/* * Copyright (c) 2014 Travis Geiselbrecht * * Use of this source code is governed by a MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT */ #include #include #include #include #include #include #include #include #include #include #include #define LOCAL_TRACE 0 static uint32_t get_arm_pll_freq(void) { LTRACEF("ARM_PLL_CTRL 0x%x\n", SLCR_REG(ARM_PLL_CTRL)); // XXX test that the pll is actually enabled uint32_t fdiv = BITS_SHIFT(SLCR_REG(ARM_PLL_CTRL), 18, 12); return EXTERNAL_CLOCK_FREQ * fdiv; } static uint32_t get_ddr_pll_freq(void) { LTRACEF("DDR_PLL_CTRL 0x%x\n", SLCR_REG(DDR_PLL_CTRL)); // XXX test that the pll is actually enabled uint32_t fdiv = BITS_SHIFT(SLCR_REG(DDR_PLL_CTRL), 18, 12); return EXTERNAL_CLOCK_FREQ * fdiv; } static uint32_t get_io_pll_freq(void) { LTRACEF("IO_PLL_CTRL 0x%x\n", SLCR_REG(IO_PLL_CTRL)); // XXX test that the pll is actually enabled uint32_t fdiv = BITS_SHIFT(SLCR_REG(IO_PLL_CTRL), 18, 12); return EXTERNAL_CLOCK_FREQ * fdiv; } static uint32_t get_cpu_input_freq(void) { LTRACEF("ARM_CLK_CTRL 0x%x\n", SLCR_REG(ARM_CLK_CTRL)); uint32_t divisor = BITS_SHIFT(SLCR_REG(ARM_CLK_CTRL), 13, 8); uint32_t srcsel = BITS_SHIFT(SLCR_REG(ARM_CLK_CTRL), 5, 4); uint32_t srcclk; switch (srcsel) { default: case 0: case 1: // arm pll srcclk = get_arm_pll_freq(); break; case 2: // ddr pll srcclk = get_ddr_pll_freq(); break; case 3: // io pll srcclk = get_io_pll_freq(); break; } // cpu 6x4x return srcclk / divisor; } static uint32_t get_cpu_6x4x_freq(void) { // cpu 6x4x is the post divided frequency in the cpu clock block return get_cpu_input_freq(); } static uint32_t get_cpu_3x2x_freq(void) { // cpu 3x2x is always half the speed of 6x4x return get_cpu_input_freq() / 2; } static uint32_t get_cpu_2x_freq(void) { // cpu 2x is either /3 or /2 the speed of 6x4x return get_cpu_input_freq() / ((SLCR_REG(CLK_621_TRUE) & 1) ? 3 : 2); } static uint32_t get_cpu_1x_freq(void) { // cpu 1x is either /6 or /4 the speed of 6x4x return get_cpu_input_freq() / ((SLCR_REG(CLK_621_TRUE) & 1) ? 6 : 4); } uint32_t zynq_get_arm_freq(void) { return get_cpu_6x4x_freq(); } uint32_t zynq_get_arm_timer_freq(void) { return get_cpu_3x2x_freq(); } uint32_t zynq_get_swdt_freq(void) { return get_cpu_1x_freq(); } struct periph_clock { addr_t clk_ctrl_reg; uint enable_bit_pos; }; static addr_t periph_clk_ctrl_reg(enum zynq_periph periph) { DEBUG_ASSERT(periph < _PERIPH_MAX); switch (periph) { case PERIPH_USB0: return (uintptr_t)&SLCR->USB0_CLK_CTRL; case PERIPH_USB1: return (uintptr_t)&SLCR->USB1_CLK_CTRL; case PERIPH_GEM0: return (uintptr_t)&SLCR->GEM0_CLK_CTRL; case PERIPH_GEM1: return (uintptr_t)&SLCR->GEM1_CLK_CTRL; case PERIPH_SMC: return (uintptr_t)&SLCR->SMC_CLK_CTRL; case PERIPH_LQSPI: return (uintptr_t)&SLCR->LQSPI_CLK_CTRL; case PERIPH_SDIO0: return (uintptr_t)&SLCR->SDIO_CLK_CTRL; case PERIPH_SDIO1: return (uintptr_t)&SLCR->SDIO_CLK_CTRL; case PERIPH_UART0: return (uintptr_t)&SLCR->UART_CLK_CTRL; case PERIPH_UART1: return (uintptr_t)&SLCR->UART_CLK_CTRL; case PERIPH_SPI0: return (uintptr_t)&SLCR->SPI_CLK_CTRL; case PERIPH_SPI1: return (uintptr_t)&SLCR->SPI_CLK_CTRL; case PERIPH_CAN0: return (uintptr_t)&SLCR->CAN_CLK_CTRL; case PERIPH_CAN1: return (uintptr_t)&SLCR->CAN_CLK_CTRL; case PERIPH_DBG: return (uintptr_t)&SLCR->DBG_CLK_CTRL; case PERIPH_PCAP: return (uintptr_t)&SLCR->PCAP_CLK_CTRL; case PERIPH_FPGA0: return (uintptr_t)&SLCR->FPGA0_CLK_CTRL; case PERIPH_FPGA1: return (uintptr_t)&SLCR->FPGA1_CLK_CTRL; case PERIPH_FPGA2: return (uintptr_t)&SLCR->FPGA2_CLK_CTRL; case PERIPH_FPGA3: return (uintptr_t)&SLCR->FPGA3_CLK_CTRL; default: return 0; } } static int periph_clk_ctrl_enable_bitpos(enum zynq_periph periph) { switch (periph) { case PERIPH_SDIO1: case PERIPH_UART1: case PERIPH_SPI1: case PERIPH_CAN1: return 1; case PERIPH_FPGA0: case PERIPH_FPGA1: case PERIPH_FPGA2: case PERIPH_FPGA3: return -1; // enable bit is more complicated on fpga default: // most peripherals have the enable bit in bit0 return 0; } } static uint periph_clk_ctrl_divisor_count(enum zynq_periph periph) { switch (periph) { case PERIPH_GEM0: case PERIPH_GEM1: case PERIPH_CAN0: case PERIPH_CAN1: case PERIPH_FPGA0: case PERIPH_FPGA1: case PERIPH_FPGA2: case PERIPH_FPGA3: return 2; default: // most peripherals have a single divisor return 1; } } static const char *periph_to_name(enum zynq_periph periph) { switch (periph) { case PERIPH_USB0: return "USB0"; case PERIPH_USB1: return "USB1"; case PERIPH_GEM0: return "GEM0"; case PERIPH_GEM1: return "GEM1"; case PERIPH_SMC: return "SMC"; case PERIPH_LQSPI: return "LQSPI"; case PERIPH_SDIO0: return "SDIO0"; case PERIPH_SDIO1: return "SDIO1"; case PERIPH_UART0: return "UART0"; case PERIPH_UART1: return "UART1"; case PERIPH_SPI0: return "SPI0"; case PERIPH_SPI1: return "SPI1"; case PERIPH_CAN0: return "CAN0"; case PERIPH_CAN1: return "CAN1"; case PERIPH_DBG: return "DBG"; case PERIPH_PCAP: return "PCAP"; case PERIPH_FPGA0: return "FPGA0"; case PERIPH_FPGA1: return "FPGA1"; case PERIPH_FPGA2: return "FPGA2"; case PERIPH_FPGA3: return "FPGA3"; default: return "unknown"; } } status_t zynq_set_clock(enum zynq_periph periph, bool enable, enum zynq_clock_source source, uint32_t divisor, uint32_t divisor2) { DEBUG_ASSERT(periph < _PERIPH_MAX); DEBUG_ASSERT(!enable || (divisor > 0 && divisor <= 0x3f)); DEBUG_ASSERT(source < 4); // get the clock control register base addr_t clk_reg = periph_clk_ctrl_reg(periph); DEBUG_ASSERT(clk_reg != 0); int enable_bitpos = periph_clk_ctrl_enable_bitpos(periph); zynq_slcr_unlock(); // if we're enabling if (enable) { uint32_t ctrl = *REG32(clk_reg); // set the divisor, divisor2 (if applicable), source, and enable ctrl = (ctrl & ~(0x3f << 20)) | (divisor2 << 20); ctrl = (ctrl & ~(0x3f << 8)) | (divisor << 8); ctrl = (ctrl & ~(0x3 << 4)) | (source << 4); if (enable_bitpos >= 0) ctrl |= (1 << enable_bitpos); *REG32(clk_reg) = ctrl; } else { if (enable_bitpos >= 0) { // disabling uint32_t ctrl = *REG32(clk_reg); ctrl &= ~(1 << enable_bitpos); *REG32(clk_reg) = ctrl; } } zynq_slcr_lock(); return NO_ERROR; } uint32_t zynq_get_clock(enum zynq_periph periph) { DEBUG_ASSERT(periph < _PERIPH_MAX); // get the clock control register base addr_t clk_reg = periph_clk_ctrl_reg(periph); DEBUG_ASSERT(clk_reg != 0); int enable_bitpos = periph_clk_ctrl_enable_bitpos(periph); LTRACEF("clkreg 0x%x\n", *REG32(clk_reg)); // see if it's enabled if (enable_bitpos >= 0) { if ((*REG32(clk_reg) & (1 << enable_bitpos)) == 0) { // not enabled return 0; } } // get the source clock uint32_t srcclk = 0; switch (BITS_SHIFT(*REG32(clk_reg), 5, 4)) { case 0: case 1: srcclk = get_io_pll_freq(); break; case 2: srcclk = get_arm_pll_freq(); break; case 3: srcclk = get_ddr_pll_freq(); break; } // get the divisor out of the register uint32_t divisor = BITS_SHIFT(*REG32(clk_reg), 13, 8); if (divisor == 0) return 0; uint32_t divisor2 = 1; if (periph_clk_ctrl_divisor_count(periph) == 2) { divisor2 = BITS_SHIFT(*REG32(clk_reg), 25, 20); if (divisor2 == 0) return 0; } uint32_t clk = srcclk / divisor / divisor2; return clk; } void zynq_dump_clocks(void) { printf("zynq clocks:\n"); printf("\tarm pll %d\n", get_arm_pll_freq()); printf("\tddr pll %d\n", get_ddr_pll_freq()); printf("\tio pll %d\n", get_io_pll_freq()); printf("\tarm clock %d\n", zynq_get_arm_freq()); printf("\tarm timer clock %d\n", zynq_get_arm_timer_freq()); printf("\tcpu6x4x clock %d\n", get_cpu_6x4x_freq()); printf("\tcpu3x2x clock %d\n", get_cpu_3x2x_freq()); printf("\tcpu2x clock %d\n", get_cpu_2x_freq()); printf("\tcpu1x clock %d\n", get_cpu_1x_freq()); printf("peripheral clocks:\n"); for (uint i = 0; i < _PERIPH_MAX; i++) { printf("\tperiph %d (%s) clock %u\n", i, periph_to_name(i), zynq_get_clock(i)); } }