1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5double: 1
6float: 1
7float128: 1
8ldouble: 2
9
10Function: "acos_downward":
11double: 1
12float: 1
13float128: 1
14ldouble: 2
15
16Function: "acos_towardzero":
17double: 1
18float: 1
19float128: 1
20ldouble: 2
21
22Function: "acos_upward":
23double: 1
24float: 1
25float128: 1
26ldouble: 2
27
28Function: "acos_vlen16":
29float: 1
30
31Function: "acos_vlen2":
32double: 1
33
34Function: "acos_vlen4":
35double: 1
36float: 2
37
38Function: "acos_vlen4_avx2":
39double: 1
40
41Function: "acos_vlen8":
42double: 1
43float: 2
44
45Function: "acos_vlen8_avx2":
46float: 1
47
48Function: "acosh":
49double: 2
50float: 2
51float128: 4
52ldouble: 3
53
54Function: "acosh_downward":
55double: 2
56float: 2
57float128: 3
58ldouble: 4
59
60Function: "acosh_towardzero":
61double: 2
62float: 2
63float128: 2
64ldouble: 4
65
66Function: "acosh_upward":
67double: 2
68float: 2
69float128: 3
70ldouble: 3
71
72Function: "asin":
73double: 1
74float: 1
75float128: 1
76ldouble: 1
77
78Function: "asin_downward":
79double: 1
80float: 1
81float128: 2
82ldouble: 2
83
84Function: "asin_towardzero":
85double: 1
86float: 1
87float128: 1
88ldouble: 1
89
90Function: "asin_upward":
91double: 2
92float: 1
93float128: 2
94ldouble: 1
95
96Function: "asinh":
97double: 2
98float: 2
99float128: 4
100ldouble: 3
101
102Function: "asinh_downward":
103double: 3
104float: 3
105float128: 4
106ldouble: 5
107
108Function: "asinh_towardzero":
109double: 2
110float: 2
111float128: 2
112ldouble: 4
113
114Function: "asinh_upward":
115double: 3
116float: 3
117float128: 4
118ldouble: 5
119
120Function: "atan":
121double: 1
122float: 1
123float128: 1
124ldouble: 1
125
126Function: "atan2":
127float: 2
128float128: 2
129ldouble: 1
130
131Function: "atan2_downward":
132double: 1
133float: 2
134float128: 2
135ldouble: 1
136
137Function: "atan2_towardzero":
138double: 1
139float: 2
140float128: 3
141ldouble: 1
142
143Function: "atan2_upward":
144double: 1
145float: 2
146float128: 2
147ldouble: 1
148
149Function: "atan_downward":
150double: 1
151float: 2
152float128: 2
153ldouble: 1
154
155Function: "atan_towardzero":
156double: 1
157float: 1
158float128: 1
159ldouble: 1
160
161Function: "atan_upward":
162double: 1
163float: 2
164float128: 2
165ldouble: 1
166
167Function: "atanh":
168double: 2
169float: 2
170float128: 4
171ldouble: 3
172
173Function: "atanh_downward":
174double: 3
175float: 3
176float128: 4
177ldouble: 5
178
179Function: "atanh_towardzero":
180double: 2
181float: 2
182float128: 2
183ldouble: 4
184
185Function: "atanh_upward":
186double: 3
187float: 3
188float128: 4
189ldouble: 5
190
191Function: "cabs":
192double: 1
193float128: 1
194ldouble: 1
195
196Function: "cabs_downward":
197double: 1
198float128: 1
199ldouble: 1
200
201Function: "cabs_towardzero":
202double: 1
203float128: 1
204ldouble: 1
205
206Function: "cabs_upward":
207double: 1
208float128: 1
209ldouble: 1
210
211Function: Real part of "cacos":
212double: 1
213float: 2
214float128: 2
215ldouble: 1
216
217Function: Imaginary part of "cacos":
218double: 2
219float: 2
220float128: 2
221ldouble: 2
222
223Function: Real part of "cacos_downward":
224double: 3
225float: 2
226float128: 3
227ldouble: 2
228
229Function: Imaginary part of "cacos_downward":
230double: 5
231float: 3
232float128: 6
233ldouble: 6
234
235Function: Real part of "cacos_towardzero":
236double: 3
237float: 2
238float128: 3
239ldouble: 2
240
241Function: Imaginary part of "cacos_towardzero":
242double: 5
243float: 3
244float128: 5
245ldouble: 5
246
247Function: Real part of "cacos_upward":
248double: 2
249float: 2
250float128: 3
251ldouble: 2
252
253Function: Imaginary part of "cacos_upward":
254double: 5
255float: 7
256float128: 7
257ldouble: 7
258
259Function: Real part of "cacosh":
260double: 2
261float: 2
262float128: 2
263ldouble: 2
264
265Function: Imaginary part of "cacosh":
266double: 1
267float: 2
268float128: 2
269ldouble: 1
270
271Function: Real part of "cacosh_downward":
272double: 5
273float: 3
274float128: 5
275ldouble: 5
276
277Function: Imaginary part of "cacosh_downward":
278double: 3
279float: 3
280float128: 4
281ldouble: 3
282
283Function: Real part of "cacosh_towardzero":
284double: 5
285float: 3
286float128: 5
287ldouble: 5
288
289Function: Imaginary part of "cacosh_towardzero":
290double: 3
291float: 2
292float128: 3
293ldouble: 2
294
295Function: Real part of "cacosh_upward":
296double: 4
297float: 4
298float128: 6
299ldouble: 5
300
301Function: Imaginary part of "cacosh_upward":
302double: 3
303float: 2
304float128: 4
305ldouble: 3
306
307Function: "carg":
308float: 1
309float128: 2
310ldouble: 1
311
312Function: "carg_downward":
313double: 1
314float: 2
315float128: 2
316ldouble: 1
317
318Function: "carg_towardzero":
319double: 1
320float: 2
321float128: 3
322ldouble: 1
323
324Function: "carg_upward":
325double: 1
326float: 2
327float128: 2
328ldouble: 1
329
330Function: Real part of "casin":
331double: 1
332float: 1
333float128: 2
334ldouble: 1
335
336Function: Imaginary part of "casin":
337double: 2
338float: 2
339float128: 2
340ldouble: 2
341
342Function: Real part of "casin_downward":
343double: 3
344float: 2
345float128: 3
346ldouble: 3
347
348Function: Imaginary part of "casin_downward":
349double: 5
350float: 3
351float128: 6
352ldouble: 6
353
354Function: Real part of "casin_towardzero":
355double: 3
356float: 1
357float128: 3
358ldouble: 3
359
360Function: Imaginary part of "casin_towardzero":
361double: 5
362float: 3
363float128: 5
364ldouble: 5
365
366Function: Real part of "casin_upward":
367double: 3
368float: 2
369float128: 3
370ldouble: 2
371
372Function: Imaginary part of "casin_upward":
373double: 5
374float: 7
375float128: 7
376ldouble: 7
377
378Function: Real part of "casinh":
379double: 2
380float: 2
381float128: 2
382ldouble: 2
383
384Function: Imaginary part of "casinh":
385double: 1
386float: 1
387float128: 2
388ldouble: 1
389
390Function: Real part of "casinh_downward":
391double: 5
392float: 3
393float128: 6
394ldouble: 6
395
396Function: Imaginary part of "casinh_downward":
397double: 3
398float: 2
399float128: 3
400ldouble: 3
401
402Function: Real part of "casinh_towardzero":
403double: 5
404float: 3
405float128: 5
406ldouble: 5
407
408Function: Imaginary part of "casinh_towardzero":
409double: 3
410float: 1
411float128: 3
412ldouble: 3
413
414Function: Real part of "casinh_upward":
415double: 5
416float: 7
417float128: 7
418ldouble: 7
419
420Function: Imaginary part of "casinh_upward":
421double: 3
422float: 2
423float128: 3
424ldouble: 2
425
426Function: Real part of "catan":
427double: 1
428float: 1
429float128: 1
430ldouble: 1
431
432Function: Imaginary part of "catan":
433double: 1
434float: 1
435float128: 1
436ldouble: 1
437
438Function: Real part of "catan_downward":
439double: 1
440float: 2
441float128: 2
442ldouble: 1
443
444Function: Imaginary part of "catan_downward":
445double: 2
446float: 2
447float128: 2
448ldouble: 4
449
450Function: Real part of "catan_towardzero":
451double: 1
452float: 2
453float128: 2
454ldouble: 1
455
456Function: Imaginary part of "catan_towardzero":
457double: 2
458float: 2
459float128: 2
460ldouble: 4
461
462Function: Real part of "catan_upward":
463double: 1
464float: 1
465float128: 2
466ldouble: 1
467
468Function: Imaginary part of "catan_upward":
469double: 3
470float: 3
471float128: 3
472ldouble: 3
473
474Function: Real part of "catanh":
475double: 1
476float: 1
477float128: 1
478ldouble: 1
479
480Function: Imaginary part of "catanh":
481double: 1
482float: 1
483float128: 1
484ldouble: 1
485
486Function: Real part of "catanh_downward":
487double: 2
488float: 2
489float128: 2
490ldouble: 4
491
492Function: Imaginary part of "catanh_downward":
493double: 1
494float: 2
495float128: 2
496ldouble: 1
497
498Function: Real part of "catanh_towardzero":
499double: 2
500float: 2
501float128: 2
502ldouble: 4
503
504Function: Imaginary part of "catanh_towardzero":
505double: 1
506float: 2
507float128: 2
508ldouble: 1
509
510Function: Real part of "catanh_upward":
511double: 4
512float: 4
513float128: 4
514ldouble: 4
515
516Function: Imaginary part of "catanh_upward":
517double: 1
518float: 1
519float128: 2
520ldouble: 1
521
522Function: "cbrt":
523double: 4
524float: 1
525float128: 1
526ldouble: 1
527
528Function: "cbrt_downward":
529double: 4
530float: 1
531float128: 1
532ldouble: 1
533
534Function: "cbrt_towardzero":
535double: 3
536float: 1
537float128: 1
538ldouble: 1
539
540Function: "cbrt_upward":
541double: 5
542float: 1
543float128: 1
544ldouble: 1
545
546Function: Real part of "ccos":
547double: 1
548float: 1
549float128: 1
550ldouble: 1
551
552Function: Imaginary part of "ccos":
553double: 1
554float: 1
555float128: 1
556ldouble: 1
557
558Function: Real part of "ccos_downward":
559double: 1
560float: 1
561float128: 2
562ldouble: 3
563
564Function: Imaginary part of "ccos_downward":
565double: 3
566float: 3
567float128: 2
568ldouble: 3
569
570Function: Real part of "ccos_towardzero":
571double: 1
572float: 2
573float128: 2
574ldouble: 3
575
576Function: Imaginary part of "ccos_towardzero":
577double: 3
578float: 3
579float128: 2
580ldouble: 3
581
582Function: Real part of "ccos_upward":
583double: 1
584float: 2
585float128: 3
586ldouble: 2
587
588Function: Imaginary part of "ccos_upward":
589double: 2
590float: 2
591float128: 2
592ldouble: 2
593
594Function: Real part of "ccosh":
595double: 1
596float: 1
597float128: 1
598ldouble: 1
599
600Function: Imaginary part of "ccosh":
601double: 1
602float: 1
603float128: 1
604ldouble: 1
605
606Function: Real part of "ccosh_downward":
607double: 2
608float: 2
609float128: 2
610ldouble: 3
611
612Function: Imaginary part of "ccosh_downward":
613double: 3
614float: 3
615float128: 2
616ldouble: 3
617
618Function: Real part of "ccosh_towardzero":
619double: 2
620float: 3
621float128: 2
622ldouble: 3
623
624Function: Imaginary part of "ccosh_towardzero":
625double: 3
626float: 3
627float128: 2
628ldouble: 3
629
630Function: Real part of "ccosh_upward":
631double: 1
632float: 2
633float128: 3
634ldouble: 2
635
636Function: Imaginary part of "ccosh_upward":
637double: 2
638float: 2
639float128: 2
640ldouble: 2
641
642Function: Real part of "cexp":
643double: 2
644float: 1
645float128: 1
646ldouble: 1
647
648Function: Imaginary part of "cexp":
649double: 1
650float: 2
651float128: 1
652ldouble: 1
653
654Function: Real part of "cexp_downward":
655double: 2
656float: 2
657float128: 2
658ldouble: 3
659
660Function: Imaginary part of "cexp_downward":
661double: 3
662float: 3
663float128: 2
664ldouble: 3
665
666Function: Real part of "cexp_towardzero":
667double: 2
668float: 2
669float128: 2
670ldouble: 3
671
672Function: Imaginary part of "cexp_towardzero":
673double: 3
674float: 3
675float128: 2
676ldouble: 3
677
678Function: Real part of "cexp_upward":
679double: 1
680float: 2
681float128: 3
682ldouble: 2
683
684Function: Imaginary part of "cexp_upward":
685double: 3
686float: 2
687float128: 3
688ldouble: 3
689
690Function: Real part of "clog":
691double: 3
692float: 3
693float128: 2
694ldouble: 3
695
696Function: Imaginary part of "clog":
697double: 1
698float: 1
699float128: 1
700ldouble: 1
701
702Function: Real part of "clog10":
703double: 3
704float: 4
705float128: 2
706ldouble: 4
707
708Function: Imaginary part of "clog10":
709double: 2
710float: 2
711float128: 2
712ldouble: 2
713
714Function: Real part of "clog10_downward":
715double: 5
716float: 5
717float128: 3
718ldouble: 8
719
720Function: Imaginary part of "clog10_downward":
721double: 2
722float: 4
723float128: 3
724ldouble: 3
725
726Function: Real part of "clog10_towardzero":
727double: 5
728float: 6
729float128: 4
730ldouble: 8
731
732Function: Imaginary part of "clog10_towardzero":
733double: 2
734float: 4
735float128: 3
736ldouble: 3
737
738Function: Real part of "clog10_upward":
739double: 6
740float: 5
741float128: 4
742ldouble: 8
743
744Function: Imaginary part of "clog10_upward":
745double: 2
746float: 4
747float128: 3
748ldouble: 3
749
750Function: Real part of "clog_downward":
751double: 4
752float: 3
753float128: 3
754ldouble: 5
755
756Function: Imaginary part of "clog_downward":
757double: 1
758float: 2
759float128: 2
760ldouble: 1
761
762Function: Real part of "clog_towardzero":
763double: 4
764float: 4
765float128: 3
766ldouble: 5
767
768Function: Imaginary part of "clog_towardzero":
769double: 1
770float: 3
771float128: 2
772ldouble: 1
773
774Function: Real part of "clog_upward":
775double: 4
776float: 3
777float128: 4
778ldouble: 4
779
780Function: Imaginary part of "clog_upward":
781double: 1
782float: 2
783float128: 2
784ldouble: 1
785
786Function: "cos":
787double: 1
788float: 1
789float128: 2
790ldouble: 1
791
792Function: "cos_downward":
793double: 1
794float: 1
795float128: 3
796ldouble: 3
797
798Function: "cos_towardzero":
799double: 1
800float: 1
801float128: 1
802ldouble: 2
803
804Function: "cos_upward":
805double: 1
806float: 1
807float128: 2
808ldouble: 2
809
810Function: "cos_vlen16":
811float: 1
812
813Function: "cos_vlen2":
814double: 2
815
816Function: "cos_vlen4":
817double: 2
818float: 1
819
820Function: "cos_vlen4_avx2":
821double: 2
822
823Function: "cos_vlen8":
824double: 2
825float: 1
826
827Function: "cos_vlen8_avx2":
828float: 1
829
830Function: "cosh":
831double: 2
832float: 2
833float128: 2
834ldouble: 3
835
836Function: "cosh_downward":
837double: 3
838float: 1
839float128: 3
840ldouble: 3
841
842Function: "cosh_towardzero":
843double: 3
844float: 1
845float128: 3
846ldouble: 3
847
848Function: "cosh_upward":
849double: 2
850float: 2
851float128: 3
852ldouble: 3
853
854Function: Real part of "cpow":
855double: 2
856float: 5
857float128: 4
858ldouble: 3
859
860Function: Imaginary part of "cpow":
861float: 2
862float128: 1
863ldouble: 4
864
865Function: Real part of "cpow_downward":
866double: 5
867float: 8
868float128: 6
869ldouble: 7
870
871Function: Imaginary part of "cpow_downward":
872double: 1
873float: 2
874float128: 2
875ldouble: 2
876
877Function: Real part of "cpow_towardzero":
878double: 5
879float: 8
880float128: 6
881ldouble: 7
882
883Function: Imaginary part of "cpow_towardzero":
884double: 1
885float: 2
886float128: 2
887ldouble: 1
888
889Function: Real part of "cpow_upward":
890double: 4
891float: 1
892float128: 3
893ldouble: 2
894
895Function: Imaginary part of "cpow_upward":
896double: 1
897float: 2
898float128: 2
899ldouble: 2
900
901Function: Real part of "csin":
902double: 1
903float: 1
904float128: 1
905ldouble: 1
906
907Function: Imaginary part of "csin":
908float128: 1
909
910Function: Real part of "csin_downward":
911double: 3
912float: 3
913float128: 2
914ldouble: 3
915
916Function: Imaginary part of "csin_downward":
917double: 1
918float: 2
919float128: 2
920ldouble: 3
921
922Function: Real part of "csin_towardzero":
923double: 3
924float: 3
925float128: 2
926ldouble: 3
927
928Function: Imaginary part of "csin_towardzero":
929double: 2
930float: 2
931float128: 2
932ldouble: 3
933
934Function: Real part of "csin_upward":
935double: 2
936float: 3
937float128: 2
938ldouble: 3
939
940Function: Imaginary part of "csin_upward":
941double: 1
942float: 3
943float128: 3
944ldouble: 3
945
946Function: Real part of "csinh":
947float: 1
948float128: 1
949ldouble: 1
950
951Function: Imaginary part of "csinh":
952double: 1
953float: 1
954float128: 1
955ldouble: 1
956
957Function: Real part of "csinh_downward":
958double: 2
959float: 2
960float128: 2
961ldouble: 3
962
963Function: Imaginary part of "csinh_downward":
964double: 3
965float: 3
966float128: 2
967ldouble: 3
968
969Function: Real part of "csinh_towardzero":
970double: 2
971float: 2
972float128: 2
973ldouble: 3
974
975Function: Imaginary part of "csinh_towardzero":
976double: 3
977float: 3
978float128: 2
979ldouble: 3
980
981Function: Real part of "csinh_upward":
982double: 1
983float: 3
984float128: 3
985ldouble: 3
986
987Function: Imaginary part of "csinh_upward":
988double: 2
989float: 3
990float128: 2
991ldouble: 3
992
993Function: Real part of "csqrt":
994double: 2
995float: 2
996float128: 2
997ldouble: 2
998
999Function: Imaginary part of "csqrt":
1000double: 2
1001float: 2
1002float128: 2
1003ldouble: 2
1004
1005Function: Real part of "csqrt_downward":
1006double: 5
1007float: 4
1008float128: 4
1009ldouble: 5
1010
1011Function: Imaginary part of "csqrt_downward":
1012double: 4
1013float: 3
1014float128: 3
1015ldouble: 4
1016
1017Function: Real part of "csqrt_towardzero":
1018double: 4
1019float: 3
1020float128: 3
1021ldouble: 4
1022
1023Function: Imaginary part of "csqrt_towardzero":
1024double: 4
1025float: 3
1026float128: 3
1027ldouble: 4
1028
1029Function: Real part of "csqrt_upward":
1030double: 5
1031float: 4
1032float128: 4
1033ldouble: 5
1034
1035Function: Imaginary part of "csqrt_upward":
1036double: 3
1037float: 3
1038float128: 3
1039ldouble: 4
1040
1041Function: Real part of "ctan":
1042double: 1
1043float: 1
1044float128: 3
1045ldouble: 2
1046
1047Function: Imaginary part of "ctan":
1048double: 2
1049float: 2
1050float128: 3
1051ldouble: 1
1052
1053Function: Real part of "ctan_downward":
1054double: 6
1055float: 5
1056float128: 4
1057ldouble: 5
1058
1059Function: Imaginary part of "ctan_downward":
1060double: 2
1061float: 2
1062float128: 5
1063ldouble: 4
1064
1065Function: Real part of "ctan_towardzero":
1066double: 5
1067float: 3
1068float128: 4
1069ldouble: 5
1070
1071Function: Imaginary part of "ctan_towardzero":
1072double: 2
1073float: 2
1074float128: 5
1075ldouble: 4
1076
1077Function: Real part of "ctan_upward":
1078double: 2
1079float: 4
1080float128: 5
1081ldouble: 3
1082
1083Function: Imaginary part of "ctan_upward":
1084double: 2
1085float: 2
1086float128: 5
1087ldouble: 3
1088
1089Function: Real part of "ctanh":
1090double: 2
1091float: 2
1092float128: 3
1093ldouble: 1
1094
1095Function: Imaginary part of "ctanh":
1096double: 2
1097float: 2
1098float128: 3
1099ldouble: 2
1100
1101Function: Real part of "ctanh_downward":
1102double: 4
1103float: 2
1104float128: 5
1105ldouble: 4
1106
1107Function: Imaginary part of "ctanh_downward":
1108double: 6
1109float: 5
1110float128: 4
1111ldouble: 4
1112
1113Function: Real part of "ctanh_towardzero":
1114double: 2
1115float: 2
1116float128: 5
1117ldouble: 4
1118
1119Function: Imaginary part of "ctanh_towardzero":
1120double: 5
1121float: 3
1122float128: 3
1123ldouble: 3
1124
1125Function: Real part of "ctanh_upward":
1126double: 2
1127float: 2
1128float128: 5
1129ldouble: 3
1130
1131Function: Imaginary part of "ctanh_upward":
1132double: 2
1133float: 3
1134float128: 5
1135ldouble: 3
1136
1137Function: "erf":
1138double: 1
1139float: 1
1140float128: 1
1141ldouble: 1
1142
1143Function: "erf_downward":
1144double: 1
1145float: 1
1146float128: 2
1147ldouble: 1
1148
1149Function: "erf_towardzero":
1150double: 1
1151float: 1
1152float128: 1
1153ldouble: 1
1154
1155Function: "erf_upward":
1156double: 1
1157float: 1
1158float128: 2
1159ldouble: 1
1160
1161Function: "erfc":
1162double: 5
1163float: 3
1164float128: 4
1165ldouble: 5
1166
1167Function: "erfc_downward":
1168double: 5
1169float: 6
1170float128: 5
1171ldouble: 4
1172
1173Function: "erfc_towardzero":
1174double: 3
1175float: 4
1176float128: 4
1177ldouble: 4
1178
1179Function: "erfc_upward":
1180double: 5
1181float: 6
1182float128: 5
1183ldouble: 5
1184
1185Function: "exp":
1186double: 1
1187float: 1
1188float128: 1
1189ldouble: 1
1190
1191Function: "exp10":
1192double: 2
1193float: 1
1194float128: 2
1195ldouble: 1
1196
1197Function: "exp10_downward":
1198double: 3
1199float: 1
1200float128: 3
1201ldouble: 2
1202
1203Function: "exp10_towardzero":
1204double: 3
1205float: 1
1206float128: 3
1207ldouble: 2
1208
1209Function: "exp10_upward":
1210double: 2
1211float: 1
1212float128: 3
1213ldouble: 2
1214
1215Function: "exp2":
1216double: 1
1217float: 1
1218float128: 1
1219ldouble: 1
1220
1221Function: "exp2_downward":
1222double: 1
1223float: 1
1224float128: 1
1225ldouble: 1
1226
1227Function: "exp2_towardzero":
1228double: 1
1229float: 1
1230float128: 1
1231ldouble: 1
1232
1233Function: "exp2_upward":
1234double: 1
1235float: 1
1236float128: 2
1237ldouble: 1
1238
1239Function: "exp_downward":
1240double: 1
1241float: 1
1242ldouble: 1
1243
1244Function: "exp_towardzero":
1245double: 1
1246float: 1
1247ldouble: 2
1248
1249Function: "exp_upward":
1250double: 1
1251float: 1
1252ldouble: 1
1253
1254Function: "exp_vlen16":
1255float: 1
1256
1257Function: "exp_vlen2":
1258double: 1
1259
1260Function: "exp_vlen4":
1261double: 1
1262float: 1
1263
1264Function: "exp_vlen4_avx2":
1265double: 1
1266
1267Function: "exp_vlen8":
1268double: 1
1269float: 1
1270
1271Function: "exp_vlen8_avx2":
1272float: 1
1273
1274Function: "expm1":
1275double: 1
1276float: 1
1277float128: 2
1278ldouble: 3
1279
1280Function: "expm1_downward":
1281double: 1
1282float: 1
1283float128: 2
1284ldouble: 4
1285
1286Function: "expm1_towardzero":
1287double: 1
1288float: 2
1289float128: 4
1290ldouble: 4
1291
1292Function: "expm1_upward":
1293double: 1
1294float: 1
1295float128: 3
1296ldouble: 4
1297
1298Function: "gamma":
1299double: 4
1300float: 7
1301ldouble: 4
1302
1303Function: "gamma_downward":
1304double: 5
1305float: 7
1306ldouble: 7
1307
1308Function: "gamma_towardzero":
1309double: 5
1310float: 6
1311ldouble: 7
1312
1313Function: "gamma_upward":
1314double: 5
1315float: 6
1316ldouble: 6
1317
1318Function: "hypot":
1319double: 1
1320float128: 1
1321ldouble: 1
1322
1323Function: "hypot_downward":
1324double: 1
1325float128: 1
1326ldouble: 1
1327
1328Function: "hypot_towardzero":
1329double: 1
1330float128: 1
1331ldouble: 1
1332
1333Function: "hypot_upward":
1334double: 1
1335float128: 1
1336ldouble: 1
1337
1338Function: "j0":
1339double: 3
1340float: 9
1341float128: 2
1342ldouble: 8
1343
1344Function: "j0_downward":
1345double: 6
1346float: 9
1347float128: 9
1348ldouble: 6
1349
1350Function: "j0_towardzero":
1351double: 7
1352float: 9
1353float128: 9
1354ldouble: 6
1355
1356Function: "j0_upward":
1357double: 9
1358float: 9
1359float128: 7
1360ldouble: 6
1361
1362Function: "j1":
1363double: 4
1364float: 9
1365float128: 4
1366ldouble: 9
1367
1368Function: "j1_downward":
1369double: 6
1370float: 8
1371float128: 6
1372ldouble: 8
1373
1374Function: "j1_towardzero":
1375double: 4
1376float: 9
1377float128: 9
1378ldouble: 4
1379
1380Function: "j1_upward":
1381double: 9
1382float: 9
1383float128: 9
1384ldouble: 3
1385
1386Function: "jn":
1387double: 4
1388float: 4
1389float128: 7
1390ldouble: 4
1391
1392Function: "jn_downward":
1393double: 5
1394float: 5
1395float128: 8
1396ldouble: 4
1397
1398Function: "jn_towardzero":
1399double: 5
1400float: 5
1401float128: 8
1402ldouble: 5
1403
1404Function: "jn_upward":
1405double: 5
1406float: 5
1407float128: 7
1408ldouble: 5
1409
1410Function: "lgamma":
1411double: 4
1412float: 7
1413float128: 5
1414ldouble: 4
1415
1416Function: "lgamma_downward":
1417double: 5
1418float: 7
1419float128: 8
1420ldouble: 7
1421
1422Function: "lgamma_towardzero":
1423double: 5
1424float: 6
1425float128: 5
1426ldouble: 7
1427
1428Function: "lgamma_upward":
1429double: 5
1430float: 6
1431float128: 8
1432ldouble: 6
1433
1434Function: "log":
1435double: 1
1436float: 1
1437float128: 1
1438ldouble: 1
1439
1440Function: "log10":
1441double: 2
1442float: 2
1443float128: 2
1444ldouble: 1
1445
1446Function: "log10_downward":
1447double: 2
1448float: 3
1449float128: 1
1450ldouble: 2
1451
1452Function: "log10_towardzero":
1453double: 2
1454float: 2
1455float128: 1
1456ldouble: 2
1457
1458Function: "log10_upward":
1459double: 2
1460float: 2
1461float128: 1
1462ldouble: 1
1463
1464Function: "log1p":
1465double: 1
1466float: 1
1467float128: 3
1468ldouble: 2
1469
1470Function: "log1p_downward":
1471double: 2
1472float: 2
1473float128: 3
1474ldouble: 4
1475
1476Function: "log1p_towardzero":
1477double: 2
1478float: 2
1479float128: 3
1480ldouble: 4
1481
1482Function: "log1p_upward":
1483double: 2
1484float: 2
1485float128: 2
1486ldouble: 3
1487
1488Function: "log2":
1489double: 2
1490float: 1
1491float128: 3
1492ldouble: 1
1493
1494Function: "log2_downward":
1495double: 3
1496float: 3
1497float128: 3
1498ldouble: 1
1499
1500Function: "log2_towardzero":
1501double: 2
1502float: 2
1503float128: 1
1504ldouble: 1
1505
1506Function: "log2_upward":
1507double: 3
1508float: 3
1509float128: 1
1510ldouble: 1
1511
1512Function: "log_downward":
1513float: 2
1514float128: 1
1515ldouble: 2
1516
1517Function: "log_towardzero":
1518float: 2
1519float128: 2
1520ldouble: 2
1521
1522Function: "log_upward":
1523double: 1
1524float: 2
1525float128: 1
1526ldouble: 1
1527
1528Function: "log_vlen16":
1529float: 3
1530
1531Function: "log_vlen2":
1532double: 1
1533
1534Function: "log_vlen4":
1535double: 1
1536float: 3
1537
1538Function: "log_vlen4_avx2":
1539double: 1
1540
1541Function: "log_vlen8":
1542double: 1
1543float: 3
1544
1545Function: "log_vlen8_avx2":
1546float: 3
1547
1548Function: "pow":
1549double: 1
1550float: 1
1551float128: 2
1552ldouble: 1
1553
1554Function: "pow_downward":
1555double: 1
1556float: 1
1557float128: 2
1558ldouble: 4
1559
1560Function: "pow_towardzero":
1561double: 1
1562float: 1
1563float128: 2
1564ldouble: 4
1565
1566Function: "pow_upward":
1567double: 1
1568float: 1
1569float128: 2
1570ldouble: 4
1571
1572Function: "pow_vlen16":
1573float: 3
1574
1575Function: "pow_vlen2":
1576double: 1
1577
1578Function: "pow_vlen4":
1579double: 1
1580float: 3
1581
1582Function: "pow_vlen4_avx2":
1583double: 1
1584
1585Function: "pow_vlen8":
1586double: 1
1587float: 3
1588
1589Function: "pow_vlen8_avx2":
1590float: 3
1591
1592Function: "sin":
1593double: 1
1594float: 1
1595float128: 2
1596ldouble: 2
1597
1598Function: "sin_downward":
1599double: 1
1600float: 1
1601float128: 3
1602ldouble: 3
1603
1604Function: "sin_towardzero":
1605double: 1
1606float: 1
1607float128: 2
1608ldouble: 2
1609
1610Function: "sin_upward":
1611double: 1
1612float: 1
1613float128: 3
1614ldouble: 3
1615
1616Function: "sin_vlen16":
1617float: 1
1618
1619Function: "sin_vlen2":
1620double: 2
1621
1622Function: "sin_vlen4":
1623double: 2
1624float: 1
1625
1626Function: "sin_vlen4_avx2":
1627double: 2
1628
1629Function: "sin_vlen8":
1630double: 2
1631float: 1
1632
1633Function: "sin_vlen8_avx2":
1634float: 1
1635
1636Function: "sincos":
1637double: 1
1638float128: 1
1639ldouble: 1
1640
1641Function: "sincos_downward":
1642double: 1
1643float: 1
1644float128: 3
1645ldouble: 3
1646
1647Function: "sincos_towardzero":
1648double: 1
1649float: 1
1650float128: 2
1651ldouble: 2
1652
1653Function: "sincos_upward":
1654double: 1
1655float: 1
1656float128: 3
1657ldouble: 3
1658
1659Function: "sincos_vlen16":
1660float: 1
1661
1662Function: "sincos_vlen2":
1663double: 2
1664
1665Function: "sincos_vlen4":
1666double: 2
1667float: 1
1668
1669Function: "sincos_vlen4_avx2":
1670double: 2
1671
1672Function: "sincos_vlen8":
1673double: 2
1674float: 1
1675
1676Function: "sincos_vlen8_avx2":
1677float: 1
1678
1679Function: "sinh":
1680double: 2
1681float: 2
1682float128: 2
1683ldouble: 3
1684
1685Function: "sinh_downward":
1686double: 3
1687float: 3
1688float128: 3
1689ldouble: 5
1690
1691Function: "sinh_towardzero":
1692double: 3
1693float: 2
1694float128: 3
1695ldouble: 4
1696
1697Function: "sinh_upward":
1698double: 3
1699float: 3
1700float128: 4
1701ldouble: 5
1702
1703Function: "tan":
1704float: 1
1705float128: 1
1706ldouble: 2
1707
1708Function: "tan_downward":
1709double: 1
1710float: 2
1711float128: 1
1712ldouble: 3
1713
1714Function: "tan_towardzero":
1715double: 1
1716float: 1
1717float128: 1
1718ldouble: 3
1719
1720Function: "tan_upward":
1721double: 1
1722float: 1
1723float128: 1
1724ldouble: 2
1725
1726Function: "tanh":
1727double: 2
1728float: 2
1729float128: 2
1730ldouble: 3
1731
1732Function: "tanh_downward":
1733double: 3
1734float: 3
1735float128: 4
1736ldouble: 4
1737
1738Function: "tanh_towardzero":
1739double: 2
1740float: 2
1741float128: 3
1742ldouble: 3
1743
1744Function: "tanh_upward":
1745double: 3
1746float: 3
1747float128: 3
1748ldouble: 4
1749
1750Function: "tgamma":
1751double: 9
1752float: 8
1753float128: 4
1754ldouble: 5
1755
1756Function: "tgamma_downward":
1757double: 9
1758float: 7
1759float128: 5
1760ldouble: 6
1761
1762Function: "tgamma_towardzero":
1763double: 9
1764float: 7
1765float128: 5
1766ldouble: 6
1767
1768Function: "tgamma_upward":
1769double: 9
1770float: 8
1771float128: 4
1772ldouble: 5
1773
1774Function: "y0":
1775double: 3
1776float: 9
1777float128: 3
1778ldouble: 2
1779
1780Function: "y0_downward":
1781double: 4
1782float: 9
1783float128: 7
1784ldouble: 7
1785
1786Function: "y0_towardzero":
1787double: 4
1788float: 9
1789float128: 3
1790ldouble: 8
1791
1792Function: "y0_upward":
1793double: 3
1794float: 9
1795float128: 4
1796ldouble: 7
1797
1798Function: "y1":
1799double: 6
1800float: 9
1801float128: 5
1802ldouble: 3
1803
1804Function: "y1_downward":
1805double: 6
1806float: 9
1807float128: 5
1808ldouble: 7
1809
1810Function: "y1_towardzero":
1811double: 4
1812float: 9
1813float128: 6
1814ldouble: 5
1815
1816Function: "y1_upward":
1817double: 7
1818float: 9
1819float128: 6
1820ldouble: 9
1821
1822Function: "yn":
1823double: 3
1824float: 3
1825float128: 5
1826ldouble: 4
1827
1828Function: "yn_downward":
1829double: 3
1830float: 4
1831float128: 5
1832ldouble: 5
1833
1834Function: "yn_towardzero":
1835double: 3
1836float: 3
1837float128: 5
1838ldouble: 5
1839
1840Function: "yn_upward":
1841double: 4
1842float: 5
1843float128: 5
1844ldouble: 4
1845
1846# end of automatic generation
1847