1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acos": 5float: 1 6ldouble: 1 7 8Function: "acos_downward": 9double: 1 10float: 1 11ldouble: 1 12 13Function: "acos_towardzero": 14double: 1 15float: 1 16ldouble: 1 17 18Function: "acos_upward": 19double: 1 20float: 1 21ldouble: 1 22 23Function: "acosh": 24double: 2 25float: 2 26ldouble: 2 27 28Function: "acosh_downward": 29double: 2 30float: 2 31ldouble: 3 32 33Function: "acosh_towardzero": 34double: 2 35float: 2 36ldouble: 2 37 38Function: "acosh_upward": 39double: 2 40float: 2 41ldouble: 2 42 43Function: "asin": 44float: 1 45ldouble: 1 46 47Function: "asin_downward": 48double: 1 49float: 1 50ldouble: 2 51 52Function: "asin_towardzero": 53double: 1 54float: 1 55ldouble: 1 56 57Function: "asin_upward": 58double: 1 59float: 1 60ldouble: 2 61 62Function: "asinh": 63double: 1 64float: 2 65ldouble: 3 66 67Function: "asinh_downward": 68double: 3 69float: 3 70ldouble: 4 71 72Function: "asinh_towardzero": 73double: 2 74float: 2 75ldouble: 2 76 77Function: "asinh_upward": 78double: 3 79float: 3 80ldouble: 4 81 82Function: "atan": 83float: 1 84ldouble: 1 85 86Function: "atan2": 87float: 1 88ldouble: 1 89 90Function: "atan2_downward": 91double: 1 92float: 2 93ldouble: 2 94 95Function: "atan2_towardzero": 96double: 1 97float: 2 98ldouble: 3 99 100Function: "atan2_upward": 101double: 1 102float: 1 103ldouble: 2 104 105Function: "atan_downward": 106double: 1 107float: 2 108ldouble: 2 109 110Function: "atan_towardzero": 111double: 1 112float: 1 113ldouble: 1 114 115Function: "atan_upward": 116double: 1 117float: 2 118ldouble: 2 119 120Function: "atanh": 121double: 2 122float: 2 123ldouble: 3 124 125Function: "atanh_downward": 126double: 3 127float: 3 128ldouble: 4 129 130Function: "atanh_towardzero": 131double: 2 132float: 2 133ldouble: 2 134 135Function: "atanh_upward": 136double: 3 137float: 3 138ldouble: 4 139 140Function: "cabs": 141double: 1 142ldouble: 1 143 144Function: "cabs_downward": 145double: 1 146ldouble: 1 147 148Function: "cabs_towardzero": 149double: 1 150ldouble: 1 151 152Function: "cabs_upward": 153double: 1 154ldouble: 1 155 156Function: Real part of "cacos": 157double: 1 158float: 2 159ldouble: 2 160 161Function: Imaginary part of "cacos": 162double: 2 163float: 2 164ldouble: 2 165 166Function: Real part of "cacos_downward": 167double: 3 168float: 2 169ldouble: 3 170 171Function: Imaginary part of "cacos_downward": 172double: 5 173float: 3 174ldouble: 6 175 176Function: Real part of "cacos_towardzero": 177double: 3 178float: 2 179ldouble: 3 180 181Function: Imaginary part of "cacos_towardzero": 182double: 4 183float: 2 184ldouble: 5 185 186Function: Real part of "cacos_upward": 187double: 2 188float: 2 189ldouble: 3 190 191Function: Imaginary part of "cacos_upward": 192double: 5 193float: 5 194ldouble: 7 195 196Function: Real part of "cacosh": 197double: 2 198float: 2 199ldouble: 2 200 201Function: Imaginary part of "cacosh": 202double: 1 203float: 2 204ldouble: 2 205 206Function: Real part of "cacosh_downward": 207double: 4 208float: 2 209ldouble: 5 210 211Function: Imaginary part of "cacosh_downward": 212double: 3 213float: 3 214ldouble: 4 215 216Function: Real part of "cacosh_towardzero": 217double: 4 218float: 2 219ldouble: 5 220 221Function: Imaginary part of "cacosh_towardzero": 222double: 3 223float: 2 224ldouble: 3 225 226Function: Real part of "cacosh_upward": 227double: 4 228float: 3 229ldouble: 6 230 231Function: Imaginary part of "cacosh_upward": 232double: 3 233float: 2 234ldouble: 4 235 236Function: "carg": 237float: 1 238ldouble: 2 239 240Function: "carg_downward": 241double: 1 242float: 2 243ldouble: 2 244 245Function: "carg_towardzero": 246double: 1 247float: 2 248ldouble: 3 249 250Function: "carg_upward": 251double: 1 252float: 1 253ldouble: 2 254 255Function: Real part of "casin": 256double: 1 257float: 1 258ldouble: 2 259 260Function: Imaginary part of "casin": 261double: 2 262float: 2 263ldouble: 2 264 265Function: Real part of "casin_downward": 266double: 3 267float: 2 268ldouble: 3 269 270Function: Imaginary part of "casin_downward": 271double: 5 272float: 3 273ldouble: 6 274 275Function: Real part of "casin_towardzero": 276double: 3 277float: 1 278ldouble: 3 279 280Function: Imaginary part of "casin_towardzero": 281double: 4 282float: 2 283ldouble: 5 284 285Function: Real part of "casin_upward": 286double: 3 287float: 2 288ldouble: 3 289 290Function: Imaginary part of "casin_upward": 291double: 5 292float: 5 293ldouble: 7 294 295Function: Real part of "casinh": 296double: 2 297float: 2 298ldouble: 2 299 300Function: Imaginary part of "casinh": 301double: 1 302float: 1 303ldouble: 2 304 305Function: Real part of "casinh_downward": 306double: 5 307float: 3 308ldouble: 6 309 310Function: Imaginary part of "casinh_downward": 311double: 3 312float: 2 313ldouble: 3 314 315Function: Real part of "casinh_towardzero": 316double: 4 317float: 2 318ldouble: 5 319 320Function: Imaginary part of "casinh_towardzero": 321double: 3 322float: 1 323ldouble: 3 324 325Function: Real part of "casinh_upward": 326double: 5 327float: 5 328ldouble: 7 329 330Function: Imaginary part of "casinh_upward": 331double: 3 332float: 2 333ldouble: 3 334 335Function: Real part of "catan": 336double: 1 337float: 1 338ldouble: 1 339 340Function: Imaginary part of "catan": 341double: 1 342float: 1 343ldouble: 1 344 345Function: Real part of "catan_downward": 346double: 1 347float: 2 348ldouble: 2 349 350Function: Imaginary part of "catan_downward": 351double: 2 352float: 2 353ldouble: 2 354 355Function: Real part of "catan_towardzero": 356double: 1 357float: 2 358ldouble: 2 359 360Function: Imaginary part of "catan_towardzero": 361double: 2 362float: 2 363ldouble: 2 364 365Function: Real part of "catan_upward": 366double: 1 367float: 1 368ldouble: 2 369 370Function: Imaginary part of "catan_upward": 371double: 2 372float: 2 373ldouble: 3 374 375Function: Real part of "catanh": 376double: 1 377float: 1 378ldouble: 1 379 380Function: Imaginary part of "catanh": 381double: 1 382float: 1 383ldouble: 1 384 385Function: Real part of "catanh_downward": 386double: 2 387float: 2 388ldouble: 2 389 390Function: Imaginary part of "catanh_downward": 391double: 1 392float: 2 393ldouble: 2 394 395Function: Real part of "catanh_towardzero": 396double: 2 397float: 2 398ldouble: 2 399 400Function: Imaginary part of "catanh_towardzero": 401double: 1 402float: 2 403ldouble: 2 404 405Function: Real part of "catanh_upward": 406double: 4 407float: 4 408ldouble: 4 409 410Function: Imaginary part of "catanh_upward": 411double: 1 412float: 1 413ldouble: 2 414 415Function: "cbrt": 416double: 3 417float: 1 418ldouble: 1 419 420Function: "cbrt_downward": 421double: 4 422float: 1 423ldouble: 1 424 425Function: "cbrt_towardzero": 426double: 3 427float: 1 428ldouble: 1 429 430Function: "cbrt_upward": 431double: 5 432float: 1 433ldouble: 1 434 435Function: Real part of "ccos": 436double: 1 437float: 1 438ldouble: 1 439 440Function: Imaginary part of "ccos": 441double: 1 442float: 1 443ldouble: 1 444 445Function: Real part of "ccos_downward": 446double: 1 447float: 1 448ldouble: 2 449 450Function: Imaginary part of "ccos_downward": 451double: 3 452float: 3 453ldouble: 2 454 455Function: Real part of "ccos_towardzero": 456double: 1 457float: 2 458ldouble: 2 459 460Function: Imaginary part of "ccos_towardzero": 461double: 3 462float: 3 463ldouble: 2 464 465Function: Real part of "ccos_upward": 466double: 1 467float: 2 468ldouble: 3 469 470Function: Imaginary part of "ccos_upward": 471double: 2 472float: 2 473ldouble: 2 474 475Function: Real part of "ccosh": 476double: 1 477float: 1 478ldouble: 1 479 480Function: Imaginary part of "ccosh": 481double: 1 482float: 1 483ldouble: 1 484 485Function: Real part of "ccosh_downward": 486double: 2 487float: 2 488ldouble: 2 489 490Function: Imaginary part of "ccosh_downward": 491double: 3 492float: 3 493ldouble: 2 494 495Function: Real part of "ccosh_towardzero": 496double: 2 497float: 3 498ldouble: 2 499 500Function: Imaginary part of "ccosh_towardzero": 501double: 3 502float: 3 503ldouble: 2 504 505Function: Real part of "ccosh_upward": 506double: 1 507float: 2 508ldouble: 3 509 510Function: Imaginary part of "ccosh_upward": 511double: 2 512float: 2 513ldouble: 2 514 515Function: Real part of "cexp": 516double: 2 517float: 1 518ldouble: 1 519 520Function: Imaginary part of "cexp": 521double: 1 522float: 2 523ldouble: 1 524 525Function: Real part of "cexp_downward": 526double: 2 527float: 2 528ldouble: 2 529 530Function: Imaginary part of "cexp_downward": 531double: 3 532float: 3 533ldouble: 2 534 535Function: Real part of "cexp_towardzero": 536double: 2 537float: 2 538ldouble: 2 539 540Function: Imaginary part of "cexp_towardzero": 541double: 3 542float: 3 543ldouble: 2 544 545Function: Real part of "cexp_upward": 546double: 1 547float: 2 548ldouble: 3 549 550Function: Imaginary part of "cexp_upward": 551double: 3 552float: 2 553ldouble: 3 554 555Function: Real part of "clog": 556double: 3 557float: 3 558ldouble: 2 559 560Function: Imaginary part of "clog": 561float: 1 562ldouble: 1 563 564Function: Real part of "clog10": 565double: 3 566float: 4 567ldouble: 2 568 569Function: Imaginary part of "clog10": 570double: 2 571float: 2 572ldouble: 2 573 574Function: Real part of "clog10_downward": 575double: 5 576float: 5 577ldouble: 3 578 579Function: Imaginary part of "clog10_downward": 580double: 2 581float: 4 582ldouble: 3 583 584Function: Real part of "clog10_towardzero": 585double: 5 586float: 5 587ldouble: 4 588 589Function: Imaginary part of "clog10_towardzero": 590double: 2 591float: 4 592ldouble: 3 593 594Function: Real part of "clog10_upward": 595double: 6 596float: 5 597ldouble: 4 598 599Function: Imaginary part of "clog10_upward": 600double: 2 601float: 4 602ldouble: 3 603 604Function: Real part of "clog_downward": 605double: 4 606float: 3 607ldouble: 3 608 609Function: Imaginary part of "clog_downward": 610double: 1 611float: 2 612ldouble: 2 613 614Function: Real part of "clog_towardzero": 615double: 4 616float: 4 617ldouble: 3 618 619Function: Imaginary part of "clog_towardzero": 620double: 1 621float: 3 622ldouble: 2 623 624Function: Real part of "clog_upward": 625double: 4 626float: 3 627ldouble: 4 628 629Function: Imaginary part of "clog_upward": 630double: 1 631float: 2 632ldouble: 2 633 634Function: "cos": 635double: 1 636float: 1 637ldouble: 1 638 639Function: "cos_downward": 640double: 1 641float: 1 642ldouble: 3 643 644Function: "cos_towardzero": 645double: 1 646float: 1 647ldouble: 1 648 649Function: "cos_upward": 650double: 1 651float: 1 652ldouble: 2 653 654Function: "cosh": 655double: 1 656float: 2 657ldouble: 1 658 659Function: "cosh_downward": 660double: 2 661float: 1 662ldouble: 2 663 664Function: "cosh_towardzero": 665double: 2 666float: 1 667ldouble: 2 668 669Function: "cosh_upward": 670double: 2 671float: 2 672ldouble: 3 673 674Function: Real part of "cpow": 675double: 2 676float: 5 677ldouble: 4 678 679Function: Imaginary part of "cpow": 680float: 2 681ldouble: 1 682 683Function: Real part of "cpow_downward": 684double: 5 685float: 8 686ldouble: 6 687 688Function: Imaginary part of "cpow_downward": 689double: 1 690float: 2 691ldouble: 2 692 693Function: Real part of "cpow_towardzero": 694double: 5 695float: 8 696ldouble: 6 697 698Function: Imaginary part of "cpow_towardzero": 699double: 1 700float: 2 701ldouble: 2 702 703Function: Real part of "cpow_upward": 704double: 4 705float: 1 706ldouble: 3 707 708Function: Imaginary part of "cpow_upward": 709double: 1 710float: 2 711ldouble: 2 712 713Function: Real part of "csin": 714double: 1 715float: 1 716ldouble: 1 717 718Function: Imaginary part of "csin": 719ldouble: 1 720 721Function: Real part of "csin_downward": 722double: 3 723float: 3 724ldouble: 2 725 726Function: Imaginary part of "csin_downward": 727double: 1 728float: 1 729ldouble: 2 730 731Function: Real part of "csin_towardzero": 732double: 3 733float: 3 734ldouble: 2 735 736Function: Imaginary part of "csin_towardzero": 737double: 1 738float: 1 739ldouble: 2 740 741Function: Real part of "csin_upward": 742double: 2 743float: 2 744ldouble: 2 745 746Function: Imaginary part of "csin_upward": 747double: 1 748float: 2 749ldouble: 3 750 751Function: Real part of "csinh": 752float: 1 753ldouble: 1 754 755Function: Imaginary part of "csinh": 756double: 1 757float: 1 758ldouble: 1 759 760Function: Real part of "csinh_downward": 761double: 2 762float: 1 763ldouble: 2 764 765Function: Imaginary part of "csinh_downward": 766double: 3 767float: 3 768ldouble: 2 769 770Function: Real part of "csinh_towardzero": 771double: 2 772float: 2 773ldouble: 2 774 775Function: Imaginary part of "csinh_towardzero": 776double: 3 777float: 3 778ldouble: 2 779 780Function: Real part of "csinh_upward": 781double: 1 782float: 2 783ldouble: 3 784 785Function: Imaginary part of "csinh_upward": 786double: 2 787float: 2 788ldouble: 2 789 790Function: Real part of "csqrt": 791double: 2 792float: 2 793ldouble: 2 794 795Function: Imaginary part of "csqrt": 796double: 2 797float: 2 798ldouble: 2 799 800Function: Real part of "csqrt_downward": 801double: 5 802float: 4 803ldouble: 4 804 805Function: Imaginary part of "csqrt_downward": 806double: 4 807float: 3 808ldouble: 3 809 810Function: Real part of "csqrt_towardzero": 811double: 4 812float: 3 813ldouble: 3 814 815Function: Imaginary part of "csqrt_towardzero": 816double: 4 817float: 3 818ldouble: 3 819 820Function: Real part of "csqrt_upward": 821double: 5 822float: 4 823ldouble: 4 824 825Function: Imaginary part of "csqrt_upward": 826double: 3 827float: 3 828ldouble: 3 829 830Function: Real part of "ctan": 831double: 1 832float: 1 833ldouble: 3 834 835Function: Imaginary part of "ctan": 836double: 2 837float: 2 838ldouble: 3 839 840Function: Real part of "ctan_downward": 841double: 6 842float: 5 843ldouble: 4 844 845Function: Imaginary part of "ctan_downward": 846double: 2 847float: 2 848ldouble: 5 849 850Function: Real part of "ctan_towardzero": 851double: 5 852float: 2 853ldouble: 4 854 855Function: Imaginary part of "ctan_towardzero": 856double: 2 857float: 2 858ldouble: 5 859 860Function: Real part of "ctan_upward": 861double: 2 862float: 4 863ldouble: 5 864 865Function: Imaginary part of "ctan_upward": 866double: 2 867float: 2 868ldouble: 5 869 870Function: Real part of "ctanh": 871double: 2 872float: 2 873ldouble: 3 874 875Function: Imaginary part of "ctanh": 876double: 2 877float: 1 878ldouble: 3 879 880Function: Real part of "ctanh_downward": 881double: 4 882float: 2 883ldouble: 5 884 885Function: Imaginary part of "ctanh_downward": 886double: 6 887float: 5 888ldouble: 4 889 890Function: Real part of "ctanh_towardzero": 891double: 2 892float: 2 893ldouble: 5 894 895Function: Imaginary part of "ctanh_towardzero": 896double: 5 897float: 2 898ldouble: 3 899 900Function: Real part of "ctanh_upward": 901double: 2 902float: 2 903ldouble: 5 904 905Function: Imaginary part of "ctanh_upward": 906double: 2 907float: 3 908ldouble: 5 909 910Function: "erf": 911double: 1 912float: 1 913ldouble: 1 914 915Function: "erf_downward": 916double: 1 917float: 1 918ldouble: 2 919 920Function: "erf_towardzero": 921double: 1 922float: 1 923ldouble: 1 924 925Function: "erf_upward": 926double: 1 927float: 1 928ldouble: 2 929 930Function: "erfc": 931double: 2 932float: 2 933ldouble: 2 934 935Function: "erfc_downward": 936double: 4 937float: 4 938ldouble: 5 939 940Function: "erfc_towardzero": 941double: 3 942float: 3 943ldouble: 4 944 945Function: "erfc_upward": 946double: 4 947float: 4 948ldouble: 5 949 950Function: "exp": 951float: 1 952ldouble: 1 953 954Function: "exp10": 955double: 2 956ldouble: 2 957 958Function: "exp10_downward": 959double: 3 960float: 1 961ldouble: 3 962 963Function: "exp10_towardzero": 964double: 3 965float: 1 966ldouble: 3 967 968Function: "exp10_upward": 969double: 2 970float: 1 971ldouble: 3 972 973Function: "exp2": 974double: 1 975ldouble: 1 976 977Function: "exp2_downward": 978double: 1 979ldouble: 1 980 981Function: "exp2_towardzero": 982double: 1 983ldouble: 1 984 985Function: "exp2_upward": 986double: 1 987float: 1 988ldouble: 2 989 990Function: "exp_downward": 991double: 1 992float: 1 993 994Function: "exp_towardzero": 995double: 1 996float: 1 997 998Function: "exp_upward": 999double: 1 1000float: 1 1001 1002Function: "expm1": 1003double: 1 1004float: 1 1005ldouble: 1 1006 1007Function: "expm1_downward": 1008double: 1 1009float: 1 1010ldouble: 2 1011 1012Function: "expm1_towardzero": 1013double: 1 1014float: 2 1015ldouble: 4 1016 1017Function: "expm1_upward": 1018double: 1 1019float: 1 1020ldouble: 3 1021 1022Function: "gamma": 1023double: 3 1024float: 3 1025ldouble: 5 1026 1027Function: "gamma_downward": 1028double: 4 1029float: 4 1030ldouble: 8 1031 1032Function: "gamma_towardzero": 1033double: 4 1034float: 3 1035ldouble: 5 1036 1037Function: "gamma_upward": 1038double: 4 1039float: 5 1040ldouble: 8 1041 1042Function: "hypot": 1043double: 1 1044ldouble: 1 1045 1046Function: "hypot_downward": 1047double: 1 1048ldouble: 1 1049 1050Function: "hypot_towardzero": 1051double: 1 1052ldouble: 1 1053 1054Function: "hypot_upward": 1055double: 1 1056ldouble: 1 1057 1058Function: "j0": 1059double: 2 1060float: 8 1061ldouble: 2 1062 1063Function: "j0_downward": 1064double: 2 1065float: 4 1066ldouble: 4 1067 1068Function: "j0_towardzero": 1069double: 5 1070float: 6 1071ldouble: 2 1072 1073Function: "j0_upward": 1074double: 4 1075float: 5 1076ldouble: 5 1077 1078Function: "j1": 1079double: 2 1080float: 8 1081ldouble: 4 1082 1083Function: "j1_downward": 1084double: 3 1085float: 5 1086ldouble: 4 1087 1088Function: "j1_towardzero": 1089double: 3 1090float: 2 1091ldouble: 4 1092 1093Function: "j1_upward": 1094double: 3 1095float: 4 1096ldouble: 3 1097 1098Function: "jn": 1099double: 4 1100float: 4 1101ldouble: 7 1102 1103Function: "jn_downward": 1104double: 4 1105float: 5 1106ldouble: 8 1107 1108Function: "jn_towardzero": 1109double: 4 1110float: 5 1111ldouble: 8 1112 1113Function: "jn_upward": 1114double: 5 1115float: 4 1116ldouble: 7 1117 1118Function: "lgamma": 1119double: 3 1120float: 3 1121ldouble: 5 1122 1123Function: "lgamma_downward": 1124double: 4 1125float: 4 1126ldouble: 8 1127 1128Function: "lgamma_towardzero": 1129double: 4 1130float: 3 1131ldouble: 5 1132 1133Function: "lgamma_upward": 1134double: 4 1135float: 5 1136ldouble: 8 1137 1138Function: "log": 1139ldouble: 1 1140 1141Function: "log10": 1142double: 2 1143float: 2 1144ldouble: 1 1145 1146Function: "log10_downward": 1147double: 2 1148float: 3 1149ldouble: 1 1150 1151Function: "log10_towardzero": 1152double: 2 1153float: 1 1154ldouble: 1 1155 1156Function: "log10_upward": 1157double: 2 1158float: 2 1159ldouble: 1 1160 1161Function: "log1p": 1162double: 1 1163float: 1 1164ldouble: 2 1165 1166Function: "log1p_downward": 1167double: 1 1168float: 2 1169ldouble: 3 1170 1171Function: "log1p_towardzero": 1172double: 2 1173float: 2 1174ldouble: 3 1175 1176Function: "log1p_upward": 1177double: 2 1178float: 2 1179ldouble: 2 1180 1181Function: "log2": 1182double: 1 1183float: 1 1184ldouble: 2 1185 1186Function: "log2_downward": 1187double: 3 1188ldouble: 3 1189 1190Function: "log2_towardzero": 1191double: 2 1192ldouble: 1 1193 1194Function: "log2_upward": 1195double: 3 1196ldouble: 1 1197 1198Function: "log_downward": 1199ldouble: 1 1200 1201Function: "log_towardzero": 1202ldouble: 2 1203 1204Function: "log_upward": 1205double: 1 1206ldouble: 2 1207 1208Function: "pow": 1209double: 1 1210ldouble: 2 1211 1212Function: "pow_downward": 1213double: 1 1214float: 1 1215ldouble: 2 1216 1217Function: "pow_towardzero": 1218double: 1 1219float: 1 1220ldouble: 2 1221 1222Function: "pow_upward": 1223double: 1 1224float: 1 1225ldouble: 2 1226 1227Function: "sin": 1228double: 1 1229float: 1 1230ldouble: 1 1231 1232Function: "sin_downward": 1233double: 1 1234float: 1 1235ldouble: 3 1236 1237Function: "sin_towardzero": 1238double: 1 1239float: 1 1240ldouble: 2 1241 1242Function: "sin_upward": 1243double: 1 1244float: 1 1245ldouble: 3 1246 1247Function: "sincos": 1248double: 1 1249ldouble: 1 1250 1251Function: "sincos_downward": 1252double: 1 1253float: 1 1254ldouble: 3 1255 1256Function: "sincos_towardzero": 1257double: 1 1258float: 1 1259ldouble: 2 1260 1261Function: "sincos_upward": 1262double: 1 1263float: 1 1264ldouble: 3 1265 1266Function: "sinh": 1267double: 2 1268float: 2 1269ldouble: 2 1270 1271Function: "sinh_downward": 1272double: 3 1273float: 3 1274ldouble: 3 1275 1276Function: "sinh_towardzero": 1277double: 2 1278float: 2 1279ldouble: 3 1280 1281Function: "sinh_upward": 1282double: 3 1283float: 3 1284ldouble: 4 1285 1286Function: "tan": 1287float: 1 1288ldouble: 1 1289 1290Function: "tan_downward": 1291double: 1 1292float: 2 1293ldouble: 1 1294 1295Function: "tan_towardzero": 1296double: 1 1297float: 1 1298ldouble: 1 1299 1300Function: "tan_upward": 1301double: 1 1302float: 1 1303ldouble: 1 1304 1305Function: "tanh": 1306double: 2 1307float: 2 1308ldouble: 2 1309 1310Function: "tanh_downward": 1311double: 3 1312float: 3 1313ldouble: 4 1314 1315Function: "tanh_towardzero": 1316double: 2 1317float: 2 1318ldouble: 3 1319 1320Function: "tanh_upward": 1321double: 3 1322float: 3 1323ldouble: 3 1324 1325Function: "tgamma": 1326double: 5 1327float: 8 1328ldouble: 4 1329 1330Function: "tgamma_downward": 1331double: 5 1332float: 7 1333ldouble: 5 1334 1335Function: "tgamma_towardzero": 1336double: 5 1337float: 7 1338ldouble: 5 1339 1340Function: "tgamma_upward": 1341double: 4 1342float: 8 1343ldouble: 4 1344 1345Function: "y0": 1346double: 2 1347float: 6 1348ldouble: 3 1349 1350Function: "y0_downward": 1351double: 3 1352float: 4 1353ldouble: 4 1354 1355Function: "y0_towardzero": 1356double: 3 1357float: 3 1358ldouble: 3 1359 1360Function: "y0_upward": 1361double: 2 1362float: 5 1363ldouble: 3 1364 1365Function: "y1": 1366double: 3 1367float: 2 1368ldouble: 2 1369 1370Function: "y1_downward": 1371double: 3 1372float: 2 1373ldouble: 4 1374 1375Function: "y1_towardzero": 1376double: 3 1377float: 2 1378ldouble: 2 1379 1380Function: "y1_upward": 1381double: 5 1382float: 2 1383ldouble: 5 1384 1385Function: "yn": 1386double: 3 1387float: 3 1388ldouble: 5 1389 1390Function: "yn_downward": 1391double: 3 1392float: 4 1393ldouble: 5 1394 1395Function: "yn_towardzero": 1396double: 3 1397float: 3 1398ldouble: 5 1399 1400Function: "yn_upward": 1401double: 4 1402float: 5 1403ldouble: 5 1404 1405# end of automatic generation 1406