1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acos": 5double: 1 6float: 1 7float128: 1 8ldouble: 2 9 10Function: "acos_downward": 11double: 1 12float: 1 13float128: 1 14ldouble: 2 15 16Function: "acos_towardzero": 17double: 1 18float: 1 19float128: 1 20ldouble: 2 21 22Function: "acos_upward": 23double: 1 24float: 1 25float128: 1 26ldouble: 2 27 28Function: "acos_vlen16": 29float: 1 30 31Function: "acos_vlen2": 32double: 1 33 34Function: "acos_vlen4": 35double: 1 36float: 2 37 38Function: "acos_vlen4_avx2": 39double: 1 40 41Function: "acos_vlen8": 42double: 1 43float: 2 44 45Function: "acos_vlen8_avx2": 46float: 1 47 48Function: "acosh": 49double: 2 50float: 2 51float128: 4 52ldouble: 3 53 54Function: "acosh_downward": 55double: 2 56float: 2 57float128: 3 58ldouble: 4 59 60Function: "acosh_towardzero": 61double: 2 62float: 2 63float128: 2 64ldouble: 4 65 66Function: "acosh_upward": 67double: 2 68float: 2 69float128: 3 70ldouble: 3 71 72Function: "asin": 73double: 1 74float: 1 75float128: 1 76ldouble: 1 77 78Function: "asin_downward": 79double: 1 80float: 1 81float128: 2 82ldouble: 2 83 84Function: "asin_towardzero": 85double: 1 86float: 1 87float128: 1 88ldouble: 1 89 90Function: "asin_upward": 91double: 2 92float: 1 93float128: 2 94ldouble: 1 95 96Function: "asinh": 97double: 2 98float: 2 99float128: 4 100ldouble: 3 101 102Function: "asinh_downward": 103double: 3 104float: 3 105float128: 4 106ldouble: 5 107 108Function: "asinh_towardzero": 109double: 2 110float: 2 111float128: 2 112ldouble: 4 113 114Function: "asinh_upward": 115double: 3 116float: 3 117float128: 4 118ldouble: 5 119 120Function: "atan": 121double: 1 122float: 1 123float128: 1 124ldouble: 1 125 126Function: "atan2": 127float: 2 128float128: 2 129ldouble: 1 130 131Function: "atan2_downward": 132double: 1 133float: 2 134float128: 2 135ldouble: 1 136 137Function: "atan2_towardzero": 138double: 1 139float: 2 140float128: 3 141ldouble: 1 142 143Function: "atan2_upward": 144double: 1 145float: 2 146float128: 2 147ldouble: 1 148 149Function: "atan_downward": 150double: 1 151float: 2 152float128: 2 153ldouble: 1 154 155Function: "atan_towardzero": 156double: 1 157float: 1 158float128: 1 159ldouble: 1 160 161Function: "atan_upward": 162double: 1 163float: 2 164float128: 2 165ldouble: 1 166 167Function: "atanh": 168double: 2 169float: 2 170float128: 4 171ldouble: 3 172 173Function: "atanh_downward": 174double: 3 175float: 3 176float128: 4 177ldouble: 5 178 179Function: "atanh_towardzero": 180double: 2 181float: 2 182float128: 2 183ldouble: 4 184 185Function: "atanh_upward": 186double: 3 187float: 3 188float128: 4 189ldouble: 5 190 191Function: "cabs": 192double: 1 193float128: 1 194ldouble: 1 195 196Function: "cabs_downward": 197double: 1 198float128: 1 199ldouble: 1 200 201Function: "cabs_towardzero": 202double: 1 203float128: 1 204ldouble: 1 205 206Function: "cabs_upward": 207double: 1 208float128: 1 209ldouble: 1 210 211Function: Real part of "cacos": 212double: 1 213float: 2 214float128: 2 215ldouble: 1 216 217Function: Imaginary part of "cacos": 218double: 2 219float: 2 220float128: 2 221ldouble: 2 222 223Function: Real part of "cacos_downward": 224double: 3 225float: 2 226float128: 3 227ldouble: 2 228 229Function: Imaginary part of "cacos_downward": 230double: 5 231float: 3 232float128: 6 233ldouble: 6 234 235Function: Real part of "cacos_towardzero": 236double: 3 237float: 2 238float128: 3 239ldouble: 2 240 241Function: Imaginary part of "cacos_towardzero": 242double: 5 243float: 3 244float128: 5 245ldouble: 5 246 247Function: Real part of "cacos_upward": 248double: 2 249float: 2 250float128: 3 251ldouble: 2 252 253Function: Imaginary part of "cacos_upward": 254double: 5 255float: 7 256float128: 7 257ldouble: 7 258 259Function: Real part of "cacosh": 260double: 2 261float: 2 262float128: 2 263ldouble: 2 264 265Function: Imaginary part of "cacosh": 266double: 1 267float: 2 268float128: 2 269ldouble: 1 270 271Function: Real part of "cacosh_downward": 272double: 5 273float: 3 274float128: 5 275ldouble: 5 276 277Function: Imaginary part of "cacosh_downward": 278double: 3 279float: 3 280float128: 4 281ldouble: 3 282 283Function: Real part of "cacosh_towardzero": 284double: 5 285float: 3 286float128: 5 287ldouble: 5 288 289Function: Imaginary part of "cacosh_towardzero": 290double: 3 291float: 2 292float128: 3 293ldouble: 2 294 295Function: Real part of "cacosh_upward": 296double: 4 297float: 4 298float128: 6 299ldouble: 5 300 301Function: Imaginary part of "cacosh_upward": 302double: 3 303float: 2 304float128: 4 305ldouble: 3 306 307Function: "carg": 308float: 1 309float128: 2 310ldouble: 1 311 312Function: "carg_downward": 313double: 1 314float: 2 315float128: 2 316ldouble: 1 317 318Function: "carg_towardzero": 319double: 1 320float: 2 321float128: 3 322ldouble: 1 323 324Function: "carg_upward": 325double: 1 326float: 2 327float128: 2 328ldouble: 1 329 330Function: Real part of "casin": 331double: 1 332float: 1 333float128: 2 334ldouble: 1 335 336Function: Imaginary part of "casin": 337double: 2 338float: 2 339float128: 2 340ldouble: 2 341 342Function: Real part of "casin_downward": 343double: 3 344float: 2 345float128: 3 346ldouble: 3 347 348Function: Imaginary part of "casin_downward": 349double: 5 350float: 3 351float128: 6 352ldouble: 6 353 354Function: Real part of "casin_towardzero": 355double: 3 356float: 1 357float128: 3 358ldouble: 3 359 360Function: Imaginary part of "casin_towardzero": 361double: 5 362float: 3 363float128: 5 364ldouble: 5 365 366Function: Real part of "casin_upward": 367double: 3 368float: 2 369float128: 3 370ldouble: 2 371 372Function: Imaginary part of "casin_upward": 373double: 5 374float: 7 375float128: 7 376ldouble: 7 377 378Function: Real part of "casinh": 379double: 2 380float: 2 381float128: 2 382ldouble: 2 383 384Function: Imaginary part of "casinh": 385double: 1 386float: 1 387float128: 2 388ldouble: 1 389 390Function: Real part of "casinh_downward": 391double: 5 392float: 3 393float128: 6 394ldouble: 6 395 396Function: Imaginary part of "casinh_downward": 397double: 3 398float: 2 399float128: 3 400ldouble: 3 401 402Function: Real part of "casinh_towardzero": 403double: 5 404float: 3 405float128: 5 406ldouble: 5 407 408Function: Imaginary part of "casinh_towardzero": 409double: 3 410float: 1 411float128: 3 412ldouble: 3 413 414Function: Real part of "casinh_upward": 415double: 5 416float: 7 417float128: 7 418ldouble: 7 419 420Function: Imaginary part of "casinh_upward": 421double: 3 422float: 2 423float128: 3 424ldouble: 2 425 426Function: Real part of "catan": 427double: 1 428float: 1 429float128: 1 430ldouble: 1 431 432Function: Imaginary part of "catan": 433double: 1 434float: 1 435float128: 1 436ldouble: 1 437 438Function: Real part of "catan_downward": 439double: 1 440float: 2 441float128: 2 442ldouble: 1 443 444Function: Imaginary part of "catan_downward": 445double: 2 446float: 2 447float128: 2 448ldouble: 4 449 450Function: Real part of "catan_towardzero": 451double: 1 452float: 2 453float128: 2 454ldouble: 1 455 456Function: Imaginary part of "catan_towardzero": 457double: 2 458float: 2 459float128: 2 460ldouble: 4 461 462Function: Real part of "catan_upward": 463double: 1 464float: 1 465float128: 2 466ldouble: 1 467 468Function: Imaginary part of "catan_upward": 469double: 3 470float: 3 471float128: 3 472ldouble: 3 473 474Function: Real part of "catanh": 475double: 1 476float: 1 477float128: 1 478ldouble: 1 479 480Function: Imaginary part of "catanh": 481double: 1 482float: 1 483float128: 1 484ldouble: 1 485 486Function: Real part of "catanh_downward": 487double: 2 488float: 2 489float128: 2 490ldouble: 4 491 492Function: Imaginary part of "catanh_downward": 493double: 1 494float: 2 495float128: 2 496ldouble: 1 497 498Function: Real part of "catanh_towardzero": 499double: 2 500float: 2 501float128: 2 502ldouble: 4 503 504Function: Imaginary part of "catanh_towardzero": 505double: 1 506float: 2 507float128: 2 508ldouble: 1 509 510Function: Real part of "catanh_upward": 511double: 4 512float: 4 513float128: 4 514ldouble: 4 515 516Function: Imaginary part of "catanh_upward": 517double: 1 518float: 1 519float128: 2 520ldouble: 1 521 522Function: "cbrt": 523double: 4 524float: 1 525float128: 1 526ldouble: 1 527 528Function: "cbrt_downward": 529double: 4 530float: 1 531float128: 1 532ldouble: 1 533 534Function: "cbrt_towardzero": 535double: 3 536float: 1 537float128: 1 538ldouble: 1 539 540Function: "cbrt_upward": 541double: 5 542float: 1 543float128: 1 544ldouble: 1 545 546Function: Real part of "ccos": 547double: 1 548float: 1 549float128: 1 550ldouble: 1 551 552Function: Imaginary part of "ccos": 553double: 1 554float: 1 555float128: 1 556ldouble: 1 557 558Function: Real part of "ccos_downward": 559double: 1 560float: 1 561float128: 2 562ldouble: 3 563 564Function: Imaginary part of "ccos_downward": 565double: 3 566float: 3 567float128: 2 568ldouble: 3 569 570Function: Real part of "ccos_towardzero": 571double: 1 572float: 2 573float128: 2 574ldouble: 3 575 576Function: Imaginary part of "ccos_towardzero": 577double: 3 578float: 3 579float128: 2 580ldouble: 3 581 582Function: Real part of "ccos_upward": 583double: 1 584float: 2 585float128: 3 586ldouble: 2 587 588Function: Imaginary part of "ccos_upward": 589double: 2 590float: 2 591float128: 2 592ldouble: 2 593 594Function: Real part of "ccosh": 595double: 1 596float: 1 597float128: 1 598ldouble: 1 599 600Function: Imaginary part of "ccosh": 601double: 1 602float: 1 603float128: 1 604ldouble: 1 605 606Function: Real part of "ccosh_downward": 607double: 2 608float: 2 609float128: 2 610ldouble: 3 611 612Function: Imaginary part of "ccosh_downward": 613double: 3 614float: 3 615float128: 2 616ldouble: 3 617 618Function: Real part of "ccosh_towardzero": 619double: 2 620float: 3 621float128: 2 622ldouble: 3 623 624Function: Imaginary part of "ccosh_towardzero": 625double: 3 626float: 3 627float128: 2 628ldouble: 3 629 630Function: Real part of "ccosh_upward": 631double: 1 632float: 2 633float128: 3 634ldouble: 2 635 636Function: Imaginary part of "ccosh_upward": 637double: 2 638float: 2 639float128: 2 640ldouble: 2 641 642Function: Real part of "cexp": 643double: 2 644float: 1 645float128: 1 646ldouble: 1 647 648Function: Imaginary part of "cexp": 649double: 1 650float: 2 651float128: 1 652ldouble: 1 653 654Function: Real part of "cexp_downward": 655double: 2 656float: 2 657float128: 2 658ldouble: 3 659 660Function: Imaginary part of "cexp_downward": 661double: 3 662float: 3 663float128: 2 664ldouble: 3 665 666Function: Real part of "cexp_towardzero": 667double: 2 668float: 2 669float128: 2 670ldouble: 3 671 672Function: Imaginary part of "cexp_towardzero": 673double: 3 674float: 3 675float128: 2 676ldouble: 3 677 678Function: Real part of "cexp_upward": 679double: 1 680float: 2 681float128: 3 682ldouble: 2 683 684Function: Imaginary part of "cexp_upward": 685double: 3 686float: 2 687float128: 3 688ldouble: 3 689 690Function: Real part of "clog": 691double: 3 692float: 3 693float128: 2 694ldouble: 3 695 696Function: Imaginary part of "clog": 697double: 1 698float: 1 699float128: 1 700ldouble: 1 701 702Function: Real part of "clog10": 703double: 3 704float: 4 705float128: 2 706ldouble: 4 707 708Function: Imaginary part of "clog10": 709double: 2 710float: 2 711float128: 2 712ldouble: 2 713 714Function: Real part of "clog10_downward": 715double: 5 716float: 5 717float128: 3 718ldouble: 8 719 720Function: Imaginary part of "clog10_downward": 721double: 2 722float: 4 723float128: 3 724ldouble: 3 725 726Function: Real part of "clog10_towardzero": 727double: 5 728float: 6 729float128: 4 730ldouble: 8 731 732Function: Imaginary part of "clog10_towardzero": 733double: 2 734float: 4 735float128: 3 736ldouble: 3 737 738Function: Real part of "clog10_upward": 739double: 6 740float: 5 741float128: 4 742ldouble: 8 743 744Function: Imaginary part of "clog10_upward": 745double: 2 746float: 4 747float128: 3 748ldouble: 3 749 750Function: Real part of "clog_downward": 751double: 4 752float: 3 753float128: 3 754ldouble: 5 755 756Function: Imaginary part of "clog_downward": 757double: 1 758float: 2 759float128: 2 760ldouble: 1 761 762Function: Real part of "clog_towardzero": 763double: 4 764float: 4 765float128: 3 766ldouble: 5 767 768Function: Imaginary part of "clog_towardzero": 769double: 1 770float: 3 771float128: 2 772ldouble: 1 773 774Function: Real part of "clog_upward": 775double: 4 776float: 3 777float128: 4 778ldouble: 4 779 780Function: Imaginary part of "clog_upward": 781double: 1 782float: 2 783float128: 2 784ldouble: 1 785 786Function: "cos": 787double: 1 788float: 1 789float128: 2 790ldouble: 1 791 792Function: "cos_downward": 793double: 1 794float: 1 795float128: 3 796ldouble: 3 797 798Function: "cos_towardzero": 799double: 1 800float: 1 801float128: 1 802ldouble: 2 803 804Function: "cos_upward": 805double: 1 806float: 1 807float128: 2 808ldouble: 2 809 810Function: "cos_vlen16": 811float: 1 812 813Function: "cos_vlen2": 814double: 2 815 816Function: "cos_vlen4": 817double: 2 818float: 1 819 820Function: "cos_vlen4_avx2": 821double: 2 822 823Function: "cos_vlen8": 824double: 2 825float: 1 826 827Function: "cos_vlen8_avx2": 828float: 1 829 830Function: "cosh": 831double: 2 832float: 2 833float128: 2 834ldouble: 3 835 836Function: "cosh_downward": 837double: 3 838float: 1 839float128: 3 840ldouble: 3 841 842Function: "cosh_towardzero": 843double: 3 844float: 1 845float128: 3 846ldouble: 3 847 848Function: "cosh_upward": 849double: 2 850float: 2 851float128: 3 852ldouble: 3 853 854Function: Real part of "cpow": 855double: 2 856float: 5 857float128: 4 858ldouble: 3 859 860Function: Imaginary part of "cpow": 861float: 2 862float128: 1 863ldouble: 4 864 865Function: Real part of "cpow_downward": 866double: 5 867float: 8 868float128: 6 869ldouble: 7 870 871Function: Imaginary part of "cpow_downward": 872double: 1 873float: 2 874float128: 2 875ldouble: 2 876 877Function: Real part of "cpow_towardzero": 878double: 5 879float: 8 880float128: 6 881ldouble: 7 882 883Function: Imaginary part of "cpow_towardzero": 884double: 1 885float: 2 886float128: 2 887ldouble: 1 888 889Function: Real part of "cpow_upward": 890double: 4 891float: 1 892float128: 3 893ldouble: 2 894 895Function: Imaginary part of "cpow_upward": 896double: 1 897float: 2 898float128: 2 899ldouble: 2 900 901Function: Real part of "csin": 902double: 1 903float: 1 904float128: 1 905ldouble: 1 906 907Function: Imaginary part of "csin": 908float128: 1 909 910Function: Real part of "csin_downward": 911double: 3 912float: 3 913float128: 2 914ldouble: 3 915 916Function: Imaginary part of "csin_downward": 917double: 1 918float: 2 919float128: 2 920ldouble: 3 921 922Function: Real part of "csin_towardzero": 923double: 3 924float: 3 925float128: 2 926ldouble: 3 927 928Function: Imaginary part of "csin_towardzero": 929double: 2 930float: 2 931float128: 2 932ldouble: 3 933 934Function: Real part of "csin_upward": 935double: 2 936float: 3 937float128: 2 938ldouble: 3 939 940Function: Imaginary part of "csin_upward": 941double: 1 942float: 3 943float128: 3 944ldouble: 3 945 946Function: Real part of "csinh": 947float: 1 948float128: 1 949ldouble: 1 950 951Function: Imaginary part of "csinh": 952double: 1 953float: 1 954float128: 1 955ldouble: 1 956 957Function: Real part of "csinh_downward": 958double: 2 959float: 2 960float128: 2 961ldouble: 3 962 963Function: Imaginary part of "csinh_downward": 964double: 3 965float: 3 966float128: 2 967ldouble: 3 968 969Function: Real part of "csinh_towardzero": 970double: 2 971float: 2 972float128: 2 973ldouble: 3 974 975Function: Imaginary part of "csinh_towardzero": 976double: 3 977float: 3 978float128: 2 979ldouble: 3 980 981Function: Real part of "csinh_upward": 982double: 1 983float: 3 984float128: 3 985ldouble: 3 986 987Function: Imaginary part of "csinh_upward": 988double: 2 989float: 3 990float128: 2 991ldouble: 3 992 993Function: Real part of "csqrt": 994double: 2 995float: 2 996float128: 2 997ldouble: 2 998 999Function: Imaginary part of "csqrt": 1000double: 2 1001float: 2 1002float128: 2 1003ldouble: 2 1004 1005Function: Real part of "csqrt_downward": 1006double: 5 1007float: 4 1008float128: 4 1009ldouble: 5 1010 1011Function: Imaginary part of "csqrt_downward": 1012double: 4 1013float: 3 1014float128: 3 1015ldouble: 4 1016 1017Function: Real part of "csqrt_towardzero": 1018double: 4 1019float: 3 1020float128: 3 1021ldouble: 4 1022 1023Function: Imaginary part of "csqrt_towardzero": 1024double: 4 1025float: 3 1026float128: 3 1027ldouble: 4 1028 1029Function: Real part of "csqrt_upward": 1030double: 5 1031float: 4 1032float128: 4 1033ldouble: 5 1034 1035Function: Imaginary part of "csqrt_upward": 1036double: 3 1037float: 3 1038float128: 3 1039ldouble: 4 1040 1041Function: Real part of "ctan": 1042double: 1 1043float: 1 1044float128: 3 1045ldouble: 2 1046 1047Function: Imaginary part of "ctan": 1048double: 2 1049float: 2 1050float128: 3 1051ldouble: 1 1052 1053Function: Real part of "ctan_downward": 1054double: 6 1055float: 5 1056float128: 4 1057ldouble: 5 1058 1059Function: Imaginary part of "ctan_downward": 1060double: 2 1061float: 2 1062float128: 5 1063ldouble: 4 1064 1065Function: Real part of "ctan_towardzero": 1066double: 5 1067float: 3 1068float128: 4 1069ldouble: 5 1070 1071Function: Imaginary part of "ctan_towardzero": 1072double: 2 1073float: 2 1074float128: 5 1075ldouble: 4 1076 1077Function: Real part of "ctan_upward": 1078double: 2 1079float: 4 1080float128: 5 1081ldouble: 3 1082 1083Function: Imaginary part of "ctan_upward": 1084double: 2 1085float: 2 1086float128: 5 1087ldouble: 3 1088 1089Function: Real part of "ctanh": 1090double: 2 1091float: 2 1092float128: 3 1093ldouble: 1 1094 1095Function: Imaginary part of "ctanh": 1096double: 2 1097float: 2 1098float128: 3 1099ldouble: 2 1100 1101Function: Real part of "ctanh_downward": 1102double: 4 1103float: 2 1104float128: 5 1105ldouble: 4 1106 1107Function: Imaginary part of "ctanh_downward": 1108double: 6 1109float: 5 1110float128: 4 1111ldouble: 4 1112 1113Function: Real part of "ctanh_towardzero": 1114double: 2 1115float: 2 1116float128: 5 1117ldouble: 4 1118 1119Function: Imaginary part of "ctanh_towardzero": 1120double: 5 1121float: 3 1122float128: 3 1123ldouble: 3 1124 1125Function: Real part of "ctanh_upward": 1126double: 2 1127float: 2 1128float128: 5 1129ldouble: 3 1130 1131Function: Imaginary part of "ctanh_upward": 1132double: 2 1133float: 3 1134float128: 5 1135ldouble: 3 1136 1137Function: "erf": 1138double: 1 1139float: 1 1140float128: 1 1141ldouble: 1 1142 1143Function: "erf_downward": 1144double: 1 1145float: 1 1146float128: 2 1147ldouble: 1 1148 1149Function: "erf_towardzero": 1150double: 1 1151float: 1 1152float128: 1 1153ldouble: 1 1154 1155Function: "erf_upward": 1156double: 1 1157float: 1 1158float128: 2 1159ldouble: 1 1160 1161Function: "erfc": 1162double: 5 1163float: 3 1164float128: 4 1165ldouble: 5 1166 1167Function: "erfc_downward": 1168double: 5 1169float: 6 1170float128: 5 1171ldouble: 4 1172 1173Function: "erfc_towardzero": 1174double: 3 1175float: 4 1176float128: 4 1177ldouble: 4 1178 1179Function: "erfc_upward": 1180double: 5 1181float: 6 1182float128: 5 1183ldouble: 5 1184 1185Function: "exp": 1186double: 1 1187float: 1 1188float128: 1 1189ldouble: 1 1190 1191Function: "exp10": 1192double: 2 1193float: 1 1194float128: 2 1195ldouble: 1 1196 1197Function: "exp10_downward": 1198double: 3 1199float: 1 1200float128: 3 1201ldouble: 2 1202 1203Function: "exp10_towardzero": 1204double: 3 1205float: 1 1206float128: 3 1207ldouble: 2 1208 1209Function: "exp10_upward": 1210double: 2 1211float: 1 1212float128: 3 1213ldouble: 2 1214 1215Function: "exp2": 1216double: 1 1217float: 1 1218float128: 1 1219ldouble: 1 1220 1221Function: "exp2_downward": 1222double: 1 1223float: 1 1224float128: 1 1225ldouble: 1 1226 1227Function: "exp2_towardzero": 1228double: 1 1229float: 1 1230float128: 1 1231ldouble: 1 1232 1233Function: "exp2_upward": 1234double: 1 1235float: 1 1236float128: 2 1237ldouble: 1 1238 1239Function: "exp_downward": 1240double: 1 1241float: 1 1242ldouble: 1 1243 1244Function: "exp_towardzero": 1245double: 1 1246float: 1 1247ldouble: 2 1248 1249Function: "exp_upward": 1250double: 1 1251float: 1 1252ldouble: 1 1253 1254Function: "exp_vlen16": 1255float: 1 1256 1257Function: "exp_vlen2": 1258double: 1 1259 1260Function: "exp_vlen4": 1261double: 1 1262float: 1 1263 1264Function: "exp_vlen4_avx2": 1265double: 1 1266 1267Function: "exp_vlen8": 1268double: 1 1269float: 1 1270 1271Function: "exp_vlen8_avx2": 1272float: 1 1273 1274Function: "expm1": 1275double: 1 1276float: 1 1277float128: 2 1278ldouble: 3 1279 1280Function: "expm1_downward": 1281double: 1 1282float: 1 1283float128: 2 1284ldouble: 4 1285 1286Function: "expm1_towardzero": 1287double: 1 1288float: 2 1289float128: 4 1290ldouble: 4 1291 1292Function: "expm1_upward": 1293double: 1 1294float: 1 1295float128: 3 1296ldouble: 4 1297 1298Function: "gamma": 1299double: 4 1300float: 7 1301ldouble: 4 1302 1303Function: "gamma_downward": 1304double: 5 1305float: 7 1306ldouble: 7 1307 1308Function: "gamma_towardzero": 1309double: 5 1310float: 6 1311ldouble: 7 1312 1313Function: "gamma_upward": 1314double: 5 1315float: 6 1316ldouble: 6 1317 1318Function: "hypot": 1319double: 1 1320float128: 1 1321ldouble: 1 1322 1323Function: "hypot_downward": 1324double: 1 1325float128: 1 1326ldouble: 1 1327 1328Function: "hypot_towardzero": 1329double: 1 1330float128: 1 1331ldouble: 1 1332 1333Function: "hypot_upward": 1334double: 1 1335float128: 1 1336ldouble: 1 1337 1338Function: "j0": 1339double: 3 1340float: 9 1341float128: 2 1342ldouble: 8 1343 1344Function: "j0_downward": 1345double: 6 1346float: 9 1347float128: 9 1348ldouble: 6 1349 1350Function: "j0_towardzero": 1351double: 7 1352float: 9 1353float128: 9 1354ldouble: 6 1355 1356Function: "j0_upward": 1357double: 9 1358float: 9 1359float128: 7 1360ldouble: 6 1361 1362Function: "j1": 1363double: 4 1364float: 9 1365float128: 4 1366ldouble: 9 1367 1368Function: "j1_downward": 1369double: 6 1370float: 8 1371float128: 6 1372ldouble: 8 1373 1374Function: "j1_towardzero": 1375double: 4 1376float: 9 1377float128: 9 1378ldouble: 4 1379 1380Function: "j1_upward": 1381double: 9 1382float: 9 1383float128: 9 1384ldouble: 3 1385 1386Function: "jn": 1387double: 4 1388float: 4 1389float128: 7 1390ldouble: 4 1391 1392Function: "jn_downward": 1393double: 5 1394float: 5 1395float128: 8 1396ldouble: 4 1397 1398Function: "jn_towardzero": 1399double: 5 1400float: 5 1401float128: 8 1402ldouble: 5 1403 1404Function: "jn_upward": 1405double: 5 1406float: 5 1407float128: 7 1408ldouble: 5 1409 1410Function: "lgamma": 1411double: 4 1412float: 7 1413float128: 5 1414ldouble: 4 1415 1416Function: "lgamma_downward": 1417double: 5 1418float: 7 1419float128: 8 1420ldouble: 7 1421 1422Function: "lgamma_towardzero": 1423double: 5 1424float: 6 1425float128: 5 1426ldouble: 7 1427 1428Function: "lgamma_upward": 1429double: 5 1430float: 6 1431float128: 8 1432ldouble: 6 1433 1434Function: "log": 1435double: 1 1436float: 1 1437float128: 1 1438ldouble: 1 1439 1440Function: "log10": 1441double: 2 1442float: 2 1443float128: 2 1444ldouble: 1 1445 1446Function: "log10_downward": 1447double: 2 1448float: 3 1449float128: 1 1450ldouble: 2 1451 1452Function: "log10_towardzero": 1453double: 2 1454float: 2 1455float128: 1 1456ldouble: 2 1457 1458Function: "log10_upward": 1459double: 2 1460float: 2 1461float128: 1 1462ldouble: 1 1463 1464Function: "log1p": 1465double: 1 1466float: 1 1467float128: 3 1468ldouble: 2 1469 1470Function: "log1p_downward": 1471double: 2 1472float: 2 1473float128: 3 1474ldouble: 4 1475 1476Function: "log1p_towardzero": 1477double: 2 1478float: 2 1479float128: 3 1480ldouble: 4 1481 1482Function: "log1p_upward": 1483double: 2 1484float: 2 1485float128: 2 1486ldouble: 3 1487 1488Function: "log2": 1489double: 2 1490float: 1 1491float128: 3 1492ldouble: 1 1493 1494Function: "log2_downward": 1495double: 3 1496float: 3 1497float128: 3 1498ldouble: 1 1499 1500Function: "log2_towardzero": 1501double: 2 1502float: 2 1503float128: 1 1504ldouble: 1 1505 1506Function: "log2_upward": 1507double: 3 1508float: 3 1509float128: 1 1510ldouble: 1 1511 1512Function: "log_downward": 1513float: 2 1514float128: 1 1515ldouble: 2 1516 1517Function: "log_towardzero": 1518float: 2 1519float128: 2 1520ldouble: 2 1521 1522Function: "log_upward": 1523double: 1 1524float: 2 1525float128: 1 1526ldouble: 1 1527 1528Function: "log_vlen16": 1529float: 3 1530 1531Function: "log_vlen2": 1532double: 1 1533 1534Function: "log_vlen4": 1535double: 1 1536float: 3 1537 1538Function: "log_vlen4_avx2": 1539double: 1 1540 1541Function: "log_vlen8": 1542double: 1 1543float: 3 1544 1545Function: "log_vlen8_avx2": 1546float: 3 1547 1548Function: "pow": 1549double: 1 1550float: 1 1551float128: 2 1552ldouble: 1 1553 1554Function: "pow_downward": 1555double: 1 1556float: 1 1557float128: 2 1558ldouble: 4 1559 1560Function: "pow_towardzero": 1561double: 1 1562float: 1 1563float128: 2 1564ldouble: 4 1565 1566Function: "pow_upward": 1567double: 1 1568float: 1 1569float128: 2 1570ldouble: 4 1571 1572Function: "pow_vlen16": 1573float: 3 1574 1575Function: "pow_vlen2": 1576double: 1 1577 1578Function: "pow_vlen4": 1579double: 1 1580float: 3 1581 1582Function: "pow_vlen4_avx2": 1583double: 1 1584 1585Function: "pow_vlen8": 1586double: 1 1587float: 3 1588 1589Function: "pow_vlen8_avx2": 1590float: 3 1591 1592Function: "sin": 1593double: 1 1594float: 1 1595float128: 2 1596ldouble: 2 1597 1598Function: "sin_downward": 1599double: 1 1600float: 1 1601float128: 3 1602ldouble: 3 1603 1604Function: "sin_towardzero": 1605double: 1 1606float: 1 1607float128: 2 1608ldouble: 2 1609 1610Function: "sin_upward": 1611double: 1 1612float: 1 1613float128: 3 1614ldouble: 3 1615 1616Function: "sin_vlen16": 1617float: 1 1618 1619Function: "sin_vlen2": 1620double: 2 1621 1622Function: "sin_vlen4": 1623double: 2 1624float: 1 1625 1626Function: "sin_vlen4_avx2": 1627double: 2 1628 1629Function: "sin_vlen8": 1630double: 2 1631float: 1 1632 1633Function: "sin_vlen8_avx2": 1634float: 1 1635 1636Function: "sincos": 1637double: 1 1638float128: 1 1639ldouble: 1 1640 1641Function: "sincos_downward": 1642double: 1 1643float: 1 1644float128: 3 1645ldouble: 3 1646 1647Function: "sincos_towardzero": 1648double: 1 1649float: 1 1650float128: 2 1651ldouble: 2 1652 1653Function: "sincos_upward": 1654double: 1 1655float: 1 1656float128: 3 1657ldouble: 3 1658 1659Function: "sincos_vlen16": 1660float: 1 1661 1662Function: "sincos_vlen2": 1663double: 2 1664 1665Function: "sincos_vlen4": 1666double: 2 1667float: 1 1668 1669Function: "sincos_vlen4_avx2": 1670double: 2 1671 1672Function: "sincos_vlen8": 1673double: 2 1674float: 1 1675 1676Function: "sincos_vlen8_avx2": 1677float: 1 1678 1679Function: "sinh": 1680double: 2 1681float: 2 1682float128: 2 1683ldouble: 3 1684 1685Function: "sinh_downward": 1686double: 3 1687float: 3 1688float128: 3 1689ldouble: 5 1690 1691Function: "sinh_towardzero": 1692double: 3 1693float: 2 1694float128: 3 1695ldouble: 4 1696 1697Function: "sinh_upward": 1698double: 3 1699float: 3 1700float128: 4 1701ldouble: 5 1702 1703Function: "tan": 1704float: 1 1705float128: 1 1706ldouble: 2 1707 1708Function: "tan_downward": 1709double: 1 1710float: 2 1711float128: 1 1712ldouble: 3 1713 1714Function: "tan_towardzero": 1715double: 1 1716float: 1 1717float128: 1 1718ldouble: 3 1719 1720Function: "tan_upward": 1721double: 1 1722float: 1 1723float128: 1 1724ldouble: 2 1725 1726Function: "tanh": 1727double: 2 1728float: 2 1729float128: 2 1730ldouble: 3 1731 1732Function: "tanh_downward": 1733double: 3 1734float: 3 1735float128: 4 1736ldouble: 4 1737 1738Function: "tanh_towardzero": 1739double: 2 1740float: 2 1741float128: 3 1742ldouble: 3 1743 1744Function: "tanh_upward": 1745double: 3 1746float: 3 1747float128: 3 1748ldouble: 4 1749 1750Function: "tgamma": 1751double: 9 1752float: 8 1753float128: 4 1754ldouble: 5 1755 1756Function: "tgamma_downward": 1757double: 9 1758float: 7 1759float128: 5 1760ldouble: 6 1761 1762Function: "tgamma_towardzero": 1763double: 9 1764float: 7 1765float128: 5 1766ldouble: 6 1767 1768Function: "tgamma_upward": 1769double: 9 1770float: 8 1771float128: 4 1772ldouble: 5 1773 1774Function: "y0": 1775double: 3 1776float: 9 1777float128: 3 1778ldouble: 2 1779 1780Function: "y0_downward": 1781double: 4 1782float: 9 1783float128: 7 1784ldouble: 7 1785 1786Function: "y0_towardzero": 1787double: 4 1788float: 9 1789float128: 3 1790ldouble: 8 1791 1792Function: "y0_upward": 1793double: 3 1794float: 9 1795float128: 4 1796ldouble: 7 1797 1798Function: "y1": 1799double: 6 1800float: 9 1801float128: 5 1802ldouble: 3 1803 1804Function: "y1_downward": 1805double: 6 1806float: 9 1807float128: 5 1808ldouble: 7 1809 1810Function: "y1_towardzero": 1811double: 4 1812float: 9 1813float128: 6 1814ldouble: 5 1815 1816Function: "y1_upward": 1817double: 7 1818float: 9 1819float128: 6 1820ldouble: 9 1821 1822Function: "yn": 1823double: 3 1824float: 3 1825float128: 5 1826ldouble: 4 1827 1828Function: "yn_downward": 1829double: 3 1830float: 4 1831float128: 5 1832ldouble: 5 1833 1834Function: "yn_towardzero": 1835double: 3 1836float: 3 1837float128: 5 1838ldouble: 5 1839 1840Function: "yn_upward": 1841double: 4 1842float: 5 1843float128: 5 1844ldouble: 4 1845 1846# end of automatic generation 1847