1/* Copyright (C) 2012-2021 Free Software Foundation, Inc.
2   This file is part of the GNU C Library.
3
4   The GNU C Library is free software; you can redistribute it and/or
5   modify it under the terms of the GNU Lesser General Public
6   License as published by the Free Software Foundation; either
7   version 2.1 of the License, or (at your option) any later version.
8
9   The GNU C Library is distributed in the hope that it will be useful,
10   but WITHOUT ANY WARRANTY; without even the implied warranty of
11   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12   Lesser General Public License for more details.
13
14   You should have received a copy of the GNU Lesser General Public
15   License along with the GNU C Library.  If not, see
16   <https://www.gnu.org/licenses/>.  */
17
18#ifdef ANDROID_CHANGES
19# include "machine/asm.h"
20# include "machine/regdef.h"
21# define USE_MEMMOVE_FOR_OVERLAP
22# define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD_STREAMED
23# define PREFETCH_STORE_HINT PREFETCH_HINT_PREPAREFORSTORE
24#elif _LIBC
25# include <sysdep.h>
26# include <regdef.h>
27# include <sys/asm.h>
28# define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD_STREAMED
29# define PREFETCH_STORE_HINT PREFETCH_HINT_PREPAREFORSTORE
30#elif defined _COMPILING_NEWLIB
31# include "machine/asm.h"
32# include "machine/regdef.h"
33# define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD_STREAMED
34# define PREFETCH_STORE_HINT PREFETCH_HINT_PREPAREFORSTORE
35#else
36# include <regdef.h>
37# include <sys/asm.h>
38#endif
39
40#if (_MIPS_ISA == _MIPS_ISA_MIPS4) || (_MIPS_ISA == _MIPS_ISA_MIPS5) || \
41    (_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64)
42# ifndef DISABLE_PREFETCH
43#  define USE_PREFETCH
44# endif
45#endif
46
47#if defined(_MIPS_SIM) && ((_MIPS_SIM == _ABI64) || (_MIPS_SIM == _ABIN32))
48# ifndef DISABLE_DOUBLE
49#  define USE_DOUBLE
50# endif
51#endif
52
53/* Some asm.h files do not have the L macro definition.  */
54#ifndef L
55# if _MIPS_SIM == _ABIO32
56#  define L(label) $L ## label
57# else
58#  define L(label) .L ## label
59# endif
60#endif
61
62/* Some asm.h files do not have the PTR_ADDIU macro definition.  */
63#ifndef PTR_ADDIU
64# ifdef USE_DOUBLE
65#  define PTR_ADDIU	daddiu
66# else
67#  define PTR_ADDIU	addiu
68# endif
69#endif
70
71/* Some asm.h files do not have the PTR_SRA macro definition.  */
72#ifndef PTR_SRA
73# ifdef USE_DOUBLE
74#  define PTR_SRA		dsra
75# else
76#  define PTR_SRA		sra
77# endif
78#endif
79
80/* New R6 instructions that may not be in asm.h.  */
81#ifndef PTR_LSA
82# if _MIPS_SIM == _ABI64
83#  define PTR_LSA	dlsa
84# else
85#  define PTR_LSA	lsa
86# endif
87#endif
88
89/*
90 * Using PREFETCH_HINT_LOAD_STREAMED instead of PREFETCH_LOAD on load
91 * prefetches appears to offer a slight preformance advantage.
92 *
93 * Using PREFETCH_HINT_PREPAREFORSTORE instead of PREFETCH_STORE
94 * or PREFETCH_STORE_STREAMED offers a large performance advantage
95 * but PREPAREFORSTORE has some special restrictions to consider.
96 *
97 * Prefetch with the 'prepare for store' hint does not copy a memory
98 * location into the cache, it just allocates a cache line and zeros
99 * it out.  This means that if you do not write to the entire cache
100 * line before writing it out to memory some data will get zero'ed out
101 * when the cache line is written back to memory and data will be lost.
102 *
103 * Also if you are using this memcpy to copy overlapping buffers it may
104 * not behave correctly when using the 'prepare for store' hint.  If you
105 * use the 'prepare for store' prefetch on a memory area that is in the
106 * memcpy source (as well as the memcpy destination), then you will get
107 * some data zero'ed out before you have a chance to read it and data will
108 * be lost.
109 *
110 * If you are going to use this memcpy routine with the 'prepare for store'
111 * prefetch you may want to set USE_MEMMOVE_FOR_OVERLAP in order to avoid
112 * the problem of running memcpy on overlapping buffers.
113 *
114 * There are ifdef'ed sections of this memcpy to make sure that it does not
115 * do prefetches on cache lines that are not going to be completely written.
116 * This code is only needed and only used when PREFETCH_STORE_HINT is set to
117 * PREFETCH_HINT_PREPAREFORSTORE.  This code assumes that cache lines are
118 * 32 bytes and if the cache line is larger it will not work correctly.
119 */
120
121#ifdef USE_PREFETCH
122# define PREFETCH_HINT_LOAD		0
123# define PREFETCH_HINT_STORE		1
124# define PREFETCH_HINT_LOAD_STREAMED	4
125# define PREFETCH_HINT_STORE_STREAMED	5
126# define PREFETCH_HINT_LOAD_RETAINED	6
127# define PREFETCH_HINT_STORE_RETAINED	7
128# define PREFETCH_HINT_WRITEBACK_INVAL	25
129# define PREFETCH_HINT_PREPAREFORSTORE	30
130
131/*
132 * If we have not picked out what hints to use at this point use the
133 * standard load and store prefetch hints.
134 */
135# ifndef PREFETCH_STORE_HINT
136#  define PREFETCH_STORE_HINT PREFETCH_HINT_STORE
137# endif
138# ifndef PREFETCH_LOAD_HINT
139#  define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD
140# endif
141
142/*
143 * We double everything when USE_DOUBLE is true so we do 2 prefetches to
144 * get 64 bytes in that case.  The assumption is that each individual
145 * prefetch brings in 32 bytes.
146 */
147
148# ifdef USE_DOUBLE
149#  define PREFETCH_CHUNK 64
150#  define PREFETCH_FOR_LOAD(chunk, reg) \
151 pref PREFETCH_LOAD_HINT, (chunk)*64(reg); \
152 pref PREFETCH_LOAD_HINT, ((chunk)*64)+32(reg)
153#  define PREFETCH_FOR_STORE(chunk, reg) \
154 pref PREFETCH_STORE_HINT, (chunk)*64(reg); \
155 pref PREFETCH_STORE_HINT, ((chunk)*64)+32(reg)
156# else
157#  define PREFETCH_CHUNK 32
158#  define PREFETCH_FOR_LOAD(chunk, reg) \
159 pref PREFETCH_LOAD_HINT, (chunk)*32(reg)
160#  define PREFETCH_FOR_STORE(chunk, reg) \
161 pref PREFETCH_STORE_HINT, (chunk)*32(reg)
162# endif
163/* MAX_PREFETCH_SIZE is the maximum size of a prefetch, it must not be less
164 * than PREFETCH_CHUNK, the assumed size of each prefetch.  If the real size
165 * of a prefetch is greater than MAX_PREFETCH_SIZE and the PREPAREFORSTORE
166 * hint is used, the code will not work correctly.  If PREPAREFORSTORE is not
167 * used then MAX_PREFETCH_SIZE does not matter.  */
168# define MAX_PREFETCH_SIZE 128
169/* PREFETCH_LIMIT is set based on the fact that we never use an offset greater
170 * than 5 on a STORE prefetch and that a single prefetch can never be larger
171 * than MAX_PREFETCH_SIZE.  We add the extra 32 when USE_DOUBLE is set because
172 * we actually do two prefetches in that case, one 32 bytes after the other.  */
173# ifdef USE_DOUBLE
174#  define PREFETCH_LIMIT (5 * PREFETCH_CHUNK) + 32 + MAX_PREFETCH_SIZE
175# else
176#  define PREFETCH_LIMIT (5 * PREFETCH_CHUNK) + MAX_PREFETCH_SIZE
177# endif
178# if (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) \
179    && ((PREFETCH_CHUNK * 4) < MAX_PREFETCH_SIZE)
180/* We cannot handle this because the initial prefetches may fetch bytes that
181 * are before the buffer being copied.  We start copies with an offset
182 * of 4 so avoid this situation when using PREPAREFORSTORE.  */
183#error "PREFETCH_CHUNK is too large and/or MAX_PREFETCH_SIZE is too small."
184# endif
185#else /* USE_PREFETCH not defined */
186# define PREFETCH_FOR_LOAD(offset, reg)
187# define PREFETCH_FOR_STORE(offset, reg)
188#endif
189
190#if __mips_isa_rev > 5
191# if (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE)
192#  undef PREFETCH_STORE_HINT
193#  define PREFETCH_STORE_HINT PREFETCH_HINT_STORE_STREAMED
194# endif
195# define R6_CODE
196#endif
197
198/* Allow the routine to be named something else if desired.  */
199#ifndef MEMCPY_NAME
200# define MEMCPY_NAME memcpy
201#endif
202
203/* We use these 32/64 bit registers as temporaries to do the copying.  */
204#define REG0 t0
205#define REG1 t1
206#define REG2 t2
207#define REG3 t3
208#if defined(_MIPS_SIM) && ((_MIPS_SIM == _ABIO32) || (_MIPS_SIM == _ABIO64))
209# define REG4 t4
210# define REG5 t5
211# define REG6 t6
212# define REG7 t7
213#else
214# define REG4 ta0
215# define REG5 ta1
216# define REG6 ta2
217# define REG7 ta3
218#endif
219
220/* We load/store 64 bits at a time when USE_DOUBLE is true.
221 * The C_ prefix stands for CHUNK and is used to avoid macro name
222 * conflicts with system header files.  */
223
224#ifdef USE_DOUBLE
225# define C_ST	sd
226# define C_LD	ld
227# ifdef __MIPSEB
228#  define C_LDHI	ldl	/* high part is left in big-endian	*/
229#  define C_STHI	sdl	/* high part is left in big-endian	*/
230#  define C_LDLO	ldr	/* low part is right in big-endian	*/
231#  define C_STLO	sdr	/* low part is right in big-endian	*/
232# else
233#  define C_LDHI	ldr	/* high part is right in little-endian	*/
234#  define C_STHI	sdr	/* high part is right in little-endian	*/
235#  define C_LDLO	ldl	/* low part is left in little-endian	*/
236#  define C_STLO	sdl	/* low part is left in little-endian	*/
237# endif
238# define C_ALIGN	dalign	/* r6 align instruction			*/
239#else
240# define C_ST	sw
241# define C_LD	lw
242# ifdef __MIPSEB
243#  define C_LDHI	lwl	/* high part is left in big-endian	*/
244#  define C_STHI	swl	/* high part is left in big-endian	*/
245#  define C_LDLO	lwr	/* low part is right in big-endian	*/
246#  define C_STLO	swr	/* low part is right in big-endian	*/
247# else
248#  define C_LDHI	lwr	/* high part is right in little-endian	*/
249#  define C_STHI	swr	/* high part is right in little-endian	*/
250#  define C_LDLO	lwl	/* low part is left in little-endian	*/
251#  define C_STLO	swl	/* low part is left in little-endian	*/
252# endif
253# define C_ALIGN	align	/* r6 align instruction			*/
254#endif
255
256/* Bookkeeping values for 32 vs. 64 bit mode.  */
257#ifdef USE_DOUBLE
258# define NSIZE 8
259# define NSIZEMASK 0x3f
260# define NSIZEDMASK 0x7f
261#else
262# define NSIZE 4
263# define NSIZEMASK 0x1f
264# define NSIZEDMASK 0x3f
265#endif
266#define UNIT(unit) ((unit)*NSIZE)
267#define UNITM1(unit) (((unit)*NSIZE)-1)
268
269#ifdef ANDROID_CHANGES
270LEAF(MEMCPY_NAME, 0)
271#else
272LEAF(MEMCPY_NAME)
273#endif
274	.set	nomips16
275	.set	noreorder
276/*
277 * Below we handle the case where memcpy is called with overlapping src and dst.
278 * Although memcpy is not required to handle this case, some parts of Android
279 * like Skia rely on such usage. We call memmove to handle such cases.
280 */
281#ifdef USE_MEMMOVE_FOR_OVERLAP
282	PTR_SUBU t0,a0,a1
283	PTR_SRA	t2,t0,31
284	xor	t1,t0,t2
285	PTR_SUBU t0,t1,t2
286	sltu	t2,t0,a2
287	beq	t2,zero,L(memcpy)
288	la	t9,memmove
289	jr	t9
290	 nop
291L(memcpy):
292#endif
293/*
294 * If the size is less than 2*NSIZE (8 or 16), go to L(lastb).  Regardless of
295 * size, copy dst pointer to v0 for the return value.
296 */
297	slti	t2,a2,(2 * NSIZE)
298	bne	t2,zero,L(lasts)
299#if defined(RETURN_FIRST_PREFETCH) || defined(RETURN_LAST_PREFETCH)
300	move	v0,zero
301#else
302	move	v0,a0
303#endif
304
305#ifndef R6_CODE
306
307/*
308 * If src and dst have different alignments, go to L(unaligned), if they
309 * have the same alignment (but are not actually aligned) do a partial
310 * load/store to make them aligned.  If they are both already aligned
311 * we can start copying at L(aligned).
312 */
313	xor	t8,a1,a0
314	andi	t8,t8,(NSIZE-1)		/* t8 is a0/a1 word-displacement */
315	bne	t8,zero,L(unaligned)
316	PTR_SUBU a3, zero, a0
317
318	andi	a3,a3,(NSIZE-1)		/* copy a3 bytes to align a0/a1	  */
319	beq	a3,zero,L(aligned)	/* if a3=0, it is already aligned */
320	PTR_SUBU a2,a2,a3		/* a2 is the remining bytes count */
321
322	C_LDHI	t8,0(a1)
323	PTR_ADDU a1,a1,a3
324	C_STHI	t8,0(a0)
325	PTR_ADDU a0,a0,a3
326
327#else /* R6_CODE */
328
329/*
330 * Align the destination and hope that the source gets aligned too.  If it
331 * doesn't we jump to L(r6_unaligned*) to do unaligned copies using the r6
332 * align instruction.
333 */
334	andi	t8,a0,7
335	lapc	t9,L(atable)
336	PTR_LSA	t9,t8,t9,2
337	jrc	t9
338L(atable):
339	bc	L(lb0)
340	bc	L(lb7)
341	bc	L(lb6)
342	bc	L(lb5)
343	bc	L(lb4)
344	bc	L(lb3)
345	bc	L(lb2)
346	bc	L(lb1)
347L(lb7):
348	lb	a3, 6(a1)
349	sb	a3, 6(a0)
350L(lb6):
351	lb	a3, 5(a1)
352	sb	a3, 5(a0)
353L(lb5):
354	lb	a3, 4(a1)
355	sb	a3, 4(a0)
356L(lb4):
357	lb	a3, 3(a1)
358	sb	a3, 3(a0)
359L(lb3):
360	lb	a3, 2(a1)
361	sb	a3, 2(a0)
362L(lb2):
363	lb	a3, 1(a1)
364	sb	a3, 1(a0)
365L(lb1):
366	lb	a3, 0(a1)
367	sb	a3, 0(a0)
368
369	li	t9,8
370	subu	t8,t9,t8
371	PTR_SUBU a2,a2,t8
372	PTR_ADDU a0,a0,t8
373	PTR_ADDU a1,a1,t8
374L(lb0):
375
376	andi	t8,a1,(NSIZE-1)
377	lapc	t9,L(jtable)
378	PTR_LSA	t9,t8,t9,2
379	jrc	t9
380L(jtable):
381        bc      L(aligned)
382        bc      L(r6_unaligned1)
383        bc      L(r6_unaligned2)
384        bc      L(r6_unaligned3)
385# ifdef USE_DOUBLE
386        bc      L(r6_unaligned4)
387        bc      L(r6_unaligned5)
388        bc      L(r6_unaligned6)
389        bc      L(r6_unaligned7)
390# endif
391#endif /* R6_CODE */
392
393L(aligned):
394
395/*
396 * Now dst/src are both aligned to (word or double word) aligned addresses
397 * Set a2 to count how many bytes we have to copy after all the 64/128 byte
398 * chunks are copied and a3 to the dst pointer after all the 64/128 byte
399 * chunks have been copied.  We will loop, incrementing a0 and a1 until a0
400 * equals a3.
401 */
402
403	andi	t8,a2,NSIZEDMASK /* any whole 64-byte/128-byte chunks? */
404	beq	a2,t8,L(chkw)	 /* if a2==t8, no 64-byte/128-byte chunks */
405	PTR_SUBU a3,a2,t8	 /* subtract from a2 the reminder */
406	PTR_ADDU a3,a0,a3	 /* Now a3 is the final dst after loop */
407
408/* When in the loop we may prefetch with the 'prepare to store' hint,
409 * in this case the a0+x should not be past the "t0-32" address.  This
410 * means: for x=128 the last "safe" a0 address is "t0-160".  Alternatively,
411 * for x=64 the last "safe" a0 address is "t0-96" In the current version we
412 * will use "prefetch hint,128(a0)", so "t0-160" is the limit.
413 */
414#if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE)
415	PTR_ADDU t0,a0,a2		/* t0 is the "past the end" address */
416	PTR_SUBU t9,t0,PREFETCH_LIMIT	/* t9 is the "last safe pref" address */
417#endif
418	PREFETCH_FOR_LOAD  (0, a1)
419	PREFETCH_FOR_LOAD  (1, a1)
420	PREFETCH_FOR_LOAD  (2, a1)
421	PREFETCH_FOR_LOAD  (3, a1)
422#if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT != PREFETCH_HINT_PREPAREFORSTORE)
423	PREFETCH_FOR_STORE (1, a0)
424	PREFETCH_FOR_STORE (2, a0)
425	PREFETCH_FOR_STORE (3, a0)
426#endif
427#if defined(RETURN_FIRST_PREFETCH) && defined(USE_PREFETCH)
428# if PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE
429	sltu    v1,t9,a0
430	bgtz    v1,L(skip_set)
431	nop
432	PTR_ADDIU v0,a0,(PREFETCH_CHUNK*4)
433L(skip_set):
434# else
435	PTR_ADDIU v0,a0,(PREFETCH_CHUNK*1)
436# endif
437#endif
438#if defined(RETURN_LAST_PREFETCH) && defined(USE_PREFETCH) \
439    && (PREFETCH_STORE_HINT != PREFETCH_HINT_PREPAREFORSTORE)
440	PTR_ADDIU v0,a0,(PREFETCH_CHUNK*3)
441# ifdef USE_DOUBLE
442	PTR_ADDIU v0,v0,32
443# endif
444#endif
445L(loop16w):
446	C_LD	t0,UNIT(0)(a1)
447#if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE)
448	sltu	v1,t9,a0		/* If a0 > t9 don't use next prefetch */
449	bgtz	v1,L(skip_pref)
450#endif
451	C_LD	t1,UNIT(1)(a1)
452#ifdef R6_CODE
453	PREFETCH_FOR_STORE (2, a0)
454#else
455	PREFETCH_FOR_STORE (4, a0)
456	PREFETCH_FOR_STORE (5, a0)
457#endif
458#if defined(RETURN_LAST_PREFETCH) && defined(USE_PREFETCH)
459	PTR_ADDIU v0,a0,(PREFETCH_CHUNK*5)
460# ifdef USE_DOUBLE
461	PTR_ADDIU v0,v0,32
462# endif
463#endif
464L(skip_pref):
465	C_LD	REG2,UNIT(2)(a1)
466	C_LD	REG3,UNIT(3)(a1)
467	C_LD	REG4,UNIT(4)(a1)
468	C_LD	REG5,UNIT(5)(a1)
469	C_LD	REG6,UNIT(6)(a1)
470	C_LD	REG7,UNIT(7)(a1)
471#ifdef R6_CODE
472	PREFETCH_FOR_LOAD (3, a1)
473#else
474	PREFETCH_FOR_LOAD (4, a1)
475#endif
476	C_ST	t0,UNIT(0)(a0)
477	C_ST	t1,UNIT(1)(a0)
478	C_ST	REG2,UNIT(2)(a0)
479	C_ST	REG3,UNIT(3)(a0)
480	C_ST	REG4,UNIT(4)(a0)
481	C_ST	REG5,UNIT(5)(a0)
482	C_ST	REG6,UNIT(6)(a0)
483	C_ST	REG7,UNIT(7)(a0)
484
485	C_LD	t0,UNIT(8)(a1)
486	C_LD	t1,UNIT(9)(a1)
487	C_LD	REG2,UNIT(10)(a1)
488	C_LD	REG3,UNIT(11)(a1)
489	C_LD	REG4,UNIT(12)(a1)
490	C_LD	REG5,UNIT(13)(a1)
491	C_LD	REG6,UNIT(14)(a1)
492	C_LD	REG7,UNIT(15)(a1)
493#ifndef R6_CODE
494        PREFETCH_FOR_LOAD (5, a1)
495#endif
496	C_ST	t0,UNIT(8)(a0)
497	C_ST	t1,UNIT(9)(a0)
498	C_ST	REG2,UNIT(10)(a0)
499	C_ST	REG3,UNIT(11)(a0)
500	C_ST	REG4,UNIT(12)(a0)
501	C_ST	REG5,UNIT(13)(a0)
502	C_ST	REG6,UNIT(14)(a0)
503	C_ST	REG7,UNIT(15)(a0)
504	PTR_ADDIU a0,a0,UNIT(16)	/* adding 64/128 to dest */
505	bne	a0,a3,L(loop16w)
506	PTR_ADDIU a1,a1,UNIT(16)	/* adding 64/128 to src */
507	move	a2,t8
508
509/* Here we have src and dest word-aligned but less than 64-bytes or
510 * 128 bytes to go.  Check for a 32(64) byte chunk and copy if there
511 * is one.  Otherwise jump down to L(chk1w) to handle the tail end of
512 * the copy.
513 */
514
515L(chkw):
516	PREFETCH_FOR_LOAD (0, a1)
517	andi	t8,a2,NSIZEMASK	/* Is there a 32-byte/64-byte chunk.  */
518				/* The t8 is the reminder count past 32-bytes */
519	beq	a2,t8,L(chk1w)	/* When a2=t8, no 32-byte chunk  */
520	nop
521	C_LD	t0,UNIT(0)(a1)
522	C_LD	t1,UNIT(1)(a1)
523	C_LD	REG2,UNIT(2)(a1)
524	C_LD	REG3,UNIT(3)(a1)
525	C_LD	REG4,UNIT(4)(a1)
526	C_LD	REG5,UNIT(5)(a1)
527	C_LD	REG6,UNIT(6)(a1)
528	C_LD	REG7,UNIT(7)(a1)
529	PTR_ADDIU a1,a1,UNIT(8)
530	C_ST	t0,UNIT(0)(a0)
531	C_ST	t1,UNIT(1)(a0)
532	C_ST	REG2,UNIT(2)(a0)
533	C_ST	REG3,UNIT(3)(a0)
534	C_ST	REG4,UNIT(4)(a0)
535	C_ST	REG5,UNIT(5)(a0)
536	C_ST	REG6,UNIT(6)(a0)
537	C_ST	REG7,UNIT(7)(a0)
538	PTR_ADDIU a0,a0,UNIT(8)
539
540/*
541 * Here we have less than 32(64) bytes to copy.  Set up for a loop to
542 * copy one word (or double word) at a time.  Set a2 to count how many
543 * bytes we have to copy after all the word (or double word) chunks are
544 * copied and a3 to the dst pointer after all the (d)word chunks have
545 * been copied.  We will loop, incrementing a0 and a1 until a0 equals a3.
546 */
547L(chk1w):
548	andi	a2,t8,(NSIZE-1)	/* a2 is the reminder past one (d)word chunks */
549	beq	a2,t8,L(lastw)
550	PTR_SUBU a3,t8,a2	/* a3 is count of bytes in one (d)word chunks */
551	PTR_ADDU a3,a0,a3	/* a3 is the dst address after loop */
552
553/* copying in words (4-byte or 8-byte chunks) */
554L(wordCopy_loop):
555	C_LD	REG3,UNIT(0)(a1)
556	PTR_ADDIU a0,a0,UNIT(1)
557	PTR_ADDIU a1,a1,UNIT(1)
558	bne	a0,a3,L(wordCopy_loop)
559	C_ST	REG3,UNIT(-1)(a0)
560
561/* If we have been copying double words, see if we can copy a single word
562   before doing byte copies.  We can have, at most, one word to copy.  */
563
564L(lastw):
565#ifdef USE_DOUBLE
566	andi    t8,a2,3		/* a2 is the remainder past 4 byte chunks.  */
567	beq	t8,a2,L(lastb)
568	move	a2,t8
569	lw	REG3,0(a1)
570	sw	REG3,0(a0)
571	PTR_ADDIU a0,a0,4
572	PTR_ADDIU a1,a1,4
573#endif
574
575/* Copy the last 8 (or 16) bytes */
576L(lastb):
577	blez	a2,L(leave)
578	PTR_ADDU a3,a0,a2	/* a3 is the last dst address */
579L(lastbloop):
580	lb	v1,0(a1)
581	PTR_ADDIU a0,a0,1
582	PTR_ADDIU a1,a1,1
583	bne	a0,a3,L(lastbloop)
584	sb	v1,-1(a0)
585L(leave):
586	j	ra
587	nop
588
589/* We jump here with a memcpy of less than 8 or 16 bytes, depending on
590   whether or not USE_DOUBLE is defined.  Instead of just doing byte
591   copies, check the alignment and size and use lw/sw if possible.
592   Otherwise, do byte copies.  */
593
594L(lasts):
595	andi	t8,a2,3
596	beq	t8,a2,L(lastb)
597
598	andi	t9,a0,3
599	bne	t9,zero,L(lastb)
600	andi	t9,a1,3
601	bne	t9,zero,L(lastb)
602
603	PTR_SUBU a3,a2,t8
604	PTR_ADDU a3,a0,a3
605
606L(wcopy_loop):
607	lw	REG3,0(a1)
608	PTR_ADDIU a0,a0,4
609	PTR_ADDIU a1,a1,4
610	bne	a0,a3,L(wcopy_loop)
611	sw	REG3,-4(a0)
612
613	b	L(lastb)
614	move	a2,t8
615
616#ifndef R6_CODE
617/*
618 * UNALIGNED case, got here with a3 = "negu a0"
619 * This code is nearly identical to the aligned code above
620 * but only the destination (not the source) gets aligned
621 * so we need to do partial loads of the source followed
622 * by normal stores to the destination (once we have aligned
623 * the destination).
624 */
625
626L(unaligned):
627	andi	a3,a3,(NSIZE-1)	/* copy a3 bytes to align a0/a1 */
628	beqz	a3,L(ua_chk16w) /* if a3=0, it is already aligned */
629	PTR_SUBU a2,a2,a3	/* a2 is the remining bytes count */
630
631	C_LDHI	v1,UNIT(0)(a1)
632	C_LDLO	v1,UNITM1(1)(a1)
633	PTR_ADDU a1,a1,a3
634	C_STHI	v1,UNIT(0)(a0)
635	PTR_ADDU a0,a0,a3
636
637/*
638 *  Now the destination (but not the source) is aligned
639 * Set a2 to count how many bytes we have to copy after all the 64/128 byte
640 * chunks are copied and a3 to the dst pointer after all the 64/128 byte
641 * chunks have been copied.  We will loop, incrementing a0 and a1 until a0
642 * equals a3.
643 */
644
645L(ua_chk16w):
646	andi	t8,a2,NSIZEDMASK /* any whole 64-byte/128-byte chunks? */
647	beq	a2,t8,L(ua_chkw) /* if a2==t8, no 64-byte/128-byte chunks */
648	PTR_SUBU a3,a2,t8	 /* subtract from a2 the reminder */
649	PTR_ADDU a3,a0,a3	 /* Now a3 is the final dst after loop */
650
651# if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE)
652	PTR_ADDU t0,a0,a2	  /* t0 is the "past the end" address */
653	PTR_SUBU t9,t0,PREFETCH_LIMIT /* t9 is the "last safe pref" address */
654# endif
655	PREFETCH_FOR_LOAD  (0, a1)
656	PREFETCH_FOR_LOAD  (1, a1)
657	PREFETCH_FOR_LOAD  (2, a1)
658# if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT != PREFETCH_HINT_PREPAREFORSTORE)
659	PREFETCH_FOR_STORE (1, a0)
660	PREFETCH_FOR_STORE (2, a0)
661	PREFETCH_FOR_STORE (3, a0)
662# endif
663# if defined(RETURN_FIRST_PREFETCH) && defined(USE_PREFETCH)
664#  if (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE)
665	sltu    v1,t9,a0
666	bgtz    v1,L(ua_skip_set)
667	nop
668	PTR_ADDIU v0,a0,(PREFETCH_CHUNK*4)
669L(ua_skip_set):
670#  else
671	PTR_ADDIU v0,a0,(PREFETCH_CHUNK*1)
672#  endif
673# endif
674L(ua_loop16w):
675	PREFETCH_FOR_LOAD  (3, a1)
676	C_LDHI	t0,UNIT(0)(a1)
677	C_LDHI	t1,UNIT(1)(a1)
678	C_LDHI	REG2,UNIT(2)(a1)
679# if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE)
680	sltu	v1,t9,a0
681	bgtz	v1,L(ua_skip_pref)
682# endif
683	C_LDHI	REG3,UNIT(3)(a1)
684	PREFETCH_FOR_STORE (4, a0)
685	PREFETCH_FOR_STORE (5, a0)
686L(ua_skip_pref):
687	C_LDHI	REG4,UNIT(4)(a1)
688	C_LDHI	REG5,UNIT(5)(a1)
689	C_LDHI	REG6,UNIT(6)(a1)
690	C_LDHI	REG7,UNIT(7)(a1)
691	C_LDLO	t0,UNITM1(1)(a1)
692	C_LDLO	t1,UNITM1(2)(a1)
693	C_LDLO	REG2,UNITM1(3)(a1)
694	C_LDLO	REG3,UNITM1(4)(a1)
695	C_LDLO	REG4,UNITM1(5)(a1)
696	C_LDLO	REG5,UNITM1(6)(a1)
697	C_LDLO	REG6,UNITM1(7)(a1)
698	C_LDLO	REG7,UNITM1(8)(a1)
699        PREFETCH_FOR_LOAD (4, a1)
700	C_ST	t0,UNIT(0)(a0)
701	C_ST	t1,UNIT(1)(a0)
702	C_ST	REG2,UNIT(2)(a0)
703	C_ST	REG3,UNIT(3)(a0)
704	C_ST	REG4,UNIT(4)(a0)
705	C_ST	REG5,UNIT(5)(a0)
706	C_ST	REG6,UNIT(6)(a0)
707	C_ST	REG7,UNIT(7)(a0)
708	C_LDHI	t0,UNIT(8)(a1)
709	C_LDHI	t1,UNIT(9)(a1)
710	C_LDHI	REG2,UNIT(10)(a1)
711	C_LDHI	REG3,UNIT(11)(a1)
712	C_LDHI	REG4,UNIT(12)(a1)
713	C_LDHI	REG5,UNIT(13)(a1)
714	C_LDHI	REG6,UNIT(14)(a1)
715	C_LDHI	REG7,UNIT(15)(a1)
716	C_LDLO	t0,UNITM1(9)(a1)
717	C_LDLO	t1,UNITM1(10)(a1)
718	C_LDLO	REG2,UNITM1(11)(a1)
719	C_LDLO	REG3,UNITM1(12)(a1)
720	C_LDLO	REG4,UNITM1(13)(a1)
721	C_LDLO	REG5,UNITM1(14)(a1)
722	C_LDLO	REG6,UNITM1(15)(a1)
723	C_LDLO	REG7,UNITM1(16)(a1)
724        PREFETCH_FOR_LOAD (5, a1)
725	C_ST	t0,UNIT(8)(a0)
726	C_ST	t1,UNIT(9)(a0)
727	C_ST	REG2,UNIT(10)(a0)
728	C_ST	REG3,UNIT(11)(a0)
729	C_ST	REG4,UNIT(12)(a0)
730	C_ST	REG5,UNIT(13)(a0)
731	C_ST	REG6,UNIT(14)(a0)
732	C_ST	REG7,UNIT(15)(a0)
733	PTR_ADDIU a0,a0,UNIT(16)	/* adding 64/128 to dest */
734	bne	a0,a3,L(ua_loop16w)
735	PTR_ADDIU a1,a1,UNIT(16)	/* adding 64/128 to src */
736	move	a2,t8
737
738/* Here we have src and dest word-aligned but less than 64-bytes or
739 * 128 bytes to go.  Check for a 32(64) byte chunk and copy if there
740 * is one.  Otherwise jump down to L(ua_chk1w) to handle the tail end of
741 * the copy.  */
742
743L(ua_chkw):
744	PREFETCH_FOR_LOAD (0, a1)
745	andi	t8,a2,NSIZEMASK	  /* Is there a 32-byte/64-byte chunk.  */
746				  /* t8 is the reminder count past 32-bytes */
747	beq	a2,t8,L(ua_chk1w) /* When a2=t8, no 32-byte chunk */
748	nop
749	C_LDHI	t0,UNIT(0)(a1)
750	C_LDHI	t1,UNIT(1)(a1)
751	C_LDHI	REG2,UNIT(2)(a1)
752	C_LDHI	REG3,UNIT(3)(a1)
753	C_LDHI	REG4,UNIT(4)(a1)
754	C_LDHI	REG5,UNIT(5)(a1)
755	C_LDHI	REG6,UNIT(6)(a1)
756	C_LDHI	REG7,UNIT(7)(a1)
757	C_LDLO	t0,UNITM1(1)(a1)
758	C_LDLO	t1,UNITM1(2)(a1)
759	C_LDLO	REG2,UNITM1(3)(a1)
760	C_LDLO	REG3,UNITM1(4)(a1)
761	C_LDLO	REG4,UNITM1(5)(a1)
762	C_LDLO	REG5,UNITM1(6)(a1)
763	C_LDLO	REG6,UNITM1(7)(a1)
764	C_LDLO	REG7,UNITM1(8)(a1)
765	PTR_ADDIU a1,a1,UNIT(8)
766	C_ST	t0,UNIT(0)(a0)
767	C_ST	t1,UNIT(1)(a0)
768	C_ST	REG2,UNIT(2)(a0)
769	C_ST	REG3,UNIT(3)(a0)
770	C_ST	REG4,UNIT(4)(a0)
771	C_ST	REG5,UNIT(5)(a0)
772	C_ST	REG6,UNIT(6)(a0)
773	C_ST	REG7,UNIT(7)(a0)
774	PTR_ADDIU a0,a0,UNIT(8)
775/*
776 * Here we have less than 32(64) bytes to copy.  Set up for a loop to
777 * copy one word (or double word) at a time.
778 */
779L(ua_chk1w):
780	andi	a2,t8,(NSIZE-1)	/* a2 is the reminder past one (d)word chunks */
781	beq	a2,t8,L(ua_smallCopy)
782	PTR_SUBU a3,t8,a2	/* a3 is count of bytes in one (d)word chunks */
783	PTR_ADDU a3,a0,a3	/* a3 is the dst address after loop */
784
785/* copying in words (4-byte or 8-byte chunks) */
786L(ua_wordCopy_loop):
787	C_LDHI	v1,UNIT(0)(a1)
788	C_LDLO	v1,UNITM1(1)(a1)
789	PTR_ADDIU a0,a0,UNIT(1)
790	PTR_ADDIU a1,a1,UNIT(1)
791	bne	a0,a3,L(ua_wordCopy_loop)
792	C_ST	v1,UNIT(-1)(a0)
793
794/* Copy the last 8 (or 16) bytes */
795L(ua_smallCopy):
796	beqz	a2,L(leave)
797	PTR_ADDU a3,a0,a2	/* a3 is the last dst address */
798L(ua_smallCopy_loop):
799	lb	v1,0(a1)
800	PTR_ADDIU a0,a0,1
801	PTR_ADDIU a1,a1,1
802	bne	a0,a3,L(ua_smallCopy_loop)
803	sb	v1,-1(a0)
804
805	j	ra
806	nop
807
808#else /* R6_CODE */
809
810# ifdef __MIPSEB
811#  define SWAP_REGS(X,Y) X, Y
812#  define ALIGN_OFFSET(N) (N)
813# else
814#  define SWAP_REGS(X,Y) Y, X
815#  define ALIGN_OFFSET(N) (NSIZE-N)
816# endif
817# define R6_UNALIGNED_WORD_COPY(BYTEOFFSET) \
818	andi	REG7, a2, (NSIZE-1);/* REG7 is # of bytes to by bytes.     */ \
819	beq	REG7, a2, L(lastb); /* Check for bytes to copy by word	   */ \
820	PTR_SUBU a3, a2, REG7;	/* a3 is number of bytes to be copied in   */ \
821				/* (d)word chunks.			   */ \
822	move	a2, REG7;	/* a2 is # of bytes to copy byte by byte   */ \
823				/* after word loop is finished.		   */ \
824	PTR_ADDU REG6, a0, a3;	/* REG6 is the dst address after loop.	   */ \
825	PTR_SUBU REG2, a1, t8;	/* REG2 is the aligned src address.	   */ \
826	PTR_ADDU a1, a1, a3;	/* a1 is addr of source after word loop.   */ \
827	C_LD	t0, UNIT(0)(REG2);  /* Load first part of source.	   */ \
828L(r6_ua_wordcopy##BYTEOFFSET):						      \
829	C_LD	t1, UNIT(1)(REG2);  /* Load second part of source.	   */ \
830	C_ALIGN	REG3, SWAP_REGS(t1,t0), ALIGN_OFFSET(BYTEOFFSET);	      \
831	PTR_ADDIU a0, a0, UNIT(1);  /* Increment destination pointer.	   */ \
832	PTR_ADDIU REG2, REG2, UNIT(1); /* Increment aligned source pointer.*/ \
833	move	t0, t1;		/* Move second part of source to first.	   */ \
834	bne	a0, REG6,L(r6_ua_wordcopy##BYTEOFFSET);			      \
835	C_ST	REG3, UNIT(-1)(a0);					      \
836	j	L(lastb);						      \
837	nop
838
839	/* We are generating R6 code, the destination is 4 byte aligned and
840	   the source is not 4 byte aligned. t8 is 1, 2, or 3 depending on the
841           alignment of the source.  */
842
843L(r6_unaligned1):
844	R6_UNALIGNED_WORD_COPY(1)
845L(r6_unaligned2):
846	R6_UNALIGNED_WORD_COPY(2)
847L(r6_unaligned3):
848	R6_UNALIGNED_WORD_COPY(3)
849# ifdef USE_DOUBLE
850L(r6_unaligned4):
851	R6_UNALIGNED_WORD_COPY(4)
852L(r6_unaligned5):
853	R6_UNALIGNED_WORD_COPY(5)
854L(r6_unaligned6):
855	R6_UNALIGNED_WORD_COPY(6)
856L(r6_unaligned7):
857	R6_UNALIGNED_WORD_COPY(7)
858# endif
859#endif /* R6_CODE */
860
861	.set	at
862	.set	reorder
863END(MEMCPY_NAME)
864#ifndef ANDROID_CHANGES
865# ifdef _LIBC
866libc_hidden_builtin_def (MEMCPY_NAME)
867# endif
868#endif
869