319   int i = floorl (-2 * x);
320   if ((i & 1) == 0 && i == -2 * x)
321     return 1.0L / 0.0L;
322   long double xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2);
323   i -= 4;
324   *signgamp = ((i & 2) == 0 ? -1 : 1);
325 
326   SET_RESTORE_ROUNDL (FE_TONEAREST);
327 
328   /* Expand around the zero X0 = X0_HI + X0_LO.  */
329   long double x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1];
330   long double xdiff = x - x0_hi - x0_lo;
331 
332   /* For arguments in the range -3 to -2, use polynomial
333      approximations to an adjusted version of the gamma function.  */
334   if (i < 2)
335     {
336       int j = floorl (-8 * x) - 16;
337       long double xm = (-33 - 2 * j) * 0.0625L;
338       long double x_adj = x - xm;
339       size_t deg = poly_deg[j];
340       size_t end = poly_end[j];
341       long double g = poly_coeff[end];
342       for (size_t j = 1; j <= deg; j++)
343 	g = g * x_adj + poly_coeff[end - j];
344       return __log1pl (g * xdiff / (x - xn));
345     }
346 
347   /* The result we want is log (sinpi (X0) / sinpi (X))
348      + log (gamma (1 - X0) / gamma (1 - X)).  */
349   long double x_idiff = fabsl (xn - x), x0_idiff = fabsl (xn - x0_hi - x0_lo);
350   long double log_sinpi_ratio;
351   if (x0_idiff < x_idiff * 0.5L)
352     /* Use log not log1p to avoid inaccuracy from log1p of arguments
353        close to -1.  */
354     log_sinpi_ratio = __ieee754_logl (lg_sinpi (x0_idiff)
355 				      / lg_sinpi (x_idiff));
356   else
357     {
358       /* Use log1p not log to avoid inaccuracy from log of arguments
359 	 close to 1.  X0DIFF2 has positive sign if X0 is further from
360 	 XN than X is from XN, negative sign otherwise.  */
361       long double x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * 0.5L;
362       long double sx0d2 = lg_sinpi (x0diff2);
363       long double cx0d2 = lg_cospi (x0diff2);
364       log_sinpi_ratio = __log1pl (2 * sx0d2
365 				  * (-sx0d2 + cx0d2 * lg_cotpi (x_idiff)));
366     }
367 
368   long double log_gamma_ratio;
369   long double y0 = 1 - x0_hi;
370   long double y0_eps = -x0_hi + (1 - y0) - x0_lo;
371   long double y = 1 - x;
372   long double y_eps = -x + (1 - y);
373   /* We now wish to compute LOG_GAMMA_RATIO
374      = log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)).  XDIFF
375      accurately approximates the difference Y0 + Y0_EPS - Y -
376      Y_EPS.  Use Stirling's approximation.  First, we may need to
377      adjust into the range where Stirling's approximation is
378      sufficiently accurate.  */
379   long double log_gamma_adj = 0;
380   if (i < 8)
381     {
382       int n_up = (9 - i) / 2;
383       long double ny0, ny0_eps, ny, ny_eps;
384       ny0 = y0 + n_up;
385       ny0_eps = y0 - (ny0 - n_up) + y0_eps;
386       y0 = ny0;
387       y0_eps = ny0_eps;
388       ny = y + n_up;
389       ny_eps = y - (ny - n_up) + y_eps;
390       y = ny;
391       y_eps = ny_eps;
392       long double prodm1 = __lgamma_productl (xdiff, y - n_up, y_eps, n_up);
393       log_gamma_adj = -__log1pl (prodm1);
394     }
395   long double log_gamma_high
396     = (xdiff * __log1pl ((y0 - e_hi - e_lo + y0_eps) / e_hi)
397        + (y - 0.5L + y_eps) * __log1pl (xdiff / y) + log_gamma_adj);
398   /* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)).  */
399   long double y0r = 1 / y0, yr = 1 / y;
400   long double y0r2 = y0r * y0r, yr2 = yr * yr;
401   long double rdiff = -xdiff / (y * y0);
402   long double bterm[NCOEFF];
403   long double dlast = rdiff, elast = rdiff * yr * (yr + y0r);
404   bterm[0] = dlast * lgamma_coeff[0];
405   for (size_t j = 1; j < NCOEFF; j++)
406     {
407       long double dnext = dlast * y0r2 + elast;
408       long double enext = elast * yr2;
409       bterm[j] = dnext * lgamma_coeff[j];
410       dlast = dnext;
411       elast = enext;
412     }
413   long double log_gamma_low = 0;
414   for (size_t j = 0; j < NCOEFF; j++)
415     log_gamma_low += bterm[NCOEFF - 1 - j];
416   log_gamma_ratio = log_gamma_high + log_gamma_low;
417 
418   return log_sinpi_ratio + log_gamma_ratio;
419 }
420