1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42
43 #include "udf_i.h"
44 #include "udf_sb.h"
45
46 #define EXTENT_MERGE_SIZE 5
47
48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55 struct udf_map_rq;
56
57 static umode_t udf_convert_permissions(struct fileEntry *);
58 static int udf_update_inode(struct inode *, int);
59 static int udf_sync_inode(struct inode *inode);
60 static int udf_alloc_i_data(struct inode *inode, size_t size);
61 static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
62 static int udf_insert_aext(struct inode *, struct extent_position,
63 struct kernel_lb_addr, uint32_t);
64 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
65 struct kernel_long_ad *, int *);
66 static void udf_prealloc_extents(struct inode *, int, int,
67 struct kernel_long_ad *, int *);
68 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
69 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
70 int, struct extent_position *);
71 static int udf_get_block_wb(struct inode *inode, sector_t block,
72 struct buffer_head *bh_result, int create);
73
__udf_clear_extent_cache(struct inode * inode)74 static void __udf_clear_extent_cache(struct inode *inode)
75 {
76 struct udf_inode_info *iinfo = UDF_I(inode);
77
78 if (iinfo->cached_extent.lstart != -1) {
79 brelse(iinfo->cached_extent.epos.bh);
80 iinfo->cached_extent.lstart = -1;
81 }
82 }
83
84 /* Invalidate extent cache */
udf_clear_extent_cache(struct inode * inode)85 static void udf_clear_extent_cache(struct inode *inode)
86 {
87 struct udf_inode_info *iinfo = UDF_I(inode);
88
89 spin_lock(&iinfo->i_extent_cache_lock);
90 __udf_clear_extent_cache(inode);
91 spin_unlock(&iinfo->i_extent_cache_lock);
92 }
93
94 /* Return contents of extent cache */
udf_read_extent_cache(struct inode * inode,loff_t bcount,loff_t * lbcount,struct extent_position * pos)95 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
96 loff_t *lbcount, struct extent_position *pos)
97 {
98 struct udf_inode_info *iinfo = UDF_I(inode);
99 int ret = 0;
100
101 spin_lock(&iinfo->i_extent_cache_lock);
102 if ((iinfo->cached_extent.lstart <= bcount) &&
103 (iinfo->cached_extent.lstart != -1)) {
104 /* Cache hit */
105 *lbcount = iinfo->cached_extent.lstart;
106 memcpy(pos, &iinfo->cached_extent.epos,
107 sizeof(struct extent_position));
108 if (pos->bh)
109 get_bh(pos->bh);
110 ret = 1;
111 }
112 spin_unlock(&iinfo->i_extent_cache_lock);
113 return ret;
114 }
115
116 /* Add extent to extent cache */
udf_update_extent_cache(struct inode * inode,loff_t estart,struct extent_position * pos)117 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
118 struct extent_position *pos)
119 {
120 struct udf_inode_info *iinfo = UDF_I(inode);
121
122 spin_lock(&iinfo->i_extent_cache_lock);
123 /* Invalidate previously cached extent */
124 __udf_clear_extent_cache(inode);
125 if (pos->bh)
126 get_bh(pos->bh);
127 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
128 iinfo->cached_extent.lstart = estart;
129 switch (iinfo->i_alloc_type) {
130 case ICBTAG_FLAG_AD_SHORT:
131 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
132 break;
133 case ICBTAG_FLAG_AD_LONG:
134 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
135 break;
136 }
137 spin_unlock(&iinfo->i_extent_cache_lock);
138 }
139
udf_evict_inode(struct inode * inode)140 void udf_evict_inode(struct inode *inode)
141 {
142 struct udf_inode_info *iinfo = UDF_I(inode);
143 int want_delete = 0;
144
145 if (!is_bad_inode(inode)) {
146 if (!inode->i_nlink) {
147 want_delete = 1;
148 udf_setsize(inode, 0);
149 udf_update_inode(inode, IS_SYNC(inode));
150 }
151 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
152 inode->i_size != iinfo->i_lenExtents) {
153 udf_warn(inode->i_sb,
154 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
155 inode->i_ino, inode->i_mode,
156 (unsigned long long)inode->i_size,
157 (unsigned long long)iinfo->i_lenExtents);
158 }
159 }
160 truncate_inode_pages_final(&inode->i_data);
161 invalidate_inode_buffers(inode);
162 clear_inode(inode);
163 kfree(iinfo->i_data);
164 iinfo->i_data = NULL;
165 udf_clear_extent_cache(inode);
166 if (want_delete) {
167 udf_free_inode(inode);
168 }
169 }
170
udf_write_failed(struct address_space * mapping,loff_t to)171 static void udf_write_failed(struct address_space *mapping, loff_t to)
172 {
173 struct inode *inode = mapping->host;
174 struct udf_inode_info *iinfo = UDF_I(inode);
175 loff_t isize = inode->i_size;
176
177 if (to > isize) {
178 truncate_pagecache(inode, isize);
179 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
180 down_write(&iinfo->i_data_sem);
181 udf_clear_extent_cache(inode);
182 udf_truncate_extents(inode);
183 up_write(&iinfo->i_data_sem);
184 }
185 }
186 }
187
udf_adinicb_writepage(struct folio * folio,struct writeback_control * wbc,void * data)188 static int udf_adinicb_writepage(struct folio *folio,
189 struct writeback_control *wbc, void *data)
190 {
191 struct page *page = &folio->page;
192 struct inode *inode = page->mapping->host;
193 struct udf_inode_info *iinfo = UDF_I(inode);
194
195 BUG_ON(!PageLocked(page));
196 memcpy_from_page(iinfo->i_data + iinfo->i_lenEAttr, page, 0,
197 i_size_read(inode));
198 unlock_page(page);
199 mark_inode_dirty(inode);
200
201 return 0;
202 }
203
udf_writepages(struct address_space * mapping,struct writeback_control * wbc)204 static int udf_writepages(struct address_space *mapping,
205 struct writeback_control *wbc)
206 {
207 struct inode *inode = mapping->host;
208 struct udf_inode_info *iinfo = UDF_I(inode);
209
210 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
211 return mpage_writepages(mapping, wbc, udf_get_block_wb);
212 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
213 }
214
udf_adinicb_readpage(struct page * page)215 static void udf_adinicb_readpage(struct page *page)
216 {
217 struct inode *inode = page->mapping->host;
218 char *kaddr;
219 struct udf_inode_info *iinfo = UDF_I(inode);
220 loff_t isize = i_size_read(inode);
221
222 kaddr = kmap_local_page(page);
223 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize);
224 memset(kaddr + isize, 0, PAGE_SIZE - isize);
225 flush_dcache_page(page);
226 SetPageUptodate(page);
227 kunmap_local(kaddr);
228 }
229
udf_read_folio(struct file * file,struct folio * folio)230 static int udf_read_folio(struct file *file, struct folio *folio)
231 {
232 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
233
234 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
235 udf_adinicb_readpage(&folio->page);
236 folio_unlock(folio);
237 return 0;
238 }
239 return mpage_read_folio(folio, udf_get_block);
240 }
241
udf_readahead(struct readahead_control * rac)242 static void udf_readahead(struct readahead_control *rac)
243 {
244 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
245
246 /*
247 * No readahead needed for in-ICB files and udf_get_block() would get
248 * confused for such file anyway.
249 */
250 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
251 return;
252
253 mpage_readahead(rac, udf_get_block);
254 }
255
udf_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)256 static int udf_write_begin(struct file *file, struct address_space *mapping,
257 loff_t pos, unsigned len,
258 struct page **pagep, void **fsdata)
259 {
260 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
261 struct page *page;
262 int ret;
263
264 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
265 ret = block_write_begin(mapping, pos, len, pagep,
266 udf_get_block);
267 if (unlikely(ret))
268 udf_write_failed(mapping, pos + len);
269 return ret;
270 }
271 if (WARN_ON_ONCE(pos >= PAGE_SIZE))
272 return -EIO;
273 page = grab_cache_page_write_begin(mapping, 0);
274 if (!page)
275 return -ENOMEM;
276 *pagep = page;
277 if (!PageUptodate(page))
278 udf_adinicb_readpage(page);
279 return 0;
280 }
281
udf_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)282 static int udf_write_end(struct file *file, struct address_space *mapping,
283 loff_t pos, unsigned len, unsigned copied,
284 struct page *page, void *fsdata)
285 {
286 struct inode *inode = file_inode(file);
287 loff_t last_pos;
288
289 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
290 return generic_write_end(file, mapping, pos, len, copied, page,
291 fsdata);
292 last_pos = pos + copied;
293 if (last_pos > inode->i_size)
294 i_size_write(inode, last_pos);
295 set_page_dirty(page);
296 unlock_page(page);
297 put_page(page);
298
299 return copied;
300 }
301
udf_direct_IO(struct kiocb * iocb,struct iov_iter * iter)302 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
303 {
304 struct file *file = iocb->ki_filp;
305 struct address_space *mapping = file->f_mapping;
306 struct inode *inode = mapping->host;
307 size_t count = iov_iter_count(iter);
308 ssize_t ret;
309
310 /* Fallback to buffered IO for in-ICB files */
311 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
312 return 0;
313 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
314 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
315 udf_write_failed(mapping, iocb->ki_pos + count);
316 return ret;
317 }
318
udf_bmap(struct address_space * mapping,sector_t block)319 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
320 {
321 struct udf_inode_info *iinfo = UDF_I(mapping->host);
322
323 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
324 return -EINVAL;
325 return generic_block_bmap(mapping, block, udf_get_block);
326 }
327
328 const struct address_space_operations udf_aops = {
329 .dirty_folio = block_dirty_folio,
330 .invalidate_folio = block_invalidate_folio,
331 .read_folio = udf_read_folio,
332 .readahead = udf_readahead,
333 .writepages = udf_writepages,
334 .write_begin = udf_write_begin,
335 .write_end = udf_write_end,
336 .direct_IO = udf_direct_IO,
337 .bmap = udf_bmap,
338 .migrate_folio = buffer_migrate_folio,
339 };
340
341 /*
342 * Expand file stored in ICB to a normal one-block-file
343 *
344 * This function requires i_mutex held
345 */
udf_expand_file_adinicb(struct inode * inode)346 int udf_expand_file_adinicb(struct inode *inode)
347 {
348 struct page *page;
349 struct udf_inode_info *iinfo = UDF_I(inode);
350 int err;
351
352 WARN_ON_ONCE(!inode_is_locked(inode));
353 if (!iinfo->i_lenAlloc) {
354 down_write(&iinfo->i_data_sem);
355 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
356 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
357 else
358 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
359 /* from now on we have normal address_space methods */
360 inode->i_data.a_ops = &udf_aops;
361 up_write(&iinfo->i_data_sem);
362 mark_inode_dirty(inode);
363 return 0;
364 }
365
366 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
367 if (!page)
368 return -ENOMEM;
369
370 if (!PageUptodate(page))
371 udf_adinicb_readpage(page);
372 down_write(&iinfo->i_data_sem);
373 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
374 iinfo->i_lenAlloc);
375 iinfo->i_lenAlloc = 0;
376 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
377 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
378 else
379 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
380 set_page_dirty(page);
381 unlock_page(page);
382 up_write(&iinfo->i_data_sem);
383 err = filemap_fdatawrite(inode->i_mapping);
384 if (err) {
385 /* Restore everything back so that we don't lose data... */
386 lock_page(page);
387 down_write(&iinfo->i_data_sem);
388 memcpy_to_page(page, 0, iinfo->i_data + iinfo->i_lenEAttr,
389 inode->i_size);
390 unlock_page(page);
391 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
392 iinfo->i_lenAlloc = inode->i_size;
393 up_write(&iinfo->i_data_sem);
394 }
395 put_page(page);
396 mark_inode_dirty(inode);
397
398 return err;
399 }
400
401 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */
402 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */
403
404 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */
405 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */
406
407 struct udf_map_rq {
408 sector_t lblk;
409 udf_pblk_t pblk;
410 int iflags; /* UDF_MAP_ flags determining behavior */
411 int oflags; /* UDF_BLK_ flags reporting results */
412 };
413
udf_map_block(struct inode * inode,struct udf_map_rq * map)414 static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
415 {
416 int err;
417 struct udf_inode_info *iinfo = UDF_I(inode);
418
419 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
420 return -EFSCORRUPTED;
421
422 map->oflags = 0;
423 if (!(map->iflags & UDF_MAP_CREATE)) {
424 struct kernel_lb_addr eloc;
425 uint32_t elen;
426 sector_t offset;
427 struct extent_position epos = {};
428
429 down_read(&iinfo->i_data_sem);
430 if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset)
431 == (EXT_RECORDED_ALLOCATED >> 30)) {
432 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
433 offset);
434 map->oflags |= UDF_BLK_MAPPED;
435 }
436 up_read(&iinfo->i_data_sem);
437 brelse(epos.bh);
438
439 return 0;
440 }
441
442 down_write(&iinfo->i_data_sem);
443 /*
444 * Block beyond EOF and prealloc extents? Just discard preallocation
445 * as it is not useful and complicates things.
446 */
447 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
448 udf_discard_prealloc(inode);
449 udf_clear_extent_cache(inode);
450 err = inode_getblk(inode, map);
451 up_write(&iinfo->i_data_sem);
452 return err;
453 }
454
__udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int flags)455 static int __udf_get_block(struct inode *inode, sector_t block,
456 struct buffer_head *bh_result, int flags)
457 {
458 int err;
459 struct udf_map_rq map = {
460 .lblk = block,
461 .iflags = flags,
462 };
463
464 err = udf_map_block(inode, &map);
465 if (err < 0)
466 return err;
467 if (map.oflags & UDF_BLK_MAPPED) {
468 map_bh(bh_result, inode->i_sb, map.pblk);
469 if (map.oflags & UDF_BLK_NEW)
470 set_buffer_new(bh_result);
471 }
472 return 0;
473 }
474
udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)475 int udf_get_block(struct inode *inode, sector_t block,
476 struct buffer_head *bh_result, int create)
477 {
478 int flags = create ? UDF_MAP_CREATE : 0;
479
480 /*
481 * We preallocate blocks only for regular files. It also makes sense
482 * for directories but there's a problem when to drop the
483 * preallocation. We might use some delayed work for that but I feel
484 * it's overengineering for a filesystem like UDF.
485 */
486 if (!S_ISREG(inode->i_mode))
487 flags |= UDF_MAP_NOPREALLOC;
488 return __udf_get_block(inode, block, bh_result, flags);
489 }
490
491 /*
492 * We shouldn't be allocating blocks on page writeback since we allocate them
493 * on page fault. We can spot dirty buffers without allocated blocks though
494 * when truncate expands file. These however don't have valid data so we can
495 * safely ignore them. So never allocate blocks from page writeback.
496 */
udf_get_block_wb(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)497 static int udf_get_block_wb(struct inode *inode, sector_t block,
498 struct buffer_head *bh_result, int create)
499 {
500 return __udf_get_block(inode, block, bh_result, 0);
501 }
502
503 /* Extend the file with new blocks totaling 'new_block_bytes',
504 * return the number of extents added
505 */
udf_do_extend_file(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,loff_t new_block_bytes)506 static int udf_do_extend_file(struct inode *inode,
507 struct extent_position *last_pos,
508 struct kernel_long_ad *last_ext,
509 loff_t new_block_bytes)
510 {
511 uint32_t add;
512 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
513 struct super_block *sb = inode->i_sb;
514 struct udf_inode_info *iinfo;
515 int err;
516
517 /* The previous extent is fake and we should not extend by anything
518 * - there's nothing to do... */
519 if (!new_block_bytes && fake)
520 return 0;
521
522 iinfo = UDF_I(inode);
523 /* Round the last extent up to a multiple of block size */
524 if (last_ext->extLength & (sb->s_blocksize - 1)) {
525 last_ext->extLength =
526 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
527 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
528 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
529 iinfo->i_lenExtents =
530 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
531 ~(sb->s_blocksize - 1);
532 }
533
534 add = 0;
535 /* Can we merge with the previous extent? */
536 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
537 EXT_NOT_RECORDED_NOT_ALLOCATED) {
538 add = (1 << 30) - sb->s_blocksize -
539 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
540 if (add > new_block_bytes)
541 add = new_block_bytes;
542 new_block_bytes -= add;
543 last_ext->extLength += add;
544 }
545
546 if (fake) {
547 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
548 last_ext->extLength, 1);
549 if (err < 0)
550 goto out_err;
551 count++;
552 } else {
553 struct kernel_lb_addr tmploc;
554 uint32_t tmplen;
555
556 udf_write_aext(inode, last_pos, &last_ext->extLocation,
557 last_ext->extLength, 1);
558
559 /*
560 * We've rewritten the last extent. If we are going to add
561 * more extents, we may need to enter possible following
562 * empty indirect extent.
563 */
564 if (new_block_bytes)
565 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
566 }
567 iinfo->i_lenExtents += add;
568
569 /* Managed to do everything necessary? */
570 if (!new_block_bytes)
571 goto out;
572
573 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
574 last_ext->extLocation.logicalBlockNum = 0;
575 last_ext->extLocation.partitionReferenceNum = 0;
576 add = (1 << 30) - sb->s_blocksize;
577 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
578
579 /* Create enough extents to cover the whole hole */
580 while (new_block_bytes > add) {
581 new_block_bytes -= add;
582 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
583 last_ext->extLength, 1);
584 if (err)
585 goto out_err;
586 iinfo->i_lenExtents += add;
587 count++;
588 }
589 if (new_block_bytes) {
590 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
591 new_block_bytes;
592 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
593 last_ext->extLength, 1);
594 if (err)
595 goto out_err;
596 iinfo->i_lenExtents += new_block_bytes;
597 count++;
598 }
599
600 out:
601 /* last_pos should point to the last written extent... */
602 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
603 last_pos->offset -= sizeof(struct short_ad);
604 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
605 last_pos->offset -= sizeof(struct long_ad);
606 else
607 return -EIO;
608
609 return count;
610 out_err:
611 /* Remove extents we've created so far */
612 udf_clear_extent_cache(inode);
613 udf_truncate_extents(inode);
614 return err;
615 }
616
617 /* Extend the final block of the file to final_block_len bytes */
udf_do_extend_final_block(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,uint32_t new_elen)618 static void udf_do_extend_final_block(struct inode *inode,
619 struct extent_position *last_pos,
620 struct kernel_long_ad *last_ext,
621 uint32_t new_elen)
622 {
623 uint32_t added_bytes;
624
625 /*
626 * Extent already large enough? It may be already rounded up to block
627 * size...
628 */
629 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
630 return;
631 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
632 last_ext->extLength += added_bytes;
633 UDF_I(inode)->i_lenExtents += added_bytes;
634
635 udf_write_aext(inode, last_pos, &last_ext->extLocation,
636 last_ext->extLength, 1);
637 }
638
udf_extend_file(struct inode * inode,loff_t newsize)639 static int udf_extend_file(struct inode *inode, loff_t newsize)
640 {
641
642 struct extent_position epos;
643 struct kernel_lb_addr eloc;
644 uint32_t elen;
645 int8_t etype;
646 struct super_block *sb = inode->i_sb;
647 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
648 loff_t new_elen;
649 int adsize;
650 struct udf_inode_info *iinfo = UDF_I(inode);
651 struct kernel_long_ad extent;
652 int err = 0;
653 bool within_last_ext;
654
655 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
656 adsize = sizeof(struct short_ad);
657 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
658 adsize = sizeof(struct long_ad);
659 else
660 BUG();
661
662 down_write(&iinfo->i_data_sem);
663 /*
664 * When creating hole in file, just don't bother with preserving
665 * preallocation. It likely won't be very useful anyway.
666 */
667 udf_discard_prealloc(inode);
668
669 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
670 within_last_ext = (etype != -1);
671 /* We don't expect extents past EOF... */
672 WARN_ON_ONCE(within_last_ext &&
673 elen > ((loff_t)offset + 1) << inode->i_blkbits);
674
675 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
676 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
677 /* File has no extents at all or has empty last
678 * indirect extent! Create a fake extent... */
679 extent.extLocation.logicalBlockNum = 0;
680 extent.extLocation.partitionReferenceNum = 0;
681 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
682 } else {
683 epos.offset -= adsize;
684 etype = udf_next_aext(inode, &epos, &extent.extLocation,
685 &extent.extLength, 0);
686 extent.extLength |= etype << 30;
687 }
688
689 new_elen = ((loff_t)offset << inode->i_blkbits) |
690 (newsize & (sb->s_blocksize - 1));
691
692 /* File has extent covering the new size (could happen when extending
693 * inside a block)?
694 */
695 if (within_last_ext) {
696 /* Extending file within the last file block */
697 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
698 } else {
699 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
700 }
701
702 if (err < 0)
703 goto out;
704 err = 0;
705 out:
706 brelse(epos.bh);
707 up_write(&iinfo->i_data_sem);
708 return err;
709 }
710
inode_getblk(struct inode * inode,struct udf_map_rq * map)711 static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
712 {
713 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
714 struct extent_position prev_epos, cur_epos, next_epos;
715 int count = 0, startnum = 0, endnum = 0;
716 uint32_t elen = 0, tmpelen;
717 struct kernel_lb_addr eloc, tmpeloc;
718 int c = 1;
719 loff_t lbcount = 0, b_off = 0;
720 udf_pblk_t newblocknum;
721 sector_t offset = 0;
722 int8_t etype;
723 struct udf_inode_info *iinfo = UDF_I(inode);
724 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
725 int lastblock = 0;
726 bool isBeyondEOF;
727 int ret = 0;
728
729 prev_epos.offset = udf_file_entry_alloc_offset(inode);
730 prev_epos.block = iinfo->i_location;
731 prev_epos.bh = NULL;
732 cur_epos = next_epos = prev_epos;
733 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
734
735 /* find the extent which contains the block we are looking for.
736 alternate between laarr[0] and laarr[1] for locations of the
737 current extent, and the previous extent */
738 do {
739 if (prev_epos.bh != cur_epos.bh) {
740 brelse(prev_epos.bh);
741 get_bh(cur_epos.bh);
742 prev_epos.bh = cur_epos.bh;
743 }
744 if (cur_epos.bh != next_epos.bh) {
745 brelse(cur_epos.bh);
746 get_bh(next_epos.bh);
747 cur_epos.bh = next_epos.bh;
748 }
749
750 lbcount += elen;
751
752 prev_epos.block = cur_epos.block;
753 cur_epos.block = next_epos.block;
754
755 prev_epos.offset = cur_epos.offset;
756 cur_epos.offset = next_epos.offset;
757
758 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
759 if (etype == -1)
760 break;
761
762 c = !c;
763
764 laarr[c].extLength = (etype << 30) | elen;
765 laarr[c].extLocation = eloc;
766
767 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
768 pgoal = eloc.logicalBlockNum +
769 ((elen + inode->i_sb->s_blocksize - 1) >>
770 inode->i_sb->s_blocksize_bits);
771
772 count++;
773 } while (lbcount + elen <= b_off);
774
775 b_off -= lbcount;
776 offset = b_off >> inode->i_sb->s_blocksize_bits;
777 /*
778 * Move prev_epos and cur_epos into indirect extent if we are at
779 * the pointer to it
780 */
781 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
782 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
783
784 /* if the extent is allocated and recorded, return the block
785 if the extent is not a multiple of the blocksize, round up */
786
787 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
788 if (elen & (inode->i_sb->s_blocksize - 1)) {
789 elen = EXT_RECORDED_ALLOCATED |
790 ((elen + inode->i_sb->s_blocksize - 1) &
791 ~(inode->i_sb->s_blocksize - 1));
792 iinfo->i_lenExtents =
793 ALIGN(iinfo->i_lenExtents,
794 inode->i_sb->s_blocksize);
795 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
796 }
797 map->oflags = UDF_BLK_MAPPED;
798 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
799 goto out_free;
800 }
801
802 /* Are we beyond EOF and preallocated extent? */
803 if (etype == -1) {
804 loff_t hole_len;
805
806 isBeyondEOF = true;
807 if (count) {
808 if (c)
809 laarr[0] = laarr[1];
810 startnum = 1;
811 } else {
812 /* Create a fake extent when there's not one */
813 memset(&laarr[0].extLocation, 0x00,
814 sizeof(struct kernel_lb_addr));
815 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
816 /* Will udf_do_extend_file() create real extent from
817 a fake one? */
818 startnum = (offset > 0);
819 }
820 /* Create extents for the hole between EOF and offset */
821 hole_len = (loff_t)offset << inode->i_blkbits;
822 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
823 if (ret < 0)
824 goto out_free;
825 c = 0;
826 offset = 0;
827 count += ret;
828 /*
829 * Is there any real extent? - otherwise we overwrite the fake
830 * one...
831 */
832 if (count)
833 c = !c;
834 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
835 inode->i_sb->s_blocksize;
836 memset(&laarr[c].extLocation, 0x00,
837 sizeof(struct kernel_lb_addr));
838 count++;
839 endnum = c + 1;
840 lastblock = 1;
841 } else {
842 isBeyondEOF = false;
843 endnum = startnum = ((count > 2) ? 2 : count);
844
845 /* if the current extent is in position 0,
846 swap it with the previous */
847 if (!c && count != 1) {
848 laarr[2] = laarr[0];
849 laarr[0] = laarr[1];
850 laarr[1] = laarr[2];
851 c = 1;
852 }
853
854 /* if the current block is located in an extent,
855 read the next extent */
856 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
857 if (etype != -1) {
858 laarr[c + 1].extLength = (etype << 30) | elen;
859 laarr[c + 1].extLocation = eloc;
860 count++;
861 startnum++;
862 endnum++;
863 } else
864 lastblock = 1;
865 }
866
867 /* if the current extent is not recorded but allocated, get the
868 * block in the extent corresponding to the requested block */
869 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
870 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
871 else { /* otherwise, allocate a new block */
872 if (iinfo->i_next_alloc_block == map->lblk)
873 goal = iinfo->i_next_alloc_goal;
874
875 if (!goal) {
876 if (!(goal = pgoal)) /* XXX: what was intended here? */
877 goal = iinfo->i_location.logicalBlockNum + 1;
878 }
879
880 newblocknum = udf_new_block(inode->i_sb, inode,
881 iinfo->i_location.partitionReferenceNum,
882 goal, &ret);
883 if (!newblocknum)
884 goto out_free;
885 if (isBeyondEOF)
886 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
887 }
888
889 /* if the extent the requsted block is located in contains multiple
890 * blocks, split the extent into at most three extents. blocks prior
891 * to requested block, requested block, and blocks after requested
892 * block */
893 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
894
895 if (!(map->iflags & UDF_MAP_NOPREALLOC))
896 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
897
898 /* merge any continuous blocks in laarr */
899 udf_merge_extents(inode, laarr, &endnum);
900
901 /* write back the new extents, inserting new extents if the new number
902 * of extents is greater than the old number, and deleting extents if
903 * the new number of extents is less than the old number */
904 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
905 if (ret < 0)
906 goto out_free;
907
908 map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
909 iinfo->i_location.partitionReferenceNum, 0);
910 if (!map->pblk) {
911 ret = -EFSCORRUPTED;
912 goto out_free;
913 }
914 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
915 iinfo->i_next_alloc_block = map->lblk + 1;
916 iinfo->i_next_alloc_goal = newblocknum + 1;
917 inode->i_ctime = current_time(inode);
918
919 if (IS_SYNC(inode))
920 udf_sync_inode(inode);
921 else
922 mark_inode_dirty(inode);
923 ret = 0;
924 out_free:
925 brelse(prev_epos.bh);
926 brelse(cur_epos.bh);
927 brelse(next_epos.bh);
928 return ret;
929 }
930
udf_split_extents(struct inode * inode,int * c,int offset,udf_pblk_t newblocknum,struct kernel_long_ad * laarr,int * endnum)931 static void udf_split_extents(struct inode *inode, int *c, int offset,
932 udf_pblk_t newblocknum,
933 struct kernel_long_ad *laarr, int *endnum)
934 {
935 unsigned long blocksize = inode->i_sb->s_blocksize;
936 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
937
938 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
939 (laarr[*c].extLength >> 30) ==
940 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
941 int curr = *c;
942 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
943 blocksize - 1) >> blocksize_bits;
944 int8_t etype = (laarr[curr].extLength >> 30);
945
946 if (blen == 1)
947 ;
948 else if (!offset || blen == offset + 1) {
949 laarr[curr + 2] = laarr[curr + 1];
950 laarr[curr + 1] = laarr[curr];
951 } else {
952 laarr[curr + 3] = laarr[curr + 1];
953 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
954 }
955
956 if (offset) {
957 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
958 udf_free_blocks(inode->i_sb, inode,
959 &laarr[curr].extLocation,
960 0, offset);
961 laarr[curr].extLength =
962 EXT_NOT_RECORDED_NOT_ALLOCATED |
963 (offset << blocksize_bits);
964 laarr[curr].extLocation.logicalBlockNum = 0;
965 laarr[curr].extLocation.
966 partitionReferenceNum = 0;
967 } else
968 laarr[curr].extLength = (etype << 30) |
969 (offset << blocksize_bits);
970 curr++;
971 (*c)++;
972 (*endnum)++;
973 }
974
975 laarr[curr].extLocation.logicalBlockNum = newblocknum;
976 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
977 laarr[curr].extLocation.partitionReferenceNum =
978 UDF_I(inode)->i_location.partitionReferenceNum;
979 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
980 blocksize;
981 curr++;
982
983 if (blen != offset + 1) {
984 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
985 laarr[curr].extLocation.logicalBlockNum +=
986 offset + 1;
987 laarr[curr].extLength = (etype << 30) |
988 ((blen - (offset + 1)) << blocksize_bits);
989 curr++;
990 (*endnum)++;
991 }
992 }
993 }
994
udf_prealloc_extents(struct inode * inode,int c,int lastblock,struct kernel_long_ad * laarr,int * endnum)995 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
996 struct kernel_long_ad *laarr,
997 int *endnum)
998 {
999 int start, length = 0, currlength = 0, i;
1000
1001 if (*endnum >= (c + 1)) {
1002 if (!lastblock)
1003 return;
1004 else
1005 start = c;
1006 } else {
1007 if ((laarr[c + 1].extLength >> 30) ==
1008 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1009 start = c + 1;
1010 length = currlength =
1011 (((laarr[c + 1].extLength &
1012 UDF_EXTENT_LENGTH_MASK) +
1013 inode->i_sb->s_blocksize - 1) >>
1014 inode->i_sb->s_blocksize_bits);
1015 } else
1016 start = c;
1017 }
1018
1019 for (i = start + 1; i <= *endnum; i++) {
1020 if (i == *endnum) {
1021 if (lastblock)
1022 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1023 } else if ((laarr[i].extLength >> 30) ==
1024 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1025 length += (((laarr[i].extLength &
1026 UDF_EXTENT_LENGTH_MASK) +
1027 inode->i_sb->s_blocksize - 1) >>
1028 inode->i_sb->s_blocksize_bits);
1029 } else
1030 break;
1031 }
1032
1033 if (length) {
1034 int next = laarr[start].extLocation.logicalBlockNum +
1035 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1036 inode->i_sb->s_blocksize - 1) >>
1037 inode->i_sb->s_blocksize_bits);
1038 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1039 laarr[start].extLocation.partitionReferenceNum,
1040 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1041 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1042 currlength);
1043 if (numalloc) {
1044 if (start == (c + 1))
1045 laarr[start].extLength +=
1046 (numalloc <<
1047 inode->i_sb->s_blocksize_bits);
1048 else {
1049 memmove(&laarr[c + 2], &laarr[c + 1],
1050 sizeof(struct long_ad) * (*endnum - (c + 1)));
1051 (*endnum)++;
1052 laarr[c + 1].extLocation.logicalBlockNum = next;
1053 laarr[c + 1].extLocation.partitionReferenceNum =
1054 laarr[c].extLocation.
1055 partitionReferenceNum;
1056 laarr[c + 1].extLength =
1057 EXT_NOT_RECORDED_ALLOCATED |
1058 (numalloc <<
1059 inode->i_sb->s_blocksize_bits);
1060 start = c + 1;
1061 }
1062
1063 for (i = start + 1; numalloc && i < *endnum; i++) {
1064 int elen = ((laarr[i].extLength &
1065 UDF_EXTENT_LENGTH_MASK) +
1066 inode->i_sb->s_blocksize - 1) >>
1067 inode->i_sb->s_blocksize_bits;
1068
1069 if (elen > numalloc) {
1070 laarr[i].extLength -=
1071 (numalloc <<
1072 inode->i_sb->s_blocksize_bits);
1073 numalloc = 0;
1074 } else {
1075 numalloc -= elen;
1076 if (*endnum > (i + 1))
1077 memmove(&laarr[i],
1078 &laarr[i + 1],
1079 sizeof(struct long_ad) *
1080 (*endnum - (i + 1)));
1081 i--;
1082 (*endnum)--;
1083 }
1084 }
1085 UDF_I(inode)->i_lenExtents +=
1086 numalloc << inode->i_sb->s_blocksize_bits;
1087 }
1088 }
1089 }
1090
udf_merge_extents(struct inode * inode,struct kernel_long_ad * laarr,int * endnum)1091 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1092 int *endnum)
1093 {
1094 int i;
1095 unsigned long blocksize = inode->i_sb->s_blocksize;
1096 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1097
1098 for (i = 0; i < (*endnum - 1); i++) {
1099 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1100 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1101
1102 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1103 (((li->extLength >> 30) ==
1104 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1105 ((lip1->extLocation.logicalBlockNum -
1106 li->extLocation.logicalBlockNum) ==
1107 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1108 blocksize - 1) >> blocksize_bits)))) {
1109
1110 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1111 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1112 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1113 li->extLength = lip1->extLength +
1114 (((li->extLength &
1115 UDF_EXTENT_LENGTH_MASK) +
1116 blocksize - 1) & ~(blocksize - 1));
1117 if (*endnum > (i + 2))
1118 memmove(&laarr[i + 1], &laarr[i + 2],
1119 sizeof(struct long_ad) *
1120 (*endnum - (i + 2)));
1121 i--;
1122 (*endnum)--;
1123 }
1124 } else if (((li->extLength >> 30) ==
1125 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1126 ((lip1->extLength >> 30) ==
1127 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1128 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1129 ((li->extLength &
1130 UDF_EXTENT_LENGTH_MASK) +
1131 blocksize - 1) >> blocksize_bits);
1132 li->extLocation.logicalBlockNum = 0;
1133 li->extLocation.partitionReferenceNum = 0;
1134
1135 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1136 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1137 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1138 lip1->extLength = (lip1->extLength -
1139 (li->extLength &
1140 UDF_EXTENT_LENGTH_MASK) +
1141 UDF_EXTENT_LENGTH_MASK) &
1142 ~(blocksize - 1);
1143 li->extLength = (li->extLength &
1144 UDF_EXTENT_FLAG_MASK) +
1145 (UDF_EXTENT_LENGTH_MASK + 1) -
1146 blocksize;
1147 } else {
1148 li->extLength = lip1->extLength +
1149 (((li->extLength &
1150 UDF_EXTENT_LENGTH_MASK) +
1151 blocksize - 1) & ~(blocksize - 1));
1152 if (*endnum > (i + 2))
1153 memmove(&laarr[i + 1], &laarr[i + 2],
1154 sizeof(struct long_ad) *
1155 (*endnum - (i + 2)));
1156 i--;
1157 (*endnum)--;
1158 }
1159 } else if ((li->extLength >> 30) ==
1160 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1161 udf_free_blocks(inode->i_sb, inode,
1162 &li->extLocation, 0,
1163 ((li->extLength &
1164 UDF_EXTENT_LENGTH_MASK) +
1165 blocksize - 1) >> blocksize_bits);
1166 li->extLocation.logicalBlockNum = 0;
1167 li->extLocation.partitionReferenceNum = 0;
1168 li->extLength = (li->extLength &
1169 UDF_EXTENT_LENGTH_MASK) |
1170 EXT_NOT_RECORDED_NOT_ALLOCATED;
1171 }
1172 }
1173 }
1174
udf_update_extents(struct inode * inode,struct kernel_long_ad * laarr,int startnum,int endnum,struct extent_position * epos)1175 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1176 int startnum, int endnum,
1177 struct extent_position *epos)
1178 {
1179 int start = 0, i;
1180 struct kernel_lb_addr tmploc;
1181 uint32_t tmplen;
1182 int err;
1183
1184 if (startnum > endnum) {
1185 for (i = 0; i < (startnum - endnum); i++)
1186 udf_delete_aext(inode, *epos);
1187 } else if (startnum < endnum) {
1188 for (i = 0; i < (endnum - startnum); i++) {
1189 err = udf_insert_aext(inode, *epos,
1190 laarr[i].extLocation,
1191 laarr[i].extLength);
1192 /*
1193 * If we fail here, we are likely corrupting the extent
1194 * list and leaking blocks. At least stop early to
1195 * limit the damage.
1196 */
1197 if (err < 0)
1198 return err;
1199 udf_next_aext(inode, epos, &laarr[i].extLocation,
1200 &laarr[i].extLength, 1);
1201 start++;
1202 }
1203 }
1204
1205 for (i = start; i < endnum; i++) {
1206 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1207 udf_write_aext(inode, epos, &laarr[i].extLocation,
1208 laarr[i].extLength, 1);
1209 }
1210 return 0;
1211 }
1212
udf_bread(struct inode * inode,udf_pblk_t block,int create,int * err)1213 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1214 int create, int *err)
1215 {
1216 struct buffer_head *bh = NULL;
1217 struct udf_map_rq map = {
1218 .lblk = block,
1219 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1220 };
1221
1222 *err = udf_map_block(inode, &map);
1223 if (*err || !(map.oflags & UDF_BLK_MAPPED))
1224 return NULL;
1225
1226 bh = sb_getblk(inode->i_sb, map.pblk);
1227 if (!bh) {
1228 *err = -ENOMEM;
1229 return NULL;
1230 }
1231 if (map.oflags & UDF_BLK_NEW) {
1232 lock_buffer(bh);
1233 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1234 set_buffer_uptodate(bh);
1235 unlock_buffer(bh);
1236 mark_buffer_dirty_inode(bh, inode);
1237 return bh;
1238 }
1239
1240 if (bh_read(bh, 0) >= 0)
1241 return bh;
1242
1243 brelse(bh);
1244 *err = -EIO;
1245 return NULL;
1246 }
1247
udf_setsize(struct inode * inode,loff_t newsize)1248 int udf_setsize(struct inode *inode, loff_t newsize)
1249 {
1250 int err = 0;
1251 struct udf_inode_info *iinfo;
1252 unsigned int bsize = i_blocksize(inode);
1253
1254 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1255 S_ISLNK(inode->i_mode)))
1256 return -EINVAL;
1257 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1258 return -EPERM;
1259
1260 filemap_invalidate_lock(inode->i_mapping);
1261 iinfo = UDF_I(inode);
1262 if (newsize > inode->i_size) {
1263 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1264 if (bsize >=
1265 (udf_file_entry_alloc_offset(inode) + newsize)) {
1266 down_write(&iinfo->i_data_sem);
1267 iinfo->i_lenAlloc = newsize;
1268 up_write(&iinfo->i_data_sem);
1269 goto set_size;
1270 }
1271 err = udf_expand_file_adinicb(inode);
1272 if (err)
1273 goto out_unlock;
1274 }
1275 err = udf_extend_file(inode, newsize);
1276 if (err)
1277 goto out_unlock;
1278 set_size:
1279 truncate_setsize(inode, newsize);
1280 } else {
1281 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1282 down_write(&iinfo->i_data_sem);
1283 udf_clear_extent_cache(inode);
1284 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1285 0x00, bsize - newsize -
1286 udf_file_entry_alloc_offset(inode));
1287 iinfo->i_lenAlloc = newsize;
1288 truncate_setsize(inode, newsize);
1289 up_write(&iinfo->i_data_sem);
1290 goto update_time;
1291 }
1292 err = block_truncate_page(inode->i_mapping, newsize,
1293 udf_get_block);
1294 if (err)
1295 goto out_unlock;
1296 truncate_setsize(inode, newsize);
1297 down_write(&iinfo->i_data_sem);
1298 udf_clear_extent_cache(inode);
1299 err = udf_truncate_extents(inode);
1300 up_write(&iinfo->i_data_sem);
1301 if (err)
1302 goto out_unlock;
1303 }
1304 update_time:
1305 inode->i_mtime = inode->i_ctime = current_time(inode);
1306 if (IS_SYNC(inode))
1307 udf_sync_inode(inode);
1308 else
1309 mark_inode_dirty(inode);
1310 out_unlock:
1311 filemap_invalidate_unlock(inode->i_mapping);
1312 return err;
1313 }
1314
1315 /*
1316 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1317 * arbitrary - just that we hopefully don't limit any real use of rewritten
1318 * inode on write-once media but avoid looping for too long on corrupted media.
1319 */
1320 #define UDF_MAX_ICB_NESTING 1024
1321
udf_read_inode(struct inode * inode,bool hidden_inode)1322 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1323 {
1324 struct buffer_head *bh = NULL;
1325 struct fileEntry *fe;
1326 struct extendedFileEntry *efe;
1327 uint16_t ident;
1328 struct udf_inode_info *iinfo = UDF_I(inode);
1329 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1330 struct kernel_lb_addr *iloc = &iinfo->i_location;
1331 unsigned int link_count;
1332 unsigned int indirections = 0;
1333 int bs = inode->i_sb->s_blocksize;
1334 int ret = -EIO;
1335 uint32_t uid, gid;
1336
1337 reread:
1338 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1339 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1340 iloc->partitionReferenceNum, sbi->s_partitions);
1341 return -EIO;
1342 }
1343
1344 if (iloc->logicalBlockNum >=
1345 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1346 udf_debug("block=%u, partition=%u out of range\n",
1347 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1348 return -EIO;
1349 }
1350
1351 /*
1352 * Set defaults, but the inode is still incomplete!
1353 * Note: get_new_inode() sets the following on a new inode:
1354 * i_sb = sb
1355 * i_no = ino
1356 * i_flags = sb->s_flags
1357 * i_state = 0
1358 * clean_inode(): zero fills and sets
1359 * i_count = 1
1360 * i_nlink = 1
1361 * i_op = NULL;
1362 */
1363 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1364 if (!bh) {
1365 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1366 return -EIO;
1367 }
1368
1369 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1370 ident != TAG_IDENT_USE) {
1371 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1372 inode->i_ino, ident);
1373 goto out;
1374 }
1375
1376 fe = (struct fileEntry *)bh->b_data;
1377 efe = (struct extendedFileEntry *)bh->b_data;
1378
1379 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1380 struct buffer_head *ibh;
1381
1382 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1383 if (ident == TAG_IDENT_IE && ibh) {
1384 struct kernel_lb_addr loc;
1385 struct indirectEntry *ie;
1386
1387 ie = (struct indirectEntry *)ibh->b_data;
1388 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1389
1390 if (ie->indirectICB.extLength) {
1391 brelse(ibh);
1392 memcpy(&iinfo->i_location, &loc,
1393 sizeof(struct kernel_lb_addr));
1394 if (++indirections > UDF_MAX_ICB_NESTING) {
1395 udf_err(inode->i_sb,
1396 "too many ICBs in ICB hierarchy"
1397 " (max %d supported)\n",
1398 UDF_MAX_ICB_NESTING);
1399 goto out;
1400 }
1401 brelse(bh);
1402 goto reread;
1403 }
1404 }
1405 brelse(ibh);
1406 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1407 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1408 le16_to_cpu(fe->icbTag.strategyType));
1409 goto out;
1410 }
1411 if (fe->icbTag.strategyType == cpu_to_le16(4))
1412 iinfo->i_strat4096 = 0;
1413 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1414 iinfo->i_strat4096 = 1;
1415
1416 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1417 ICBTAG_FLAG_AD_MASK;
1418 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1419 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1420 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1421 ret = -EIO;
1422 goto out;
1423 }
1424 iinfo->i_hidden = hidden_inode;
1425 iinfo->i_unique = 0;
1426 iinfo->i_lenEAttr = 0;
1427 iinfo->i_lenExtents = 0;
1428 iinfo->i_lenAlloc = 0;
1429 iinfo->i_next_alloc_block = 0;
1430 iinfo->i_next_alloc_goal = 0;
1431 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1432 iinfo->i_efe = 1;
1433 iinfo->i_use = 0;
1434 ret = udf_alloc_i_data(inode, bs -
1435 sizeof(struct extendedFileEntry));
1436 if (ret)
1437 goto out;
1438 memcpy(iinfo->i_data,
1439 bh->b_data + sizeof(struct extendedFileEntry),
1440 bs - sizeof(struct extendedFileEntry));
1441 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1442 iinfo->i_efe = 0;
1443 iinfo->i_use = 0;
1444 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1445 if (ret)
1446 goto out;
1447 memcpy(iinfo->i_data,
1448 bh->b_data + sizeof(struct fileEntry),
1449 bs - sizeof(struct fileEntry));
1450 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1451 iinfo->i_efe = 0;
1452 iinfo->i_use = 1;
1453 iinfo->i_lenAlloc = le32_to_cpu(
1454 ((struct unallocSpaceEntry *)bh->b_data)->
1455 lengthAllocDescs);
1456 ret = udf_alloc_i_data(inode, bs -
1457 sizeof(struct unallocSpaceEntry));
1458 if (ret)
1459 goto out;
1460 memcpy(iinfo->i_data,
1461 bh->b_data + sizeof(struct unallocSpaceEntry),
1462 bs - sizeof(struct unallocSpaceEntry));
1463 return 0;
1464 }
1465
1466 ret = -EIO;
1467 read_lock(&sbi->s_cred_lock);
1468 uid = le32_to_cpu(fe->uid);
1469 if (uid == UDF_INVALID_ID ||
1470 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1471 inode->i_uid = sbi->s_uid;
1472 else
1473 i_uid_write(inode, uid);
1474
1475 gid = le32_to_cpu(fe->gid);
1476 if (gid == UDF_INVALID_ID ||
1477 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1478 inode->i_gid = sbi->s_gid;
1479 else
1480 i_gid_write(inode, gid);
1481
1482 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1483 sbi->s_fmode != UDF_INVALID_MODE)
1484 inode->i_mode = sbi->s_fmode;
1485 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1486 sbi->s_dmode != UDF_INVALID_MODE)
1487 inode->i_mode = sbi->s_dmode;
1488 else
1489 inode->i_mode = udf_convert_permissions(fe);
1490 inode->i_mode &= ~sbi->s_umask;
1491 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1492
1493 read_unlock(&sbi->s_cred_lock);
1494
1495 link_count = le16_to_cpu(fe->fileLinkCount);
1496 if (!link_count) {
1497 if (!hidden_inode) {
1498 ret = -ESTALE;
1499 goto out;
1500 }
1501 link_count = 1;
1502 }
1503 set_nlink(inode, link_count);
1504
1505 inode->i_size = le64_to_cpu(fe->informationLength);
1506 iinfo->i_lenExtents = inode->i_size;
1507
1508 if (iinfo->i_efe == 0) {
1509 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1510 (inode->i_sb->s_blocksize_bits - 9);
1511
1512 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1513 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1514 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1515
1516 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1517 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1518 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1519 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1520 iinfo->i_streamdir = 0;
1521 iinfo->i_lenStreams = 0;
1522 } else {
1523 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1524 (inode->i_sb->s_blocksize_bits - 9);
1525
1526 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1527 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1528 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1529 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1530
1531 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1532 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1533 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1534 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1535
1536 /* Named streams */
1537 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1538 iinfo->i_locStreamdir =
1539 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1540 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1541 if (iinfo->i_lenStreams >= inode->i_size)
1542 iinfo->i_lenStreams -= inode->i_size;
1543 else
1544 iinfo->i_lenStreams = 0;
1545 }
1546 inode->i_generation = iinfo->i_unique;
1547
1548 /*
1549 * Sanity check length of allocation descriptors and extended attrs to
1550 * avoid integer overflows
1551 */
1552 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1553 goto out;
1554 /* Now do exact checks */
1555 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1556 goto out;
1557 /* Sanity checks for files in ICB so that we don't get confused later */
1558 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1559 /*
1560 * For file in ICB data is stored in allocation descriptor
1561 * so sizes should match
1562 */
1563 if (iinfo->i_lenAlloc != inode->i_size)
1564 goto out;
1565 /* File in ICB has to fit in there... */
1566 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1567 goto out;
1568 }
1569
1570 switch (fe->icbTag.fileType) {
1571 case ICBTAG_FILE_TYPE_DIRECTORY:
1572 inode->i_op = &udf_dir_inode_operations;
1573 inode->i_fop = &udf_dir_operations;
1574 inode->i_mode |= S_IFDIR;
1575 inc_nlink(inode);
1576 break;
1577 case ICBTAG_FILE_TYPE_REALTIME:
1578 case ICBTAG_FILE_TYPE_REGULAR:
1579 case ICBTAG_FILE_TYPE_UNDEF:
1580 case ICBTAG_FILE_TYPE_VAT20:
1581 inode->i_data.a_ops = &udf_aops;
1582 inode->i_op = &udf_file_inode_operations;
1583 inode->i_fop = &udf_file_operations;
1584 inode->i_mode |= S_IFREG;
1585 break;
1586 case ICBTAG_FILE_TYPE_BLOCK:
1587 inode->i_mode |= S_IFBLK;
1588 break;
1589 case ICBTAG_FILE_TYPE_CHAR:
1590 inode->i_mode |= S_IFCHR;
1591 break;
1592 case ICBTAG_FILE_TYPE_FIFO:
1593 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1594 break;
1595 case ICBTAG_FILE_TYPE_SOCKET:
1596 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1597 break;
1598 case ICBTAG_FILE_TYPE_SYMLINK:
1599 inode->i_data.a_ops = &udf_symlink_aops;
1600 inode->i_op = &udf_symlink_inode_operations;
1601 inode_nohighmem(inode);
1602 inode->i_mode = S_IFLNK | 0777;
1603 break;
1604 case ICBTAG_FILE_TYPE_MAIN:
1605 udf_debug("METADATA FILE-----\n");
1606 break;
1607 case ICBTAG_FILE_TYPE_MIRROR:
1608 udf_debug("METADATA MIRROR FILE-----\n");
1609 break;
1610 case ICBTAG_FILE_TYPE_BITMAP:
1611 udf_debug("METADATA BITMAP FILE-----\n");
1612 break;
1613 default:
1614 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1615 inode->i_ino, fe->icbTag.fileType);
1616 goto out;
1617 }
1618 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1619 struct deviceSpec *dsea =
1620 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1621 if (dsea) {
1622 init_special_inode(inode, inode->i_mode,
1623 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1624 le32_to_cpu(dsea->minorDeviceIdent)));
1625 /* Developer ID ??? */
1626 } else
1627 goto out;
1628 }
1629 ret = 0;
1630 out:
1631 brelse(bh);
1632 return ret;
1633 }
1634
udf_alloc_i_data(struct inode * inode,size_t size)1635 static int udf_alloc_i_data(struct inode *inode, size_t size)
1636 {
1637 struct udf_inode_info *iinfo = UDF_I(inode);
1638 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1639 if (!iinfo->i_data)
1640 return -ENOMEM;
1641 return 0;
1642 }
1643
udf_convert_permissions(struct fileEntry * fe)1644 static umode_t udf_convert_permissions(struct fileEntry *fe)
1645 {
1646 umode_t mode;
1647 uint32_t permissions;
1648 uint32_t flags;
1649
1650 permissions = le32_to_cpu(fe->permissions);
1651 flags = le16_to_cpu(fe->icbTag.flags);
1652
1653 mode = ((permissions) & 0007) |
1654 ((permissions >> 2) & 0070) |
1655 ((permissions >> 4) & 0700) |
1656 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1657 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1658 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1659
1660 return mode;
1661 }
1662
udf_update_extra_perms(struct inode * inode,umode_t mode)1663 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1664 {
1665 struct udf_inode_info *iinfo = UDF_I(inode);
1666
1667 /*
1668 * UDF 2.01 sec. 3.3.3.3 Note 2:
1669 * In Unix, delete permission tracks write
1670 */
1671 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1672 if (mode & 0200)
1673 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1674 if (mode & 0020)
1675 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1676 if (mode & 0002)
1677 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1678 }
1679
udf_write_inode(struct inode * inode,struct writeback_control * wbc)1680 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1681 {
1682 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1683 }
1684
udf_sync_inode(struct inode * inode)1685 static int udf_sync_inode(struct inode *inode)
1686 {
1687 return udf_update_inode(inode, 1);
1688 }
1689
udf_adjust_time(struct udf_inode_info * iinfo,struct timespec64 time)1690 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1691 {
1692 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1693 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1694 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1695 iinfo->i_crtime = time;
1696 }
1697
udf_update_inode(struct inode * inode,int do_sync)1698 static int udf_update_inode(struct inode *inode, int do_sync)
1699 {
1700 struct buffer_head *bh = NULL;
1701 struct fileEntry *fe;
1702 struct extendedFileEntry *efe;
1703 uint64_t lb_recorded;
1704 uint32_t udfperms;
1705 uint16_t icbflags;
1706 uint16_t crclen;
1707 int err = 0;
1708 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1709 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1710 struct udf_inode_info *iinfo = UDF_I(inode);
1711
1712 bh = sb_getblk(inode->i_sb,
1713 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1714 if (!bh) {
1715 udf_debug("getblk failure\n");
1716 return -EIO;
1717 }
1718
1719 lock_buffer(bh);
1720 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1721 fe = (struct fileEntry *)bh->b_data;
1722 efe = (struct extendedFileEntry *)bh->b_data;
1723
1724 if (iinfo->i_use) {
1725 struct unallocSpaceEntry *use =
1726 (struct unallocSpaceEntry *)bh->b_data;
1727
1728 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1729 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1730 iinfo->i_data, inode->i_sb->s_blocksize -
1731 sizeof(struct unallocSpaceEntry));
1732 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1733 crclen = sizeof(struct unallocSpaceEntry);
1734
1735 goto finish;
1736 }
1737
1738 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1739 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1740 else
1741 fe->uid = cpu_to_le32(i_uid_read(inode));
1742
1743 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1744 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1745 else
1746 fe->gid = cpu_to_le32(i_gid_read(inode));
1747
1748 udfperms = ((inode->i_mode & 0007)) |
1749 ((inode->i_mode & 0070) << 2) |
1750 ((inode->i_mode & 0700) << 4);
1751
1752 udfperms |= iinfo->i_extraPerms;
1753 fe->permissions = cpu_to_le32(udfperms);
1754
1755 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1756 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1757 else {
1758 if (iinfo->i_hidden)
1759 fe->fileLinkCount = cpu_to_le16(0);
1760 else
1761 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1762 }
1763
1764 fe->informationLength = cpu_to_le64(inode->i_size);
1765
1766 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1767 struct regid *eid;
1768 struct deviceSpec *dsea =
1769 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1770 if (!dsea) {
1771 dsea = (struct deviceSpec *)
1772 udf_add_extendedattr(inode,
1773 sizeof(struct deviceSpec) +
1774 sizeof(struct regid), 12, 0x3);
1775 dsea->attrType = cpu_to_le32(12);
1776 dsea->attrSubtype = 1;
1777 dsea->attrLength = cpu_to_le32(
1778 sizeof(struct deviceSpec) +
1779 sizeof(struct regid));
1780 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1781 }
1782 eid = (struct regid *)dsea->impUse;
1783 memset(eid, 0, sizeof(*eid));
1784 strcpy(eid->ident, UDF_ID_DEVELOPER);
1785 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1786 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1787 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1788 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1789 }
1790
1791 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1792 lb_recorded = 0; /* No extents => no blocks! */
1793 else
1794 lb_recorded =
1795 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1796 (blocksize_bits - 9);
1797
1798 if (iinfo->i_efe == 0) {
1799 memcpy(bh->b_data + sizeof(struct fileEntry),
1800 iinfo->i_data,
1801 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1802 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1803
1804 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1805 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1806 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1807 memset(&(fe->impIdent), 0, sizeof(struct regid));
1808 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1809 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1810 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1811 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1812 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1813 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1814 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1815 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1816 crclen = sizeof(struct fileEntry);
1817 } else {
1818 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1819 iinfo->i_data,
1820 inode->i_sb->s_blocksize -
1821 sizeof(struct extendedFileEntry));
1822 efe->objectSize =
1823 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1824 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1825
1826 if (iinfo->i_streamdir) {
1827 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1828
1829 icb_lad->extLocation =
1830 cpu_to_lelb(iinfo->i_locStreamdir);
1831 icb_lad->extLength =
1832 cpu_to_le32(inode->i_sb->s_blocksize);
1833 }
1834
1835 udf_adjust_time(iinfo, inode->i_atime);
1836 udf_adjust_time(iinfo, inode->i_mtime);
1837 udf_adjust_time(iinfo, inode->i_ctime);
1838
1839 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1840 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1841 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1842 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1843
1844 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1845 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1846 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1847 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1848 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1849 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1850 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1851 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1852 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1853 crclen = sizeof(struct extendedFileEntry);
1854 }
1855
1856 finish:
1857 if (iinfo->i_strat4096) {
1858 fe->icbTag.strategyType = cpu_to_le16(4096);
1859 fe->icbTag.strategyParameter = cpu_to_le16(1);
1860 fe->icbTag.numEntries = cpu_to_le16(2);
1861 } else {
1862 fe->icbTag.strategyType = cpu_to_le16(4);
1863 fe->icbTag.numEntries = cpu_to_le16(1);
1864 }
1865
1866 if (iinfo->i_use)
1867 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1868 else if (S_ISDIR(inode->i_mode))
1869 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1870 else if (S_ISREG(inode->i_mode))
1871 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1872 else if (S_ISLNK(inode->i_mode))
1873 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1874 else if (S_ISBLK(inode->i_mode))
1875 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1876 else if (S_ISCHR(inode->i_mode))
1877 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1878 else if (S_ISFIFO(inode->i_mode))
1879 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1880 else if (S_ISSOCK(inode->i_mode))
1881 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1882
1883 icbflags = iinfo->i_alloc_type |
1884 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1885 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1886 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1887 (le16_to_cpu(fe->icbTag.flags) &
1888 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1889 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1890
1891 fe->icbTag.flags = cpu_to_le16(icbflags);
1892 if (sbi->s_udfrev >= 0x0200)
1893 fe->descTag.descVersion = cpu_to_le16(3);
1894 else
1895 fe->descTag.descVersion = cpu_to_le16(2);
1896 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1897 fe->descTag.tagLocation = cpu_to_le32(
1898 iinfo->i_location.logicalBlockNum);
1899 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1900 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1901 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1902 crclen));
1903 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1904
1905 set_buffer_uptodate(bh);
1906 unlock_buffer(bh);
1907
1908 /* write the data blocks */
1909 mark_buffer_dirty(bh);
1910 if (do_sync) {
1911 sync_dirty_buffer(bh);
1912 if (buffer_write_io_error(bh)) {
1913 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1914 inode->i_ino);
1915 err = -EIO;
1916 }
1917 }
1918 brelse(bh);
1919
1920 return err;
1921 }
1922
__udf_iget(struct super_block * sb,struct kernel_lb_addr * ino,bool hidden_inode)1923 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1924 bool hidden_inode)
1925 {
1926 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1927 struct inode *inode = iget_locked(sb, block);
1928 int err;
1929
1930 if (!inode)
1931 return ERR_PTR(-ENOMEM);
1932
1933 if (!(inode->i_state & I_NEW)) {
1934 if (UDF_I(inode)->i_hidden != hidden_inode) {
1935 iput(inode);
1936 return ERR_PTR(-EFSCORRUPTED);
1937 }
1938 return inode;
1939 }
1940
1941 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1942 err = udf_read_inode(inode, hidden_inode);
1943 if (err < 0) {
1944 iget_failed(inode);
1945 return ERR_PTR(err);
1946 }
1947 unlock_new_inode(inode);
1948
1949 return inode;
1950 }
1951
udf_setup_indirect_aext(struct inode * inode,udf_pblk_t block,struct extent_position * epos)1952 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1953 struct extent_position *epos)
1954 {
1955 struct super_block *sb = inode->i_sb;
1956 struct buffer_head *bh;
1957 struct allocExtDesc *aed;
1958 struct extent_position nepos;
1959 struct kernel_lb_addr neloc;
1960 int ver, adsize;
1961
1962 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1963 adsize = sizeof(struct short_ad);
1964 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1965 adsize = sizeof(struct long_ad);
1966 else
1967 return -EIO;
1968
1969 neloc.logicalBlockNum = block;
1970 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1971
1972 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1973 if (!bh)
1974 return -EIO;
1975 lock_buffer(bh);
1976 memset(bh->b_data, 0x00, sb->s_blocksize);
1977 set_buffer_uptodate(bh);
1978 unlock_buffer(bh);
1979 mark_buffer_dirty_inode(bh, inode);
1980
1981 aed = (struct allocExtDesc *)(bh->b_data);
1982 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1983 aed->previousAllocExtLocation =
1984 cpu_to_le32(epos->block.logicalBlockNum);
1985 }
1986 aed->lengthAllocDescs = cpu_to_le32(0);
1987 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1988 ver = 3;
1989 else
1990 ver = 2;
1991 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1992 sizeof(struct tag));
1993
1994 nepos.block = neloc;
1995 nepos.offset = sizeof(struct allocExtDesc);
1996 nepos.bh = bh;
1997
1998 /*
1999 * Do we have to copy current last extent to make space for indirect
2000 * one?
2001 */
2002 if (epos->offset + adsize > sb->s_blocksize) {
2003 struct kernel_lb_addr cp_loc;
2004 uint32_t cp_len;
2005 int cp_type;
2006
2007 epos->offset -= adsize;
2008 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
2009 cp_len |= ((uint32_t)cp_type) << 30;
2010
2011 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2012 udf_write_aext(inode, epos, &nepos.block,
2013 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2014 } else {
2015 __udf_add_aext(inode, epos, &nepos.block,
2016 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2017 }
2018
2019 brelse(epos->bh);
2020 *epos = nepos;
2021
2022 return 0;
2023 }
2024
2025 /*
2026 * Append extent at the given position - should be the first free one in inode
2027 * / indirect extent. This function assumes there is enough space in the inode
2028 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2029 */
__udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2030 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2031 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2032 {
2033 struct udf_inode_info *iinfo = UDF_I(inode);
2034 struct allocExtDesc *aed;
2035 int adsize;
2036
2037 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2038 adsize = sizeof(struct short_ad);
2039 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2040 adsize = sizeof(struct long_ad);
2041 else
2042 return -EIO;
2043
2044 if (!epos->bh) {
2045 WARN_ON(iinfo->i_lenAlloc !=
2046 epos->offset - udf_file_entry_alloc_offset(inode));
2047 } else {
2048 aed = (struct allocExtDesc *)epos->bh->b_data;
2049 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2050 epos->offset - sizeof(struct allocExtDesc));
2051 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2052 }
2053
2054 udf_write_aext(inode, epos, eloc, elen, inc);
2055
2056 if (!epos->bh) {
2057 iinfo->i_lenAlloc += adsize;
2058 mark_inode_dirty(inode);
2059 } else {
2060 aed = (struct allocExtDesc *)epos->bh->b_data;
2061 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2062 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2063 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2064 udf_update_tag(epos->bh->b_data,
2065 epos->offset + (inc ? 0 : adsize));
2066 else
2067 udf_update_tag(epos->bh->b_data,
2068 sizeof(struct allocExtDesc));
2069 mark_buffer_dirty_inode(epos->bh, inode);
2070 }
2071
2072 return 0;
2073 }
2074
2075 /*
2076 * Append extent at given position - should be the first free one in inode
2077 * / indirect extent. Takes care of allocating and linking indirect blocks.
2078 */
udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2079 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2080 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2081 {
2082 int adsize;
2083 struct super_block *sb = inode->i_sb;
2084
2085 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2086 adsize = sizeof(struct short_ad);
2087 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2088 adsize = sizeof(struct long_ad);
2089 else
2090 return -EIO;
2091
2092 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2093 int err;
2094 udf_pblk_t new_block;
2095
2096 new_block = udf_new_block(sb, NULL,
2097 epos->block.partitionReferenceNum,
2098 epos->block.logicalBlockNum, &err);
2099 if (!new_block)
2100 return -ENOSPC;
2101
2102 err = udf_setup_indirect_aext(inode, new_block, epos);
2103 if (err)
2104 return err;
2105 }
2106
2107 return __udf_add_aext(inode, epos, eloc, elen, inc);
2108 }
2109
udf_write_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2110 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2111 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2112 {
2113 int adsize;
2114 uint8_t *ptr;
2115 struct short_ad *sad;
2116 struct long_ad *lad;
2117 struct udf_inode_info *iinfo = UDF_I(inode);
2118
2119 if (!epos->bh)
2120 ptr = iinfo->i_data + epos->offset -
2121 udf_file_entry_alloc_offset(inode) +
2122 iinfo->i_lenEAttr;
2123 else
2124 ptr = epos->bh->b_data + epos->offset;
2125
2126 switch (iinfo->i_alloc_type) {
2127 case ICBTAG_FLAG_AD_SHORT:
2128 sad = (struct short_ad *)ptr;
2129 sad->extLength = cpu_to_le32(elen);
2130 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2131 adsize = sizeof(struct short_ad);
2132 break;
2133 case ICBTAG_FLAG_AD_LONG:
2134 lad = (struct long_ad *)ptr;
2135 lad->extLength = cpu_to_le32(elen);
2136 lad->extLocation = cpu_to_lelb(*eloc);
2137 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2138 adsize = sizeof(struct long_ad);
2139 break;
2140 default:
2141 return;
2142 }
2143
2144 if (epos->bh) {
2145 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2146 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2147 struct allocExtDesc *aed =
2148 (struct allocExtDesc *)epos->bh->b_data;
2149 udf_update_tag(epos->bh->b_data,
2150 le32_to_cpu(aed->lengthAllocDescs) +
2151 sizeof(struct allocExtDesc));
2152 }
2153 mark_buffer_dirty_inode(epos->bh, inode);
2154 } else {
2155 mark_inode_dirty(inode);
2156 }
2157
2158 if (inc)
2159 epos->offset += adsize;
2160 }
2161
2162 /*
2163 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2164 * someone does some weird stuff.
2165 */
2166 #define UDF_MAX_INDIR_EXTS 16
2167
udf_next_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2168 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2169 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2170 {
2171 int8_t etype;
2172 unsigned int indirections = 0;
2173
2174 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2175 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2176 udf_pblk_t block;
2177
2178 if (++indirections > UDF_MAX_INDIR_EXTS) {
2179 udf_err(inode->i_sb,
2180 "too many indirect extents in inode %lu\n",
2181 inode->i_ino);
2182 return -1;
2183 }
2184
2185 epos->block = *eloc;
2186 epos->offset = sizeof(struct allocExtDesc);
2187 brelse(epos->bh);
2188 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2189 epos->bh = sb_bread(inode->i_sb, block);
2190 if (!epos->bh) {
2191 udf_debug("reading block %u failed!\n", block);
2192 return -1;
2193 }
2194 }
2195
2196 return etype;
2197 }
2198
udf_current_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2199 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2200 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2201 {
2202 int alen;
2203 int8_t etype;
2204 uint8_t *ptr;
2205 struct short_ad *sad;
2206 struct long_ad *lad;
2207 struct udf_inode_info *iinfo = UDF_I(inode);
2208
2209 if (!epos->bh) {
2210 if (!epos->offset)
2211 epos->offset = udf_file_entry_alloc_offset(inode);
2212 ptr = iinfo->i_data + epos->offset -
2213 udf_file_entry_alloc_offset(inode) +
2214 iinfo->i_lenEAttr;
2215 alen = udf_file_entry_alloc_offset(inode) +
2216 iinfo->i_lenAlloc;
2217 } else {
2218 if (!epos->offset)
2219 epos->offset = sizeof(struct allocExtDesc);
2220 ptr = epos->bh->b_data + epos->offset;
2221 alen = sizeof(struct allocExtDesc) +
2222 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2223 lengthAllocDescs);
2224 }
2225
2226 switch (iinfo->i_alloc_type) {
2227 case ICBTAG_FLAG_AD_SHORT:
2228 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2229 if (!sad)
2230 return -1;
2231 etype = le32_to_cpu(sad->extLength) >> 30;
2232 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2233 eloc->partitionReferenceNum =
2234 iinfo->i_location.partitionReferenceNum;
2235 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2236 break;
2237 case ICBTAG_FLAG_AD_LONG:
2238 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2239 if (!lad)
2240 return -1;
2241 etype = le32_to_cpu(lad->extLength) >> 30;
2242 *eloc = lelb_to_cpu(lad->extLocation);
2243 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2244 break;
2245 default:
2246 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2247 return -1;
2248 }
2249
2250 return etype;
2251 }
2252
udf_insert_aext(struct inode * inode,struct extent_position epos,struct kernel_lb_addr neloc,uint32_t nelen)2253 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2254 struct kernel_lb_addr neloc, uint32_t nelen)
2255 {
2256 struct kernel_lb_addr oeloc;
2257 uint32_t oelen;
2258 int8_t etype;
2259 int err;
2260
2261 if (epos.bh)
2262 get_bh(epos.bh);
2263
2264 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2265 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2266 neloc = oeloc;
2267 nelen = (etype << 30) | oelen;
2268 }
2269 err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2270 brelse(epos.bh);
2271
2272 return err;
2273 }
2274
udf_delete_aext(struct inode * inode,struct extent_position epos)2275 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2276 {
2277 struct extent_position oepos;
2278 int adsize;
2279 int8_t etype;
2280 struct allocExtDesc *aed;
2281 struct udf_inode_info *iinfo;
2282 struct kernel_lb_addr eloc;
2283 uint32_t elen;
2284
2285 if (epos.bh) {
2286 get_bh(epos.bh);
2287 get_bh(epos.bh);
2288 }
2289
2290 iinfo = UDF_I(inode);
2291 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2292 adsize = sizeof(struct short_ad);
2293 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2294 adsize = sizeof(struct long_ad);
2295 else
2296 adsize = 0;
2297
2298 oepos = epos;
2299 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2300 return -1;
2301
2302 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2303 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2304 if (oepos.bh != epos.bh) {
2305 oepos.block = epos.block;
2306 brelse(oepos.bh);
2307 get_bh(epos.bh);
2308 oepos.bh = epos.bh;
2309 oepos.offset = epos.offset - adsize;
2310 }
2311 }
2312 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2313 elen = 0;
2314
2315 if (epos.bh != oepos.bh) {
2316 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2317 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2318 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2319 if (!oepos.bh) {
2320 iinfo->i_lenAlloc -= (adsize * 2);
2321 mark_inode_dirty(inode);
2322 } else {
2323 aed = (struct allocExtDesc *)oepos.bh->b_data;
2324 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2325 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2326 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2327 udf_update_tag(oepos.bh->b_data,
2328 oepos.offset - (2 * adsize));
2329 else
2330 udf_update_tag(oepos.bh->b_data,
2331 sizeof(struct allocExtDesc));
2332 mark_buffer_dirty_inode(oepos.bh, inode);
2333 }
2334 } else {
2335 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2336 if (!oepos.bh) {
2337 iinfo->i_lenAlloc -= adsize;
2338 mark_inode_dirty(inode);
2339 } else {
2340 aed = (struct allocExtDesc *)oepos.bh->b_data;
2341 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2342 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2343 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2344 udf_update_tag(oepos.bh->b_data,
2345 epos.offset - adsize);
2346 else
2347 udf_update_tag(oepos.bh->b_data,
2348 sizeof(struct allocExtDesc));
2349 mark_buffer_dirty_inode(oepos.bh, inode);
2350 }
2351 }
2352
2353 brelse(epos.bh);
2354 brelse(oepos.bh);
2355
2356 return (elen >> 30);
2357 }
2358
inode_bmap(struct inode * inode,sector_t block,struct extent_position * pos,struct kernel_lb_addr * eloc,uint32_t * elen,sector_t * offset)2359 int8_t inode_bmap(struct inode *inode, sector_t block,
2360 struct extent_position *pos, struct kernel_lb_addr *eloc,
2361 uint32_t *elen, sector_t *offset)
2362 {
2363 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2364 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2365 int8_t etype;
2366 struct udf_inode_info *iinfo;
2367
2368 iinfo = UDF_I(inode);
2369 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2370 pos->offset = 0;
2371 pos->block = iinfo->i_location;
2372 pos->bh = NULL;
2373 }
2374 *elen = 0;
2375 do {
2376 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2377 if (etype == -1) {
2378 *offset = (bcount - lbcount) >> blocksize_bits;
2379 iinfo->i_lenExtents = lbcount;
2380 return -1;
2381 }
2382 lbcount += *elen;
2383 } while (lbcount <= bcount);
2384 /* update extent cache */
2385 udf_update_extent_cache(inode, lbcount - *elen, pos);
2386 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2387
2388 return etype;
2389 }
2390