1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3 *
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/netfs.h>
15 #include "internal.h"
16
17 static int afs_writepages_region(struct address_space *mapping,
18 struct writeback_control *wbc,
19 loff_t start, loff_t end, loff_t *_next,
20 bool max_one_loop);
21
22 static void afs_write_to_cache(struct afs_vnode *vnode, loff_t start, size_t len,
23 loff_t i_size, bool caching);
24
25 #ifdef CONFIG_AFS_FSCACHE
26 /*
27 * Mark a page as having been made dirty and thus needing writeback. We also
28 * need to pin the cache object to write back to.
29 */
afs_dirty_folio(struct address_space * mapping,struct folio * folio)30 bool afs_dirty_folio(struct address_space *mapping, struct folio *folio)
31 {
32 return fscache_dirty_folio(mapping, folio,
33 afs_vnode_cache(AFS_FS_I(mapping->host)));
34 }
afs_folio_start_fscache(bool caching,struct folio * folio)35 static void afs_folio_start_fscache(bool caching, struct folio *folio)
36 {
37 if (caching)
38 folio_start_fscache(folio);
39 }
40 #else
afs_folio_start_fscache(bool caching,struct folio * folio)41 static void afs_folio_start_fscache(bool caching, struct folio *folio)
42 {
43 }
44 #endif
45
46 /*
47 * Flush out a conflicting write. This may extend the write to the surrounding
48 * pages if also dirty and contiguous to the conflicting region..
49 */
afs_flush_conflicting_write(struct address_space * mapping,struct folio * folio)50 static int afs_flush_conflicting_write(struct address_space *mapping,
51 struct folio *folio)
52 {
53 struct writeback_control wbc = {
54 .sync_mode = WB_SYNC_ALL,
55 .nr_to_write = LONG_MAX,
56 .range_start = folio_pos(folio),
57 .range_end = LLONG_MAX,
58 };
59 loff_t next;
60
61 return afs_writepages_region(mapping, &wbc, folio_pos(folio), LLONG_MAX,
62 &next, true);
63 }
64
65 /*
66 * prepare to perform part of a write to a page
67 */
afs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** _page,void ** fsdata)68 int afs_write_begin(struct file *file, struct address_space *mapping,
69 loff_t pos, unsigned len,
70 struct page **_page, void **fsdata)
71 {
72 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
73 struct folio *folio;
74 unsigned long priv;
75 unsigned f, from;
76 unsigned t, to;
77 pgoff_t index;
78 int ret;
79
80 _enter("{%llx:%llu},%llx,%x",
81 vnode->fid.vid, vnode->fid.vnode, pos, len);
82
83 /* Prefetch area to be written into the cache if we're caching this
84 * file. We need to do this before we get a lock on the page in case
85 * there's more than one writer competing for the same cache block.
86 */
87 ret = netfs_write_begin(&vnode->netfs, file, mapping, pos, len, &folio, fsdata);
88 if (ret < 0)
89 return ret;
90
91 index = folio_index(folio);
92 from = pos - index * PAGE_SIZE;
93 to = from + len;
94
95 try_again:
96 /* See if this page is already partially written in a way that we can
97 * merge the new write with.
98 */
99 if (folio_test_private(folio)) {
100 priv = (unsigned long)folio_get_private(folio);
101 f = afs_folio_dirty_from(folio, priv);
102 t = afs_folio_dirty_to(folio, priv);
103 ASSERTCMP(f, <=, t);
104
105 if (folio_test_writeback(folio)) {
106 trace_afs_folio_dirty(vnode, tracepoint_string("alrdy"), folio);
107 folio_unlock(folio);
108 goto wait_for_writeback;
109 }
110 /* If the file is being filled locally, allow inter-write
111 * spaces to be merged into writes. If it's not, only write
112 * back what the user gives us.
113 */
114 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
115 (to < f || from > t))
116 goto flush_conflicting_write;
117 }
118
119 *_page = folio_file_page(folio, pos / PAGE_SIZE);
120 _leave(" = 0");
121 return 0;
122
123 /* The previous write and this write aren't adjacent or overlapping, so
124 * flush the page out.
125 */
126 flush_conflicting_write:
127 trace_afs_folio_dirty(vnode, tracepoint_string("confl"), folio);
128 folio_unlock(folio);
129
130 ret = afs_flush_conflicting_write(mapping, folio);
131 if (ret < 0)
132 goto error;
133
134 wait_for_writeback:
135 ret = folio_wait_writeback_killable(folio);
136 if (ret < 0)
137 goto error;
138
139 ret = folio_lock_killable(folio);
140 if (ret < 0)
141 goto error;
142 goto try_again;
143
144 error:
145 folio_put(folio);
146 _leave(" = %d", ret);
147 return ret;
148 }
149
150 /*
151 * finalise part of a write to a page
152 */
afs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * subpage,void * fsdata)153 int afs_write_end(struct file *file, struct address_space *mapping,
154 loff_t pos, unsigned len, unsigned copied,
155 struct page *subpage, void *fsdata)
156 {
157 struct folio *folio = page_folio(subpage);
158 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
159 unsigned long priv;
160 unsigned int f, from = offset_in_folio(folio, pos);
161 unsigned int t, to = from + copied;
162 loff_t i_size, write_end_pos;
163
164 _enter("{%llx:%llu},{%lx}",
165 vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
166
167 if (!folio_test_uptodate(folio)) {
168 if (copied < len) {
169 copied = 0;
170 goto out;
171 }
172
173 folio_mark_uptodate(folio);
174 }
175
176 if (copied == 0)
177 goto out;
178
179 write_end_pos = pos + copied;
180
181 i_size = i_size_read(&vnode->netfs.inode);
182 if (write_end_pos > i_size) {
183 write_seqlock(&vnode->cb_lock);
184 i_size = i_size_read(&vnode->netfs.inode);
185 if (write_end_pos > i_size)
186 afs_set_i_size(vnode, write_end_pos);
187 write_sequnlock(&vnode->cb_lock);
188 fscache_update_cookie(afs_vnode_cache(vnode), NULL, &write_end_pos);
189 }
190
191 if (folio_test_private(folio)) {
192 priv = (unsigned long)folio_get_private(folio);
193 f = afs_folio_dirty_from(folio, priv);
194 t = afs_folio_dirty_to(folio, priv);
195 if (from < f)
196 f = from;
197 if (to > t)
198 t = to;
199 priv = afs_folio_dirty(folio, f, t);
200 folio_change_private(folio, (void *)priv);
201 trace_afs_folio_dirty(vnode, tracepoint_string("dirty+"), folio);
202 } else {
203 priv = afs_folio_dirty(folio, from, to);
204 folio_attach_private(folio, (void *)priv);
205 trace_afs_folio_dirty(vnode, tracepoint_string("dirty"), folio);
206 }
207
208 if (folio_mark_dirty(folio))
209 _debug("dirtied %lx", folio_index(folio));
210
211 out:
212 folio_unlock(folio);
213 folio_put(folio);
214 return copied;
215 }
216
217 /*
218 * kill all the pages in the given range
219 */
afs_kill_pages(struct address_space * mapping,loff_t start,loff_t len)220 static void afs_kill_pages(struct address_space *mapping,
221 loff_t start, loff_t len)
222 {
223 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
224 struct folio *folio;
225 pgoff_t index = start / PAGE_SIZE;
226 pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
227
228 _enter("{%llx:%llu},%llx @%llx",
229 vnode->fid.vid, vnode->fid.vnode, len, start);
230
231 do {
232 _debug("kill %lx (to %lx)", index, last);
233
234 folio = filemap_get_folio(mapping, index);
235 if (!folio) {
236 next = index + 1;
237 continue;
238 }
239
240 next = folio_next_index(folio);
241
242 folio_clear_uptodate(folio);
243 folio_end_writeback(folio);
244 folio_lock(folio);
245 generic_error_remove_page(mapping, &folio->page);
246 folio_unlock(folio);
247 folio_put(folio);
248
249 } while (index = next, index <= last);
250
251 _leave("");
252 }
253
254 /*
255 * Redirty all the pages in a given range.
256 */
afs_redirty_pages(struct writeback_control * wbc,struct address_space * mapping,loff_t start,loff_t len)257 static void afs_redirty_pages(struct writeback_control *wbc,
258 struct address_space *mapping,
259 loff_t start, loff_t len)
260 {
261 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
262 struct folio *folio;
263 pgoff_t index = start / PAGE_SIZE;
264 pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
265
266 _enter("{%llx:%llu},%llx @%llx",
267 vnode->fid.vid, vnode->fid.vnode, len, start);
268
269 do {
270 _debug("redirty %llx @%llx", len, start);
271
272 folio = filemap_get_folio(mapping, index);
273 if (!folio) {
274 next = index + 1;
275 continue;
276 }
277
278 next = index + folio_nr_pages(folio);
279 folio_redirty_for_writepage(wbc, folio);
280 folio_end_writeback(folio);
281 folio_put(folio);
282 } while (index = next, index <= last);
283
284 _leave("");
285 }
286
287 /*
288 * completion of write to server
289 */
afs_pages_written_back(struct afs_vnode * vnode,loff_t start,unsigned int len)290 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
291 {
292 struct address_space *mapping = vnode->netfs.inode.i_mapping;
293 struct folio *folio;
294 pgoff_t end;
295
296 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
297
298 _enter("{%llx:%llu},{%x @%llx}",
299 vnode->fid.vid, vnode->fid.vnode, len, start);
300
301 rcu_read_lock();
302
303 end = (start + len - 1) / PAGE_SIZE;
304 xas_for_each(&xas, folio, end) {
305 if (!folio_test_writeback(folio)) {
306 kdebug("bad %x @%llx page %lx %lx",
307 len, start, folio_index(folio), end);
308 ASSERT(folio_test_writeback(folio));
309 }
310
311 trace_afs_folio_dirty(vnode, tracepoint_string("clear"), folio);
312 folio_detach_private(folio);
313 folio_end_writeback(folio);
314 }
315
316 rcu_read_unlock();
317
318 afs_prune_wb_keys(vnode);
319 _leave("");
320 }
321
322 /*
323 * Find a key to use for the writeback. We cached the keys used to author the
324 * writes on the vnode. *_wbk will contain the last writeback key used or NULL
325 * and we need to start from there if it's set.
326 */
afs_get_writeback_key(struct afs_vnode * vnode,struct afs_wb_key ** _wbk)327 static int afs_get_writeback_key(struct afs_vnode *vnode,
328 struct afs_wb_key **_wbk)
329 {
330 struct afs_wb_key *wbk = NULL;
331 struct list_head *p;
332 int ret = -ENOKEY, ret2;
333
334 spin_lock(&vnode->wb_lock);
335 if (*_wbk)
336 p = (*_wbk)->vnode_link.next;
337 else
338 p = vnode->wb_keys.next;
339
340 while (p != &vnode->wb_keys) {
341 wbk = list_entry(p, struct afs_wb_key, vnode_link);
342 _debug("wbk %u", key_serial(wbk->key));
343 ret2 = key_validate(wbk->key);
344 if (ret2 == 0) {
345 refcount_inc(&wbk->usage);
346 _debug("USE WB KEY %u", key_serial(wbk->key));
347 break;
348 }
349
350 wbk = NULL;
351 if (ret == -ENOKEY)
352 ret = ret2;
353 p = p->next;
354 }
355
356 spin_unlock(&vnode->wb_lock);
357 if (*_wbk)
358 afs_put_wb_key(*_wbk);
359 *_wbk = wbk;
360 return 0;
361 }
362
afs_store_data_success(struct afs_operation * op)363 static void afs_store_data_success(struct afs_operation *op)
364 {
365 struct afs_vnode *vnode = op->file[0].vnode;
366
367 op->ctime = op->file[0].scb.status.mtime_client;
368 afs_vnode_commit_status(op, &op->file[0]);
369 if (op->error == 0) {
370 if (!op->store.laundering)
371 afs_pages_written_back(vnode, op->store.pos, op->store.size);
372 afs_stat_v(vnode, n_stores);
373 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
374 }
375 }
376
377 static const struct afs_operation_ops afs_store_data_operation = {
378 .issue_afs_rpc = afs_fs_store_data,
379 .issue_yfs_rpc = yfs_fs_store_data,
380 .success = afs_store_data_success,
381 };
382
383 /*
384 * write to a file
385 */
afs_store_data(struct afs_vnode * vnode,struct iov_iter * iter,loff_t pos,bool laundering)386 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
387 bool laundering)
388 {
389 struct afs_operation *op;
390 struct afs_wb_key *wbk = NULL;
391 loff_t size = iov_iter_count(iter);
392 int ret = -ENOKEY;
393
394 _enter("%s{%llx:%llu.%u},%llx,%llx",
395 vnode->volume->name,
396 vnode->fid.vid,
397 vnode->fid.vnode,
398 vnode->fid.unique,
399 size, pos);
400
401 ret = afs_get_writeback_key(vnode, &wbk);
402 if (ret) {
403 _leave(" = %d [no keys]", ret);
404 return ret;
405 }
406
407 op = afs_alloc_operation(wbk->key, vnode->volume);
408 if (IS_ERR(op)) {
409 afs_put_wb_key(wbk);
410 return -ENOMEM;
411 }
412
413 afs_op_set_vnode(op, 0, vnode);
414 op->file[0].dv_delta = 1;
415 op->file[0].modification = true;
416 op->store.write_iter = iter;
417 op->store.pos = pos;
418 op->store.size = size;
419 op->store.i_size = max(pos + size, vnode->netfs.remote_i_size);
420 op->store.laundering = laundering;
421 op->mtime = vnode->netfs.inode.i_mtime;
422 op->flags |= AFS_OPERATION_UNINTR;
423 op->ops = &afs_store_data_operation;
424
425 try_next_key:
426 afs_begin_vnode_operation(op);
427 afs_wait_for_operation(op);
428
429 switch (op->error) {
430 case -EACCES:
431 case -EPERM:
432 case -ENOKEY:
433 case -EKEYEXPIRED:
434 case -EKEYREJECTED:
435 case -EKEYREVOKED:
436 _debug("next");
437
438 ret = afs_get_writeback_key(vnode, &wbk);
439 if (ret == 0) {
440 key_put(op->key);
441 op->key = key_get(wbk->key);
442 goto try_next_key;
443 }
444 break;
445 }
446
447 afs_put_wb_key(wbk);
448 _leave(" = %d", op->error);
449 return afs_put_operation(op);
450 }
451
452 /*
453 * Extend the region to be written back to include subsequent contiguously
454 * dirty pages if possible, but don't sleep while doing so.
455 *
456 * If this page holds new content, then we can include filler zeros in the
457 * writeback.
458 */
afs_extend_writeback(struct address_space * mapping,struct afs_vnode * vnode,long * _count,loff_t start,loff_t max_len,bool new_content,bool caching,unsigned int * _len)459 static void afs_extend_writeback(struct address_space *mapping,
460 struct afs_vnode *vnode,
461 long *_count,
462 loff_t start,
463 loff_t max_len,
464 bool new_content,
465 bool caching,
466 unsigned int *_len)
467 {
468 struct pagevec pvec;
469 struct folio *folio;
470 unsigned long priv;
471 unsigned int psize, filler = 0;
472 unsigned int f, t;
473 loff_t len = *_len;
474 pgoff_t index = (start + len) / PAGE_SIZE;
475 bool stop = true;
476 unsigned int i;
477
478 XA_STATE(xas, &mapping->i_pages, index);
479 pagevec_init(&pvec);
480
481 do {
482 /* Firstly, we gather up a batch of contiguous dirty pages
483 * under the RCU read lock - but we can't clear the dirty flags
484 * there if any of those pages are mapped.
485 */
486 rcu_read_lock();
487
488 xas_for_each(&xas, folio, ULONG_MAX) {
489 stop = true;
490 if (xas_retry(&xas, folio))
491 continue;
492 if (xa_is_value(folio))
493 break;
494 if (folio_index(folio) != index)
495 break;
496
497 if (!folio_try_get_rcu(folio)) {
498 xas_reset(&xas);
499 continue;
500 }
501
502 /* Has the page moved or been split? */
503 if (unlikely(folio != xas_reload(&xas))) {
504 folio_put(folio);
505 break;
506 }
507
508 if (!folio_trylock(folio)) {
509 folio_put(folio);
510 break;
511 }
512 if (!folio_test_dirty(folio) ||
513 folio_test_writeback(folio) ||
514 folio_test_fscache(folio)) {
515 folio_unlock(folio);
516 folio_put(folio);
517 break;
518 }
519
520 psize = folio_size(folio);
521 priv = (unsigned long)folio_get_private(folio);
522 f = afs_folio_dirty_from(folio, priv);
523 t = afs_folio_dirty_to(folio, priv);
524 if (f != 0 && !new_content) {
525 folio_unlock(folio);
526 folio_put(folio);
527 break;
528 }
529
530 len += filler + t;
531 filler = psize - t;
532 if (len >= max_len || *_count <= 0)
533 stop = true;
534 else if (t == psize || new_content)
535 stop = false;
536
537 index += folio_nr_pages(folio);
538 if (!pagevec_add(&pvec, &folio->page))
539 break;
540 if (stop)
541 break;
542 }
543
544 if (!stop)
545 xas_pause(&xas);
546 rcu_read_unlock();
547
548 /* Now, if we obtained any pages, we can shift them to being
549 * writable and mark them for caching.
550 */
551 if (!pagevec_count(&pvec))
552 break;
553
554 for (i = 0; i < pagevec_count(&pvec); i++) {
555 folio = page_folio(pvec.pages[i]);
556 trace_afs_folio_dirty(vnode, tracepoint_string("store+"), folio);
557
558 if (!folio_clear_dirty_for_io(folio))
559 BUG();
560 if (folio_start_writeback(folio))
561 BUG();
562 afs_folio_start_fscache(caching, folio);
563
564 *_count -= folio_nr_pages(folio);
565 folio_unlock(folio);
566 }
567
568 pagevec_release(&pvec);
569 cond_resched();
570 } while (!stop);
571
572 *_len = len;
573 }
574
575 /*
576 * Synchronously write back the locked page and any subsequent non-locked dirty
577 * pages.
578 */
afs_write_back_from_locked_folio(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio,loff_t start,loff_t end)579 static ssize_t afs_write_back_from_locked_folio(struct address_space *mapping,
580 struct writeback_control *wbc,
581 struct folio *folio,
582 loff_t start, loff_t end)
583 {
584 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
585 struct iov_iter iter;
586 unsigned long priv;
587 unsigned int offset, to, len, max_len;
588 loff_t i_size = i_size_read(&vnode->netfs.inode);
589 bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
590 bool caching = fscache_cookie_enabled(afs_vnode_cache(vnode));
591 long count = wbc->nr_to_write;
592 int ret;
593
594 _enter(",%lx,%llx-%llx", folio_index(folio), start, end);
595
596 if (folio_start_writeback(folio))
597 BUG();
598 afs_folio_start_fscache(caching, folio);
599
600 count -= folio_nr_pages(folio);
601
602 /* Find all consecutive lockable dirty pages that have contiguous
603 * written regions, stopping when we find a page that is not
604 * immediately lockable, is not dirty or is missing, or we reach the
605 * end of the range.
606 */
607 priv = (unsigned long)folio_get_private(folio);
608 offset = afs_folio_dirty_from(folio, priv);
609 to = afs_folio_dirty_to(folio, priv);
610 trace_afs_folio_dirty(vnode, tracepoint_string("store"), folio);
611
612 len = to - offset;
613 start += offset;
614 if (start < i_size) {
615 /* Trim the write to the EOF; the extra data is ignored. Also
616 * put an upper limit on the size of a single storedata op.
617 */
618 max_len = 65536 * 4096;
619 max_len = min_t(unsigned long long, max_len, end - start + 1);
620 max_len = min_t(unsigned long long, max_len, i_size - start);
621
622 if (len < max_len &&
623 (to == folio_size(folio) || new_content))
624 afs_extend_writeback(mapping, vnode, &count,
625 start, max_len, new_content,
626 caching, &len);
627 len = min_t(loff_t, len, max_len);
628 }
629
630 /* We now have a contiguous set of dirty pages, each with writeback
631 * set; the first page is still locked at this point, but all the rest
632 * have been unlocked.
633 */
634 folio_unlock(folio);
635
636 if (start < i_size) {
637 _debug("write back %x @%llx [%llx]", len, start, i_size);
638
639 /* Speculatively write to the cache. We have to fix this up
640 * later if the store fails.
641 */
642 afs_write_to_cache(vnode, start, len, i_size, caching);
643
644 iov_iter_xarray(&iter, ITER_SOURCE, &mapping->i_pages, start, len);
645 ret = afs_store_data(vnode, &iter, start, false);
646 } else {
647 _debug("write discard %x @%llx [%llx]", len, start, i_size);
648
649 /* The dirty region was entirely beyond the EOF. */
650 fscache_clear_page_bits(mapping, start, len, caching);
651 afs_pages_written_back(vnode, start, len);
652 ret = 0;
653 }
654
655 switch (ret) {
656 case 0:
657 wbc->nr_to_write = count;
658 ret = len;
659 break;
660
661 default:
662 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
663 fallthrough;
664 case -EACCES:
665 case -EPERM:
666 case -ENOKEY:
667 case -EKEYEXPIRED:
668 case -EKEYREJECTED:
669 case -EKEYREVOKED:
670 case -ENETRESET:
671 afs_redirty_pages(wbc, mapping, start, len);
672 mapping_set_error(mapping, ret);
673 break;
674
675 case -EDQUOT:
676 case -ENOSPC:
677 afs_redirty_pages(wbc, mapping, start, len);
678 mapping_set_error(mapping, -ENOSPC);
679 break;
680
681 case -EROFS:
682 case -EIO:
683 case -EREMOTEIO:
684 case -EFBIG:
685 case -ENOENT:
686 case -ENOMEDIUM:
687 case -ENXIO:
688 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
689 afs_kill_pages(mapping, start, len);
690 mapping_set_error(mapping, ret);
691 break;
692 }
693
694 _leave(" = %d", ret);
695 return ret;
696 }
697
698 /*
699 * write a region of pages back to the server
700 */
afs_writepages_region(struct address_space * mapping,struct writeback_control * wbc,loff_t start,loff_t end,loff_t * _next,bool max_one_loop)701 static int afs_writepages_region(struct address_space *mapping,
702 struct writeback_control *wbc,
703 loff_t start, loff_t end, loff_t *_next,
704 bool max_one_loop)
705 {
706 struct folio *folio;
707 struct folio_batch fbatch;
708 ssize_t ret;
709 unsigned int i;
710 int n, skips = 0;
711
712 _enter("%llx,%llx,", start, end);
713 folio_batch_init(&fbatch);
714
715 do {
716 pgoff_t index = start / PAGE_SIZE;
717
718 n = filemap_get_folios_tag(mapping, &index, end / PAGE_SIZE,
719 PAGECACHE_TAG_DIRTY, &fbatch);
720
721 if (!n)
722 break;
723 for (i = 0; i < n; i++) {
724 folio = fbatch.folios[i];
725 start = folio_pos(folio); /* May regress with THPs */
726
727 _debug("wback %lx", folio_index(folio));
728
729 /* At this point we hold neither the i_pages lock nor the
730 * page lock: the page may be truncated or invalidated
731 * (changing page->mapping to NULL), or even swizzled
732 * back from swapper_space to tmpfs file mapping
733 */
734 if (wbc->sync_mode != WB_SYNC_NONE) {
735 ret = folio_lock_killable(folio);
736 if (ret < 0) {
737 folio_batch_release(&fbatch);
738 return ret;
739 }
740 } else {
741 if (!folio_trylock(folio))
742 continue;
743 }
744
745 if (folio->mapping != mapping ||
746 !folio_test_dirty(folio)) {
747 start += folio_size(folio);
748 folio_unlock(folio);
749 continue;
750 }
751
752 if (folio_test_writeback(folio) ||
753 folio_test_fscache(folio)) {
754 folio_unlock(folio);
755 if (wbc->sync_mode != WB_SYNC_NONE) {
756 folio_wait_writeback(folio);
757 #ifdef CONFIG_AFS_FSCACHE
758 folio_wait_fscache(folio);
759 #endif
760 } else {
761 start += folio_size(folio);
762 }
763 if (wbc->sync_mode == WB_SYNC_NONE) {
764 if (skips >= 5 || need_resched()) {
765 *_next = start;
766 _leave(" = 0 [%llx]", *_next);
767 return 0;
768 }
769 skips++;
770 }
771 continue;
772 }
773
774 if (!folio_clear_dirty_for_io(folio))
775 BUG();
776 ret = afs_write_back_from_locked_folio(mapping, wbc,
777 folio, start, end);
778 if (ret < 0) {
779 _leave(" = %zd", ret);
780 folio_batch_release(&fbatch);
781 return ret;
782 }
783
784 start += ret;
785 }
786
787 folio_batch_release(&fbatch);
788 cond_resched();
789 } while (wbc->nr_to_write > 0);
790
791 *_next = start;
792 _leave(" = 0 [%llx]", *_next);
793 return 0;
794 }
795
796 /*
797 * write some of the pending data back to the server
798 */
afs_writepages(struct address_space * mapping,struct writeback_control * wbc)799 int afs_writepages(struct address_space *mapping,
800 struct writeback_control *wbc)
801 {
802 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
803 loff_t start, next;
804 int ret;
805
806 _enter("");
807
808 /* We have to be careful as we can end up racing with setattr()
809 * truncating the pagecache since the caller doesn't take a lock here
810 * to prevent it.
811 */
812 if (wbc->sync_mode == WB_SYNC_ALL)
813 down_read(&vnode->validate_lock);
814 else if (!down_read_trylock(&vnode->validate_lock))
815 return 0;
816
817 if (wbc->range_cyclic) {
818 start = mapping->writeback_index * PAGE_SIZE;
819 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX,
820 &next, false);
821 if (ret == 0) {
822 mapping->writeback_index = next / PAGE_SIZE;
823 if (start > 0 && wbc->nr_to_write > 0) {
824 ret = afs_writepages_region(mapping, wbc, 0,
825 start, &next, false);
826 if (ret == 0)
827 mapping->writeback_index =
828 next / PAGE_SIZE;
829 }
830 }
831 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
832 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX,
833 &next, false);
834 if (wbc->nr_to_write > 0 && ret == 0)
835 mapping->writeback_index = next / PAGE_SIZE;
836 } else {
837 ret = afs_writepages_region(mapping, wbc,
838 wbc->range_start, wbc->range_end,
839 &next, false);
840 }
841
842 up_read(&vnode->validate_lock);
843 _leave(" = %d", ret);
844 return ret;
845 }
846
847 /*
848 * write to an AFS file
849 */
afs_file_write(struct kiocb * iocb,struct iov_iter * from)850 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
851 {
852 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
853 struct afs_file *af = iocb->ki_filp->private_data;
854 ssize_t result;
855 size_t count = iov_iter_count(from);
856
857 _enter("{%llx:%llu},{%zu},",
858 vnode->fid.vid, vnode->fid.vnode, count);
859
860 if (IS_SWAPFILE(&vnode->netfs.inode)) {
861 printk(KERN_INFO
862 "AFS: Attempt to write to active swap file!\n");
863 return -EBUSY;
864 }
865
866 if (!count)
867 return 0;
868
869 result = afs_validate(vnode, af->key);
870 if (result < 0)
871 return result;
872
873 result = generic_file_write_iter(iocb, from);
874
875 _leave(" = %zd", result);
876 return result;
877 }
878
879 /*
880 * flush any dirty pages for this process, and check for write errors.
881 * - the return status from this call provides a reliable indication of
882 * whether any write errors occurred for this process.
883 */
afs_fsync(struct file * file,loff_t start,loff_t end,int datasync)884 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
885 {
886 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
887 struct afs_file *af = file->private_data;
888 int ret;
889
890 _enter("{%llx:%llu},{n=%pD},%d",
891 vnode->fid.vid, vnode->fid.vnode, file,
892 datasync);
893
894 ret = afs_validate(vnode, af->key);
895 if (ret < 0)
896 return ret;
897
898 return file_write_and_wait_range(file, start, end);
899 }
900
901 /*
902 * notification that a previously read-only page is about to become writable
903 * - if it returns an error, the caller will deliver a bus error signal
904 */
afs_page_mkwrite(struct vm_fault * vmf)905 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
906 {
907 struct folio *folio = page_folio(vmf->page);
908 struct file *file = vmf->vma->vm_file;
909 struct inode *inode = file_inode(file);
910 struct afs_vnode *vnode = AFS_FS_I(inode);
911 struct afs_file *af = file->private_data;
912 unsigned long priv;
913 vm_fault_t ret = VM_FAULT_RETRY;
914
915 _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
916
917 afs_validate(vnode, af->key);
918
919 sb_start_pagefault(inode->i_sb);
920
921 /* Wait for the page to be written to the cache before we allow it to
922 * be modified. We then assume the entire page will need writing back.
923 */
924 #ifdef CONFIG_AFS_FSCACHE
925 if (folio_test_fscache(folio) &&
926 folio_wait_fscache_killable(folio) < 0)
927 goto out;
928 #endif
929
930 if (folio_wait_writeback_killable(folio))
931 goto out;
932
933 if (folio_lock_killable(folio) < 0)
934 goto out;
935
936 /* We mustn't change folio->private until writeback is complete as that
937 * details the portion of the page we need to write back and we might
938 * need to redirty the page if there's a problem.
939 */
940 if (folio_wait_writeback_killable(folio) < 0) {
941 folio_unlock(folio);
942 goto out;
943 }
944
945 priv = afs_folio_dirty(folio, 0, folio_size(folio));
946 priv = afs_folio_dirty_mmapped(priv);
947 if (folio_test_private(folio)) {
948 folio_change_private(folio, (void *)priv);
949 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite+"), folio);
950 } else {
951 folio_attach_private(folio, (void *)priv);
952 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite"), folio);
953 }
954 file_update_time(file);
955
956 ret = VM_FAULT_LOCKED;
957 out:
958 sb_end_pagefault(inode->i_sb);
959 return ret;
960 }
961
962 /*
963 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
964 */
afs_prune_wb_keys(struct afs_vnode * vnode)965 void afs_prune_wb_keys(struct afs_vnode *vnode)
966 {
967 LIST_HEAD(graveyard);
968 struct afs_wb_key *wbk, *tmp;
969
970 /* Discard unused keys */
971 spin_lock(&vnode->wb_lock);
972
973 if (!mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
974 !mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_DIRTY)) {
975 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
976 if (refcount_read(&wbk->usage) == 1)
977 list_move(&wbk->vnode_link, &graveyard);
978 }
979 }
980
981 spin_unlock(&vnode->wb_lock);
982
983 while (!list_empty(&graveyard)) {
984 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
985 list_del(&wbk->vnode_link);
986 afs_put_wb_key(wbk);
987 }
988 }
989
990 /*
991 * Clean up a page during invalidation.
992 */
afs_launder_folio(struct folio * folio)993 int afs_launder_folio(struct folio *folio)
994 {
995 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio));
996 struct iov_iter iter;
997 struct bio_vec bv;
998 unsigned long priv;
999 unsigned int f, t;
1000 int ret = 0;
1001
1002 _enter("{%lx}", folio->index);
1003
1004 priv = (unsigned long)folio_get_private(folio);
1005 if (folio_clear_dirty_for_io(folio)) {
1006 f = 0;
1007 t = folio_size(folio);
1008 if (folio_test_private(folio)) {
1009 f = afs_folio_dirty_from(folio, priv);
1010 t = afs_folio_dirty_to(folio, priv);
1011 }
1012
1013 bvec_set_folio(&bv, folio, t - f, f);
1014 iov_iter_bvec(&iter, ITER_SOURCE, &bv, 1, bv.bv_len);
1015
1016 trace_afs_folio_dirty(vnode, tracepoint_string("launder"), folio);
1017 ret = afs_store_data(vnode, &iter, folio_pos(folio) + f, true);
1018 }
1019
1020 trace_afs_folio_dirty(vnode, tracepoint_string("laundered"), folio);
1021 folio_detach_private(folio);
1022 folio_wait_fscache(folio);
1023 return ret;
1024 }
1025
1026 /*
1027 * Deal with the completion of writing the data to the cache.
1028 */
afs_write_to_cache_done(void * priv,ssize_t transferred_or_error,bool was_async)1029 static void afs_write_to_cache_done(void *priv, ssize_t transferred_or_error,
1030 bool was_async)
1031 {
1032 struct afs_vnode *vnode = priv;
1033
1034 if (IS_ERR_VALUE(transferred_or_error) &&
1035 transferred_or_error != -ENOBUFS)
1036 afs_invalidate_cache(vnode, 0);
1037 }
1038
1039 /*
1040 * Save the write to the cache also.
1041 */
afs_write_to_cache(struct afs_vnode * vnode,loff_t start,size_t len,loff_t i_size,bool caching)1042 static void afs_write_to_cache(struct afs_vnode *vnode,
1043 loff_t start, size_t len, loff_t i_size,
1044 bool caching)
1045 {
1046 fscache_write_to_cache(afs_vnode_cache(vnode),
1047 vnode->netfs.inode.i_mapping, start, len, i_size,
1048 afs_write_to_cache_done, vnode, caching);
1049 }
1050