1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5float: 1
6ldouble: 1
7
8Function: "acos_downward":
9double: 1
10float: 1
11ldouble: 1
12
13Function: "acos_towardzero":
14double: 1
15float: 1
16ldouble: 1
17
18Function: "acos_upward":
19double: 1
20float: 1
21ldouble: 1
22
23Function: "acosh":
24double: 2
25float: 2
26ldouble: 2
27
28Function: "acosh_downward":
29double: 2
30float: 2
31ldouble: 3
32
33Function: "acosh_towardzero":
34double: 2
35float: 2
36ldouble: 2
37
38Function: "acosh_upward":
39double: 2
40float: 2
41ldouble: 2
42
43Function: "asin":
44float: 1
45ldouble: 1
46
47Function: "asin_downward":
48double: 1
49float: 1
50ldouble: 2
51
52Function: "asin_towardzero":
53double: 1
54float: 1
55ldouble: 1
56
57Function: "asin_upward":
58double: 1
59float: 1
60ldouble: 2
61
62Function: "asinh":
63double: 1
64float: 2
65ldouble: 3
66
67Function: "asinh_downward":
68double: 3
69float: 3
70ldouble: 4
71
72Function: "asinh_towardzero":
73double: 2
74float: 2
75ldouble: 2
76
77Function: "asinh_upward":
78double: 3
79float: 3
80ldouble: 4
81
82Function: "atan":
83float: 1
84ldouble: 1
85
86Function: "atan2":
87float: 1
88ldouble: 1
89
90Function: "atan2_downward":
91double: 1
92float: 2
93ldouble: 2
94
95Function: "atan2_towardzero":
96double: 1
97float: 2
98ldouble: 3
99
100Function: "atan2_upward":
101double: 1
102float: 1
103ldouble: 2
104
105Function: "atan_downward":
106double: 1
107float: 2
108ldouble: 2
109
110Function: "atan_towardzero":
111double: 1
112float: 1
113ldouble: 1
114
115Function: "atan_upward":
116double: 1
117float: 2
118ldouble: 2
119
120Function: "atanh":
121double: 2
122float: 2
123ldouble: 3
124
125Function: "atanh_downward":
126double: 3
127float: 3
128ldouble: 4
129
130Function: "atanh_towardzero":
131double: 2
132float: 2
133ldouble: 2
134
135Function: "atanh_upward":
136double: 3
137float: 3
138ldouble: 4
139
140Function: "cabs":
141double: 1
142ldouble: 1
143
144Function: "cabs_downward":
145double: 1
146ldouble: 1
147
148Function: "cabs_towardzero":
149double: 1
150ldouble: 1
151
152Function: "cabs_upward":
153double: 1
154ldouble: 1
155
156Function: Real part of "cacos":
157double: 1
158float: 2
159ldouble: 2
160
161Function: Imaginary part of "cacos":
162double: 2
163float: 2
164ldouble: 2
165
166Function: Real part of "cacos_downward":
167double: 3
168float: 2
169ldouble: 3
170
171Function: Imaginary part of "cacos_downward":
172double: 5
173float: 3
174ldouble: 6
175
176Function: Real part of "cacos_towardzero":
177double: 3
178float: 2
179ldouble: 3
180
181Function: Imaginary part of "cacos_towardzero":
182double: 4
183float: 2
184ldouble: 5
185
186Function: Real part of "cacos_upward":
187double: 2
188float: 2
189ldouble: 3
190
191Function: Imaginary part of "cacos_upward":
192double: 5
193float: 5
194ldouble: 7
195
196Function: Real part of "cacosh":
197double: 2
198float: 2
199ldouble: 2
200
201Function: Imaginary part of "cacosh":
202double: 1
203float: 2
204ldouble: 2
205
206Function: Real part of "cacosh_downward":
207double: 4
208float: 2
209ldouble: 5
210
211Function: Imaginary part of "cacosh_downward":
212double: 3
213float: 3
214ldouble: 4
215
216Function: Real part of "cacosh_towardzero":
217double: 4
218float: 2
219ldouble: 5
220
221Function: Imaginary part of "cacosh_towardzero":
222double: 3
223float: 2
224ldouble: 3
225
226Function: Real part of "cacosh_upward":
227double: 4
228float: 3
229ldouble: 6
230
231Function: Imaginary part of "cacosh_upward":
232double: 3
233float: 2
234ldouble: 4
235
236Function: "carg":
237float: 1
238ldouble: 2
239
240Function: "carg_downward":
241double: 1
242float: 2
243ldouble: 2
244
245Function: "carg_towardzero":
246double: 1
247float: 2
248ldouble: 3
249
250Function: "carg_upward":
251double: 1
252float: 1
253ldouble: 2
254
255Function: Real part of "casin":
256double: 1
257float: 1
258ldouble: 2
259
260Function: Imaginary part of "casin":
261double: 2
262float: 2
263ldouble: 2
264
265Function: Real part of "casin_downward":
266double: 3
267float: 2
268ldouble: 3
269
270Function: Imaginary part of "casin_downward":
271double: 5
272float: 3
273ldouble: 6
274
275Function: Real part of "casin_towardzero":
276double: 3
277float: 1
278ldouble: 3
279
280Function: Imaginary part of "casin_towardzero":
281double: 4
282float: 2
283ldouble: 5
284
285Function: Real part of "casin_upward":
286double: 3
287float: 2
288ldouble: 3
289
290Function: Imaginary part of "casin_upward":
291double: 5
292float: 5
293ldouble: 7
294
295Function: Real part of "casinh":
296double: 2
297float: 2
298ldouble: 2
299
300Function: Imaginary part of "casinh":
301double: 1
302float: 1
303ldouble: 2
304
305Function: Real part of "casinh_downward":
306double: 5
307float: 3
308ldouble: 6
309
310Function: Imaginary part of "casinh_downward":
311double: 3
312float: 2
313ldouble: 3
314
315Function: Real part of "casinh_towardzero":
316double: 4
317float: 2
318ldouble: 5
319
320Function: Imaginary part of "casinh_towardzero":
321double: 3
322float: 1
323ldouble: 3
324
325Function: Real part of "casinh_upward":
326double: 5
327float: 5
328ldouble: 7
329
330Function: Imaginary part of "casinh_upward":
331double: 3
332float: 2
333ldouble: 3
334
335Function: Real part of "catan":
336double: 1
337float: 1
338ldouble: 1
339
340Function: Imaginary part of "catan":
341double: 1
342float: 1
343ldouble: 1
344
345Function: Real part of "catan_downward":
346double: 1
347float: 2
348ldouble: 2
349
350Function: Imaginary part of "catan_downward":
351double: 2
352float: 2
353ldouble: 2
354
355Function: Real part of "catan_towardzero":
356double: 1
357float: 2
358ldouble: 2
359
360Function: Imaginary part of "catan_towardzero":
361double: 2
362float: 2
363ldouble: 2
364
365Function: Real part of "catan_upward":
366double: 1
367float: 1
368ldouble: 2
369
370Function: Imaginary part of "catan_upward":
371double: 2
372float: 2
373ldouble: 3
374
375Function: Real part of "catanh":
376double: 1
377float: 1
378ldouble: 1
379
380Function: Imaginary part of "catanh":
381double: 1
382float: 1
383ldouble: 1
384
385Function: Real part of "catanh_downward":
386double: 2
387float: 2
388ldouble: 2
389
390Function: Imaginary part of "catanh_downward":
391double: 1
392float: 2
393ldouble: 2
394
395Function: Real part of "catanh_towardzero":
396double: 2
397float: 2
398ldouble: 2
399
400Function: Imaginary part of "catanh_towardzero":
401double: 1
402float: 2
403ldouble: 2
404
405Function: Real part of "catanh_upward":
406double: 4
407float: 4
408ldouble: 4
409
410Function: Imaginary part of "catanh_upward":
411double: 1
412float: 1
413ldouble: 2
414
415Function: "cbrt":
416double: 3
417float: 1
418ldouble: 1
419
420Function: "cbrt_downward":
421double: 4
422float: 1
423ldouble: 1
424
425Function: "cbrt_towardzero":
426double: 3
427float: 1
428ldouble: 1
429
430Function: "cbrt_upward":
431double: 5
432float: 1
433ldouble: 1
434
435Function: Real part of "ccos":
436double: 1
437float: 1
438ldouble: 1
439
440Function: Imaginary part of "ccos":
441double: 1
442float: 1
443ldouble: 1
444
445Function: Real part of "ccos_downward":
446double: 1
447float: 1
448ldouble: 2
449
450Function: Imaginary part of "ccos_downward":
451double: 3
452float: 3
453ldouble: 2
454
455Function: Real part of "ccos_towardzero":
456double: 1
457float: 2
458ldouble: 2
459
460Function: Imaginary part of "ccos_towardzero":
461double: 3
462float: 3
463ldouble: 2
464
465Function: Real part of "ccos_upward":
466double: 1
467float: 2
468ldouble: 3
469
470Function: Imaginary part of "ccos_upward":
471double: 2
472float: 2
473ldouble: 2
474
475Function: Real part of "ccosh":
476double: 1
477float: 1
478ldouble: 1
479
480Function: Imaginary part of "ccosh":
481double: 1
482float: 1
483ldouble: 1
484
485Function: Real part of "ccosh_downward":
486double: 2
487float: 2
488ldouble: 2
489
490Function: Imaginary part of "ccosh_downward":
491double: 3
492float: 3
493ldouble: 2
494
495Function: Real part of "ccosh_towardzero":
496double: 2
497float: 3
498ldouble: 2
499
500Function: Imaginary part of "ccosh_towardzero":
501double: 3
502float: 3
503ldouble: 2
504
505Function: Real part of "ccosh_upward":
506double: 1
507float: 2
508ldouble: 3
509
510Function: Imaginary part of "ccosh_upward":
511double: 2
512float: 2
513ldouble: 2
514
515Function: Real part of "cexp":
516double: 2
517float: 1
518ldouble: 1
519
520Function: Imaginary part of "cexp":
521double: 1
522float: 2
523ldouble: 1
524
525Function: Real part of "cexp_downward":
526double: 2
527float: 2
528ldouble: 2
529
530Function: Imaginary part of "cexp_downward":
531double: 3
532float: 3
533ldouble: 2
534
535Function: Real part of "cexp_towardzero":
536double: 2
537float: 2
538ldouble: 2
539
540Function: Imaginary part of "cexp_towardzero":
541double: 3
542float: 3
543ldouble: 2
544
545Function: Real part of "cexp_upward":
546double: 1
547float: 2
548ldouble: 3
549
550Function: Imaginary part of "cexp_upward":
551double: 3
552float: 2
553ldouble: 3
554
555Function: Real part of "clog":
556double: 3
557float: 3
558ldouble: 2
559
560Function: Imaginary part of "clog":
561float: 1
562ldouble: 1
563
564Function: Real part of "clog10":
565double: 3
566float: 4
567ldouble: 2
568
569Function: Imaginary part of "clog10":
570double: 2
571float: 2
572ldouble: 2
573
574Function: Real part of "clog10_downward":
575double: 5
576float: 5
577ldouble: 3
578
579Function: Imaginary part of "clog10_downward":
580double: 2
581float: 4
582ldouble: 3
583
584Function: Real part of "clog10_towardzero":
585double: 5
586float: 5
587ldouble: 4
588
589Function: Imaginary part of "clog10_towardzero":
590double: 2
591float: 4
592ldouble: 3
593
594Function: Real part of "clog10_upward":
595double: 6
596float: 5
597ldouble: 4
598
599Function: Imaginary part of "clog10_upward":
600double: 2
601float: 4
602ldouble: 3
603
604Function: Real part of "clog_downward":
605double: 4
606float: 3
607ldouble: 3
608
609Function: Imaginary part of "clog_downward":
610double: 1
611float: 2
612ldouble: 2
613
614Function: Real part of "clog_towardzero":
615double: 4
616float: 4
617ldouble: 3
618
619Function: Imaginary part of "clog_towardzero":
620double: 1
621float: 3
622ldouble: 2
623
624Function: Real part of "clog_upward":
625double: 4
626float: 3
627ldouble: 4
628
629Function: Imaginary part of "clog_upward":
630double: 1
631float: 2
632ldouble: 2
633
634Function: "cos":
635double: 1
636float: 1
637ldouble: 1
638
639Function: "cos_downward":
640double: 1
641float: 1
642ldouble: 3
643
644Function: "cos_towardzero":
645double: 1
646float: 1
647ldouble: 1
648
649Function: "cos_upward":
650double: 1
651float: 1
652ldouble: 2
653
654Function: "cosh":
655double: 1
656float: 2
657ldouble: 1
658
659Function: "cosh_downward":
660double: 2
661float: 1
662ldouble: 2
663
664Function: "cosh_towardzero":
665double: 2
666float: 1
667ldouble: 2
668
669Function: "cosh_upward":
670double: 2
671float: 2
672ldouble: 3
673
674Function: Real part of "cpow":
675double: 2
676float: 5
677ldouble: 4
678
679Function: Imaginary part of "cpow":
680float: 2
681ldouble: 1
682
683Function: Real part of "cpow_downward":
684double: 5
685float: 8
686ldouble: 6
687
688Function: Imaginary part of "cpow_downward":
689double: 1
690float: 2
691ldouble: 2
692
693Function: Real part of "cpow_towardzero":
694double: 5
695float: 8
696ldouble: 6
697
698Function: Imaginary part of "cpow_towardzero":
699double: 1
700float: 2
701ldouble: 2
702
703Function: Real part of "cpow_upward":
704double: 4
705float: 1
706ldouble: 3
707
708Function: Imaginary part of "cpow_upward":
709double: 1
710float: 2
711ldouble: 2
712
713Function: Real part of "csin":
714double: 1
715float: 1
716ldouble: 1
717
718Function: Imaginary part of "csin":
719ldouble: 1
720
721Function: Real part of "csin_downward":
722double: 3
723float: 3
724ldouble: 2
725
726Function: Imaginary part of "csin_downward":
727double: 1
728float: 1
729ldouble: 2
730
731Function: Real part of "csin_towardzero":
732double: 3
733float: 3
734ldouble: 2
735
736Function: Imaginary part of "csin_towardzero":
737double: 1
738float: 1
739ldouble: 2
740
741Function: Real part of "csin_upward":
742double: 2
743float: 2
744ldouble: 2
745
746Function: Imaginary part of "csin_upward":
747double: 1
748float: 2
749ldouble: 3
750
751Function: Real part of "csinh":
752float: 1
753ldouble: 1
754
755Function: Imaginary part of "csinh":
756double: 1
757float: 1
758ldouble: 1
759
760Function: Real part of "csinh_downward":
761double: 2
762float: 1
763ldouble: 2
764
765Function: Imaginary part of "csinh_downward":
766double: 3
767float: 3
768ldouble: 2
769
770Function: Real part of "csinh_towardzero":
771double: 2
772float: 2
773ldouble: 2
774
775Function: Imaginary part of "csinh_towardzero":
776double: 3
777float: 3
778ldouble: 2
779
780Function: Real part of "csinh_upward":
781double: 1
782float: 2
783ldouble: 3
784
785Function: Imaginary part of "csinh_upward":
786double: 2
787float: 2
788ldouble: 2
789
790Function: Real part of "csqrt":
791double: 2
792float: 2
793ldouble: 2
794
795Function: Imaginary part of "csqrt":
796double: 2
797float: 2
798ldouble: 2
799
800Function: Real part of "csqrt_downward":
801double: 5
802float: 4
803ldouble: 4
804
805Function: Imaginary part of "csqrt_downward":
806double: 4
807float: 3
808ldouble: 3
809
810Function: Real part of "csqrt_towardzero":
811double: 4
812float: 3
813ldouble: 3
814
815Function: Imaginary part of "csqrt_towardzero":
816double: 4
817float: 3
818ldouble: 3
819
820Function: Real part of "csqrt_upward":
821double: 5
822float: 4
823ldouble: 4
824
825Function: Imaginary part of "csqrt_upward":
826double: 3
827float: 3
828ldouble: 3
829
830Function: Real part of "ctan":
831double: 1
832float: 1
833ldouble: 3
834
835Function: Imaginary part of "ctan":
836double: 2
837float: 2
838ldouble: 3
839
840Function: Real part of "ctan_downward":
841double: 6
842float: 5
843ldouble: 4
844
845Function: Imaginary part of "ctan_downward":
846double: 2
847float: 2
848ldouble: 5
849
850Function: Real part of "ctan_towardzero":
851double: 5
852float: 2
853ldouble: 4
854
855Function: Imaginary part of "ctan_towardzero":
856double: 2
857float: 2
858ldouble: 5
859
860Function: Real part of "ctan_upward":
861double: 2
862float: 4
863ldouble: 5
864
865Function: Imaginary part of "ctan_upward":
866double: 2
867float: 2
868ldouble: 5
869
870Function: Real part of "ctanh":
871double: 2
872float: 2
873ldouble: 3
874
875Function: Imaginary part of "ctanh":
876double: 2
877float: 1
878ldouble: 3
879
880Function: Real part of "ctanh_downward":
881double: 4
882float: 2
883ldouble: 5
884
885Function: Imaginary part of "ctanh_downward":
886double: 6
887float: 5
888ldouble: 4
889
890Function: Real part of "ctanh_towardzero":
891double: 2
892float: 2
893ldouble: 5
894
895Function: Imaginary part of "ctanh_towardzero":
896double: 5
897float: 2
898ldouble: 3
899
900Function: Real part of "ctanh_upward":
901double: 2
902float: 2
903ldouble: 5
904
905Function: Imaginary part of "ctanh_upward":
906double: 2
907float: 3
908ldouble: 5
909
910Function: "erf":
911double: 1
912float: 1
913ldouble: 1
914
915Function: "erf_downward":
916double: 1
917float: 1
918ldouble: 2
919
920Function: "erf_towardzero":
921double: 1
922float: 1
923ldouble: 1
924
925Function: "erf_upward":
926double: 1
927float: 1
928ldouble: 2
929
930Function: "erfc":
931double: 2
932float: 2
933ldouble: 2
934
935Function: "erfc_downward":
936double: 4
937float: 4
938ldouble: 5
939
940Function: "erfc_towardzero":
941double: 3
942float: 3
943ldouble: 4
944
945Function: "erfc_upward":
946double: 4
947float: 4
948ldouble: 5
949
950Function: "exp":
951float: 1
952ldouble: 1
953
954Function: "exp10":
955double: 2
956ldouble: 2
957
958Function: "exp10_downward":
959double: 3
960float: 1
961ldouble: 3
962
963Function: "exp10_towardzero":
964double: 3
965float: 1
966ldouble: 3
967
968Function: "exp10_upward":
969double: 2
970float: 1
971ldouble: 3
972
973Function: "exp2":
974double: 1
975ldouble: 1
976
977Function: "exp2_downward":
978double: 1
979ldouble: 1
980
981Function: "exp2_towardzero":
982double: 1
983ldouble: 1
984
985Function: "exp2_upward":
986double: 1
987float: 1
988ldouble: 2
989
990Function: "exp_downward":
991double: 1
992float: 1
993
994Function: "exp_towardzero":
995double: 1
996float: 1
997
998Function: "exp_upward":
999double: 1
1000float: 1
1001
1002Function: "expm1":
1003double: 1
1004float: 1
1005ldouble: 1
1006
1007Function: "expm1_downward":
1008double: 1
1009float: 1
1010ldouble: 2
1011
1012Function: "expm1_towardzero":
1013double: 1
1014float: 2
1015ldouble: 4
1016
1017Function: "expm1_upward":
1018double: 1
1019float: 1
1020ldouble: 3
1021
1022Function: "gamma":
1023double: 3
1024float: 3
1025ldouble: 5
1026
1027Function: "gamma_downward":
1028double: 4
1029float: 4
1030ldouble: 8
1031
1032Function: "gamma_towardzero":
1033double: 4
1034float: 3
1035ldouble: 5
1036
1037Function: "gamma_upward":
1038double: 4
1039float: 5
1040ldouble: 8
1041
1042Function: "hypot":
1043double: 1
1044ldouble: 1
1045
1046Function: "hypot_downward":
1047double: 1
1048ldouble: 1
1049
1050Function: "hypot_towardzero":
1051double: 1
1052ldouble: 1
1053
1054Function: "hypot_upward":
1055double: 1
1056ldouble: 1
1057
1058Function: "j0":
1059double: 2
1060float: 8
1061ldouble: 2
1062
1063Function: "j0_downward":
1064double: 2
1065float: 4
1066ldouble: 4
1067
1068Function: "j0_towardzero":
1069double: 5
1070float: 6
1071ldouble: 2
1072
1073Function: "j0_upward":
1074double: 4
1075float: 5
1076ldouble: 5
1077
1078Function: "j1":
1079double: 2
1080float: 8
1081ldouble: 4
1082
1083Function: "j1_downward":
1084double: 3
1085float: 5
1086ldouble: 4
1087
1088Function: "j1_towardzero":
1089double: 3
1090float: 2
1091ldouble: 4
1092
1093Function: "j1_upward":
1094double: 3
1095float: 4
1096ldouble: 3
1097
1098Function: "jn":
1099double: 4
1100float: 4
1101ldouble: 7
1102
1103Function: "jn_downward":
1104double: 4
1105float: 5
1106ldouble: 8
1107
1108Function: "jn_towardzero":
1109double: 4
1110float: 5
1111ldouble: 8
1112
1113Function: "jn_upward":
1114double: 5
1115float: 4
1116ldouble: 7
1117
1118Function: "lgamma":
1119double: 3
1120float: 3
1121ldouble: 5
1122
1123Function: "lgamma_downward":
1124double: 4
1125float: 4
1126ldouble: 8
1127
1128Function: "lgamma_towardzero":
1129double: 4
1130float: 3
1131ldouble: 5
1132
1133Function: "lgamma_upward":
1134double: 4
1135float: 5
1136ldouble: 8
1137
1138Function: "log":
1139ldouble: 1
1140
1141Function: "log10":
1142double: 2
1143float: 2
1144ldouble: 1
1145
1146Function: "log10_downward":
1147double: 2
1148float: 3
1149ldouble: 1
1150
1151Function: "log10_towardzero":
1152double: 2
1153float: 1
1154ldouble: 1
1155
1156Function: "log10_upward":
1157double: 2
1158float: 2
1159ldouble: 1
1160
1161Function: "log1p":
1162double: 1
1163float: 1
1164ldouble: 2
1165
1166Function: "log1p_downward":
1167double: 1
1168float: 2
1169ldouble: 3
1170
1171Function: "log1p_towardzero":
1172double: 2
1173float: 2
1174ldouble: 3
1175
1176Function: "log1p_upward":
1177double: 2
1178float: 2
1179ldouble: 2
1180
1181Function: "log2":
1182double: 1
1183float: 1
1184ldouble: 2
1185
1186Function: "log2_downward":
1187double: 3
1188ldouble: 3
1189
1190Function: "log2_towardzero":
1191double: 2
1192ldouble: 1
1193
1194Function: "log2_upward":
1195double: 3
1196ldouble: 1
1197
1198Function: "log_downward":
1199ldouble: 1
1200
1201Function: "log_towardzero":
1202ldouble: 2
1203
1204Function: "log_upward":
1205double: 1
1206ldouble: 2
1207
1208Function: "pow":
1209double: 1
1210ldouble: 2
1211
1212Function: "pow_downward":
1213double: 1
1214float: 1
1215ldouble: 2
1216
1217Function: "pow_towardzero":
1218double: 1
1219float: 1
1220ldouble: 2
1221
1222Function: "pow_upward":
1223double: 1
1224float: 1
1225ldouble: 2
1226
1227Function: "sin":
1228double: 1
1229float: 1
1230ldouble: 1
1231
1232Function: "sin_downward":
1233double: 1
1234float: 1
1235ldouble: 3
1236
1237Function: "sin_towardzero":
1238double: 1
1239float: 1
1240ldouble: 2
1241
1242Function: "sin_upward":
1243double: 1
1244float: 1
1245ldouble: 3
1246
1247Function: "sincos":
1248double: 1
1249ldouble: 1
1250
1251Function: "sincos_downward":
1252double: 1
1253float: 1
1254ldouble: 3
1255
1256Function: "sincos_towardzero":
1257double: 1
1258float: 1
1259ldouble: 2
1260
1261Function: "sincos_upward":
1262double: 1
1263float: 1
1264ldouble: 3
1265
1266Function: "sinh":
1267double: 2
1268float: 2
1269ldouble: 2
1270
1271Function: "sinh_downward":
1272double: 3
1273float: 3
1274ldouble: 3
1275
1276Function: "sinh_towardzero":
1277double: 2
1278float: 2
1279ldouble: 3
1280
1281Function: "sinh_upward":
1282double: 3
1283float: 3
1284ldouble: 4
1285
1286Function: "tan":
1287float: 1
1288ldouble: 1
1289
1290Function: "tan_downward":
1291double: 1
1292float: 2
1293ldouble: 1
1294
1295Function: "tan_towardzero":
1296double: 1
1297float: 1
1298ldouble: 1
1299
1300Function: "tan_upward":
1301double: 1
1302float: 1
1303ldouble: 1
1304
1305Function: "tanh":
1306double: 2
1307float: 2
1308ldouble: 2
1309
1310Function: "tanh_downward":
1311double: 3
1312float: 3
1313ldouble: 4
1314
1315Function: "tanh_towardzero":
1316double: 2
1317float: 2
1318ldouble: 3
1319
1320Function: "tanh_upward":
1321double: 3
1322float: 3
1323ldouble: 3
1324
1325Function: "tgamma":
1326double: 5
1327float: 8
1328ldouble: 4
1329
1330Function: "tgamma_downward":
1331double: 5
1332float: 7
1333ldouble: 5
1334
1335Function: "tgamma_towardzero":
1336double: 5
1337float: 7
1338ldouble: 5
1339
1340Function: "tgamma_upward":
1341double: 4
1342float: 8
1343ldouble: 4
1344
1345Function: "y0":
1346double: 2
1347float: 6
1348ldouble: 3
1349
1350Function: "y0_downward":
1351double: 3
1352float: 4
1353ldouble: 4
1354
1355Function: "y0_towardzero":
1356double: 3
1357float: 3
1358ldouble: 3
1359
1360Function: "y0_upward":
1361double: 2
1362float: 5
1363ldouble: 3
1364
1365Function: "y1":
1366double: 3
1367float: 2
1368ldouble: 2
1369
1370Function: "y1_downward":
1371double: 3
1372float: 2
1373ldouble: 4
1374
1375Function: "y1_towardzero":
1376double: 3
1377float: 2
1378ldouble: 2
1379
1380Function: "y1_upward":
1381double: 5
1382float: 2
1383ldouble: 5
1384
1385Function: "yn":
1386double: 3
1387float: 3
1388ldouble: 5
1389
1390Function: "yn_downward":
1391double: 3
1392float: 4
1393ldouble: 5
1394
1395Function: "yn_towardzero":
1396double: 3
1397float: 3
1398ldouble: 5
1399
1400Function: "yn_upward":
1401double: 4
1402float: 5
1403ldouble: 5
1404
1405# end of automatic generation
1406