1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Device manager
4 *
5 * Copyright (c) 2013 Google, Inc
6 *
7 * (C) Copyright 2012
8 * Pavel Herrmann <morpheus.ibis@gmail.com>
9 */
10
11 #include <common.h>
12 #include <cpu_func.h>
13 #include <log.h>
14 #include <asm/global_data.h>
15 #include <asm/io.h>
16 #include <clk.h>
17 #include <fdtdec.h>
18 #include <fdt_support.h>
19 #include <malloc.h>
20 #include <asm/cache.h>
21 #include <dm/device.h>
22 #include <dm/device-internal.h>
23 #include <dm/lists.h>
24 #include <dm/of_access.h>
25 #include <dm/pinctrl.h>
26 #include <dm/platdata.h>
27 #include <dm/read.h>
28 #include <dm/uclass.h>
29 #include <dm/uclass-internal.h>
30 #include <dm/util.h>
31 #include <iommu.h>
32 #include <linux/err.h>
33 #include <linux/list.h>
34 #include <power-domain.h>
35
36 DECLARE_GLOBAL_DATA_PTR;
37
device_bind_common(struct udevice * parent,const struct driver * drv,const char * name,void * plat,ulong driver_data,ofnode node,uint of_plat_size,struct udevice ** devp)38 static int device_bind_common(struct udevice *parent, const struct driver *drv,
39 const char *name, void *plat,
40 ulong driver_data, ofnode node,
41 uint of_plat_size, struct udevice **devp)
42 {
43 struct udevice *dev;
44 struct uclass *uc;
45 int size, ret = 0;
46 bool auto_seq = true;
47 void *ptr;
48
49 if (CONFIG_IS_ENABLED(OF_PLATDATA_NO_BIND))
50 return -ENOSYS;
51
52 if (devp)
53 *devp = NULL;
54 if (!name)
55 return -EINVAL;
56
57 ret = uclass_get(drv->id, &uc);
58 if (ret) {
59 debug("Missing uclass for driver %s\n", drv->name);
60 return ret;
61 }
62
63 dev = calloc(1, sizeof(struct udevice));
64 if (!dev)
65 return -ENOMEM;
66
67 INIT_LIST_HEAD(&dev->sibling_node);
68 INIT_LIST_HEAD(&dev->child_head);
69 INIT_LIST_HEAD(&dev->uclass_node);
70 #ifdef CONFIG_DEVRES
71 INIT_LIST_HEAD(&dev->devres_head);
72 #endif
73 dev_set_plat(dev, plat);
74 dev->driver_data = driver_data;
75 dev->name = name;
76 dev_set_ofnode(dev, node);
77 dev->parent = parent;
78 dev->driver = drv;
79 dev->uclass = uc;
80
81 dev->seq_ = -1;
82 if (CONFIG_IS_ENABLED(DM_SEQ_ALIAS) &&
83 (uc->uc_drv->flags & DM_UC_FLAG_SEQ_ALIAS)) {
84 /*
85 * Some devices, such as a SPI bus, I2C bus and serial ports
86 * are numbered using aliases.
87 */
88 if (CONFIG_IS_ENABLED(OF_CONTROL) &&
89 !CONFIG_IS_ENABLED(OF_PLATDATA)) {
90 if (uc->uc_drv->name && ofnode_valid(node)) {
91 if (!dev_read_alias_seq(dev, &dev->seq_)) {
92 auto_seq = false;
93 log_debug(" - seq=%d\n", dev->seq_);
94 }
95 }
96 }
97 }
98 if (auto_seq && !(uc->uc_drv->flags & DM_UC_FLAG_NO_AUTO_SEQ))
99 dev->seq_ = uclass_find_next_free_seq(uc);
100
101 /* Check if we need to allocate plat */
102 if (drv->plat_auto) {
103 bool alloc = !plat;
104
105 /*
106 * For of-platdata, we try use the existing data, but if
107 * plat_auto is larger, we must allocate a new space
108 */
109 if (CONFIG_IS_ENABLED(OF_PLATDATA)) {
110 if (of_plat_size)
111 dev_or_flags(dev, DM_FLAG_OF_PLATDATA);
112 if (of_plat_size < drv->plat_auto)
113 alloc = true;
114 }
115 if (alloc) {
116 dev_or_flags(dev, DM_FLAG_ALLOC_PDATA);
117 ptr = calloc(1, drv->plat_auto);
118 if (!ptr) {
119 ret = -ENOMEM;
120 goto fail_alloc1;
121 }
122
123 /*
124 * For of-platdata, copy the old plat into the new
125 * space
126 */
127 if (CONFIG_IS_ENABLED(OF_PLATDATA) && plat)
128 memcpy(ptr, plat, of_plat_size);
129 dev_set_plat(dev, ptr);
130 }
131 }
132
133 size = uc->uc_drv->per_device_plat_auto;
134 if (size) {
135 dev_or_flags(dev, DM_FLAG_ALLOC_UCLASS_PDATA);
136 ptr = calloc(1, size);
137 if (!ptr) {
138 ret = -ENOMEM;
139 goto fail_alloc2;
140 }
141 dev_set_uclass_plat(dev, ptr);
142 }
143
144 if (parent) {
145 size = parent->driver->per_child_plat_auto;
146 if (!size)
147 size = parent->uclass->uc_drv->per_child_plat_auto;
148 if (size) {
149 dev_or_flags(dev, DM_FLAG_ALLOC_PARENT_PDATA);
150 ptr = calloc(1, size);
151 if (!ptr) {
152 ret = -ENOMEM;
153 goto fail_alloc3;
154 }
155 dev_set_parent_plat(dev, ptr);
156 }
157 /* put dev into parent's successor list */
158 list_add_tail(&dev->sibling_node, &parent->child_head);
159 }
160
161 ret = uclass_bind_device(dev);
162 if (ret)
163 goto fail_uclass_bind;
164
165 /* if we fail to bind we remove device from successors and free it */
166 if (drv->bind) {
167 ret = drv->bind(dev);
168 if (ret)
169 goto fail_bind;
170 }
171 if (parent && parent->driver->child_post_bind) {
172 ret = parent->driver->child_post_bind(dev);
173 if (ret)
174 goto fail_child_post_bind;
175 }
176 if (uc->uc_drv->post_bind) {
177 ret = uc->uc_drv->post_bind(dev);
178 if (ret)
179 goto fail_uclass_post_bind;
180 }
181
182 if (parent)
183 pr_debug("Bound device %s to %s\n", dev->name, parent->name);
184 if (devp)
185 *devp = dev;
186
187 dev_or_flags(dev, DM_FLAG_BOUND);
188
189 return 0;
190
191 fail_uclass_post_bind:
192 /* There is no child unbind() method, so no clean-up required */
193 fail_child_post_bind:
194 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
195 if (drv->unbind && drv->unbind(dev)) {
196 dm_warn("unbind() method failed on dev '%s' on error path\n",
197 dev->name);
198 }
199 }
200
201 fail_bind:
202 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
203 if (uclass_unbind_device(dev)) {
204 dm_warn("Failed to unbind dev '%s' on error path\n",
205 dev->name);
206 }
207 }
208 fail_uclass_bind:
209 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
210 list_del(&dev->sibling_node);
211 if (dev_get_flags(dev) & DM_FLAG_ALLOC_PARENT_PDATA) {
212 free(dev_get_parent_plat(dev));
213 dev_set_parent_plat(dev, NULL);
214 }
215 }
216 fail_alloc3:
217 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
218 if (dev_get_flags(dev) & DM_FLAG_ALLOC_UCLASS_PDATA) {
219 free(dev_get_uclass_plat(dev));
220 dev_set_uclass_plat(dev, NULL);
221 }
222 }
223 fail_alloc2:
224 if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
225 if (dev_get_flags(dev) & DM_FLAG_ALLOC_PDATA) {
226 free(dev_get_plat(dev));
227 dev_set_plat(dev, NULL);
228 }
229 }
230 fail_alloc1:
231 devres_release_all(dev);
232
233 free(dev);
234
235 return ret;
236 }
237
device_bind_with_driver_data(struct udevice * parent,const struct driver * drv,const char * name,ulong driver_data,ofnode node,struct udevice ** devp)238 int device_bind_with_driver_data(struct udevice *parent,
239 const struct driver *drv, const char *name,
240 ulong driver_data, ofnode node,
241 struct udevice **devp)
242 {
243 return device_bind_common(parent, drv, name, NULL, driver_data, node,
244 0, devp);
245 }
246
device_bind(struct udevice * parent,const struct driver * drv,const char * name,void * plat,ofnode node,struct udevice ** devp)247 int device_bind(struct udevice *parent, const struct driver *drv,
248 const char *name, void *plat, ofnode node,
249 struct udevice **devp)
250 {
251 return device_bind_common(parent, drv, name, plat, 0, node, 0,
252 devp);
253 }
254
device_bind_by_name(struct udevice * parent,bool pre_reloc_only,const struct driver_info * info,struct udevice ** devp)255 int device_bind_by_name(struct udevice *parent, bool pre_reloc_only,
256 const struct driver_info *info, struct udevice **devp)
257 {
258 struct driver *drv;
259 uint plat_size = 0;
260 int ret;
261
262 drv = lists_driver_lookup_name(info->name);
263 if (!drv)
264 return -ENOENT;
265 if (pre_reloc_only && !(drv->flags & DM_FLAG_PRE_RELOC))
266 return -EPERM;
267
268 #if CONFIG_IS_ENABLED(OF_PLATDATA)
269 plat_size = info->plat_size;
270 #endif
271 ret = device_bind_common(parent, drv, info->name, (void *)info->plat, 0,
272 ofnode_null(), plat_size, devp);
273 if (ret)
274 return ret;
275
276 return ret;
277 }
278
device_reparent(struct udevice * dev,struct udevice * new_parent)279 int device_reparent(struct udevice *dev, struct udevice *new_parent)
280 {
281 struct udevice *pos, *n;
282
283 assert(dev);
284 assert(new_parent);
285
286 list_for_each_entry_safe(pos, n, &dev->parent->child_head,
287 sibling_node) {
288 if (pos->driver != dev->driver)
289 continue;
290
291 list_del(&dev->sibling_node);
292 list_add_tail(&dev->sibling_node, &new_parent->child_head);
293 dev->parent = new_parent;
294
295 break;
296 }
297
298 return 0;
299 }
300
alloc_priv(int size,uint flags)301 static void *alloc_priv(int size, uint flags)
302 {
303 void *priv;
304
305 if (flags & DM_FLAG_ALLOC_PRIV_DMA) {
306 size = ROUND(size, ARCH_DMA_MINALIGN);
307 priv = memalign(ARCH_DMA_MINALIGN, size);
308 if (priv) {
309 memset(priv, '\0', size);
310
311 /*
312 * Ensure that the zero bytes are flushed to memory.
313 * This prevents problems if the driver uses this as
314 * both an input and an output buffer:
315 *
316 * 1. Zeroes written to buffer (here) and sit in the
317 * cache
318 * 2. Driver issues a read command to DMA
319 * 3. CPU runs out of cache space and evicts some cache
320 * data in the buffer, writing zeroes to RAM from
321 * the memset() above
322 * 4. DMA completes
323 * 5. Buffer now has some DMA data and some zeroes
324 * 6. Data being read is now incorrect
325 *
326 * To prevent this, ensure that the cache is clean
327 * within this range at the start. The driver can then
328 * use normal flush-after-write, invalidate-before-read
329 * procedures.
330 *
331 * TODO(sjg@chromium.org): Drop this microblaze
332 * exception.
333 */
334 #ifndef CONFIG_MICROBLAZE
335 flush_dcache_range((ulong)priv, (ulong)priv + size);
336 #endif
337 }
338 } else {
339 priv = calloc(1, size);
340 }
341
342 return priv;
343 }
344
345 /**
346 * device_alloc_priv() - Allocate priv/plat data required by the device
347 *
348 * @dev: Device to process
349 * @return 0 if OK, -ENOMEM if out of memory
350 */
device_alloc_priv(struct udevice * dev)351 static int device_alloc_priv(struct udevice *dev)
352 {
353 const struct driver *drv;
354 void *ptr;
355 int size;
356
357 drv = dev->driver;
358 assert(drv);
359
360 /* Allocate private data if requested and not reentered */
361 if (drv->priv_auto && !dev_get_priv(dev)) {
362 ptr = alloc_priv(drv->priv_auto, drv->flags);
363 if (!ptr)
364 return -ENOMEM;
365 dev_set_priv(dev, ptr);
366 }
367
368 /* Allocate private data if requested and not reentered */
369 size = dev->uclass->uc_drv->per_device_auto;
370 if (size && !dev_get_uclass_priv(dev)) {
371 ptr = alloc_priv(size, dev->uclass->uc_drv->flags);
372 if (!ptr)
373 return -ENOMEM;
374 dev_set_uclass_priv(dev, ptr);
375 }
376
377 /* Allocate parent data for this child */
378 if (dev->parent) {
379 size = dev->parent->driver->per_child_auto;
380 if (!size)
381 size = dev->parent->uclass->uc_drv->per_child_auto;
382 if (size && !dev_get_parent_priv(dev)) {
383 ptr = alloc_priv(size, drv->flags);
384 if (!ptr)
385 return -ENOMEM;
386 dev_set_parent_priv(dev, ptr);
387 }
388 }
389
390 return 0;
391 }
392
device_of_to_plat(struct udevice * dev)393 int device_of_to_plat(struct udevice *dev)
394 {
395 const struct driver *drv;
396 int ret;
397
398 if (!dev)
399 return -EINVAL;
400
401 if (dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID)
402 return 0;
403
404 /*
405 * This is not needed if binding is disabled, since data is allocated
406 * at build time.
407 */
408 if (!CONFIG_IS_ENABLED(OF_PLATDATA_NO_BIND)) {
409 /* Ensure all parents have ofdata */
410 if (dev->parent) {
411 ret = device_of_to_plat(dev->parent);
412 if (ret)
413 goto fail;
414
415 /*
416 * The device might have already been probed during
417 * the call to device_probe() on its parent device
418 * (e.g. PCI bridge devices). Test the flags again
419 * so that we don't mess up the device.
420 */
421 if (dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID)
422 return 0;
423 }
424
425 ret = device_alloc_priv(dev);
426 if (ret)
427 goto fail;
428 }
429 drv = dev->driver;
430 assert(drv);
431
432 if (drv->of_to_plat &&
433 (CONFIG_IS_ENABLED(OF_PLATDATA) || dev_has_ofnode(dev))) {
434 ret = drv->of_to_plat(dev);
435 if (ret)
436 goto fail;
437 }
438
439 dev_or_flags(dev, DM_FLAG_PLATDATA_VALID);
440
441 return 0;
442 fail:
443 device_free(dev);
444
445 return ret;
446 }
447
448 /**
449 * device_get_dma_constraints() - Populate device's DMA constraints
450 *
451 * Gets a device's DMA constraints from firmware. This information is later
452 * used by drivers to translate physcal addresses to the device's bus address
453 * space. For now only device-tree is supported.
454 *
455 * @dev: Pointer to target device
456 * Return: 0 if OK or if no DMA constraints were found, error otherwise
457 */
device_get_dma_constraints(struct udevice * dev)458 static int device_get_dma_constraints(struct udevice *dev)
459 {
460 struct udevice *parent = dev->parent;
461 phys_addr_t cpu = 0;
462 dma_addr_t bus = 0;
463 u64 size = 0;
464 int ret;
465
466 if (!CONFIG_IS_ENABLED(DM_DMA) || !parent || !dev_has_ofnode(parent))
467 return 0;
468
469 /*
470 * We start parsing for dma-ranges from the device's bus node. This is
471 * specially important on nested buses.
472 */
473 ret = dev_get_dma_range(parent, &cpu, &bus, &size);
474 /* Don't return an error if no 'dma-ranges' were found */
475 if (ret && ret != -ENOENT) {
476 dm_warn("%s: failed to get DMA range, %d\n", dev->name, ret);
477 return ret;
478 }
479
480 dev_set_dma_offset(dev, cpu - bus);
481
482 return 0;
483 }
484
device_probe(struct udevice * dev)485 int device_probe(struct udevice *dev)
486 {
487 const struct driver *drv;
488 int ret;
489
490 if (!dev)
491 return -EINVAL;
492
493 if (dev_get_flags(dev) & DM_FLAG_ACTIVATED)
494 return 0;
495
496 drv = dev->driver;
497 assert(drv);
498
499 ret = device_of_to_plat(dev);
500 if (ret)
501 goto fail;
502
503 /* Ensure all parents are probed */
504 if (dev->parent) {
505 ret = device_probe(dev->parent);
506 if (ret)
507 goto fail;
508
509 /*
510 * The device might have already been probed during
511 * the call to device_probe() on its parent device
512 * (e.g. PCI bridge devices). Test the flags again
513 * so that we don't mess up the device.
514 */
515 if (dev_get_flags(dev) & DM_FLAG_ACTIVATED)
516 return 0;
517 }
518
519 dev_or_flags(dev, DM_FLAG_ACTIVATED);
520
521 /*
522 * Process pinctrl for everything except the root device, and
523 * continue regardless of the result of pinctrl. Don't process pinctrl
524 * settings for pinctrl devices since the device may not yet be
525 * probed.
526 *
527 * This call can produce some non-intuitive results. For example, on an
528 * x86 device where dev is the main PCI bus, the pinctrl device may be
529 * child or grandchild of that bus, meaning that the child will be
530 * probed here. If the child happens to be the P2SB and the pinctrl
531 * device is a child of that, then both the pinctrl and P2SB will be
532 * probed by this call. This works because the DM_FLAG_ACTIVATED flag
533 * is set just above. However, the PCI bus' probe() method and
534 * associated uclass methods have not yet been called.
535 */
536 if (dev->parent && device_get_uclass_id(dev) != UCLASS_PINCTRL)
537 pinctrl_select_state(dev, "default");
538
539 if (CONFIG_IS_ENABLED(POWER_DOMAIN) && dev->parent &&
540 (device_get_uclass_id(dev) != UCLASS_POWER_DOMAIN) &&
541 !(drv->flags & DM_FLAG_DEFAULT_PD_CTRL_OFF)) {
542 ret = dev_power_domain_on(dev);
543 if (ret)
544 goto fail;
545 }
546
547 if (CONFIG_IS_ENABLED(IOMMU) && dev->parent &&
548 (device_get_uclass_id(dev) != UCLASS_IOMMU)) {
549 ret = dev_iommu_enable(dev);
550 if (ret)
551 goto fail;
552 }
553
554 ret = device_get_dma_constraints(dev);
555 if (ret)
556 goto fail;
557
558 ret = uclass_pre_probe_device(dev);
559 if (ret)
560 goto fail;
561
562 if (dev->parent && dev->parent->driver->child_pre_probe) {
563 ret = dev->parent->driver->child_pre_probe(dev);
564 if (ret)
565 goto fail;
566 }
567
568 /* Only handle devices that have a valid ofnode */
569 if (dev_has_ofnode(dev)) {
570 /*
571 * Process 'assigned-{clocks/clock-parents/clock-rates}'
572 * properties
573 */
574 ret = clk_set_defaults(dev, CLK_DEFAULTS_PRE);
575 if (ret)
576 goto fail;
577 }
578
579 if (drv->probe) {
580 ret = drv->probe(dev);
581 if (ret)
582 goto fail;
583 }
584
585 ret = uclass_post_probe_device(dev);
586 if (ret)
587 goto fail_uclass;
588
589 if (dev->parent && device_get_uclass_id(dev) == UCLASS_PINCTRL)
590 pinctrl_select_state(dev, "default");
591
592 return 0;
593 fail_uclass:
594 if (device_remove(dev, DM_REMOVE_NORMAL)) {
595 dm_warn("%s: Device '%s' failed to remove on error path\n",
596 __func__, dev->name);
597 }
598 fail:
599 dev_bic_flags(dev, DM_FLAG_ACTIVATED);
600
601 device_free(dev);
602
603 return ret;
604 }
605
dev_get_plat(const struct udevice * dev)606 void *dev_get_plat(const struct udevice *dev)
607 {
608 if (!dev) {
609 dm_warn("%s: null device\n", __func__);
610 return NULL;
611 }
612
613 return dm_priv_to_rw(dev->plat_);
614 }
615
dev_get_parent_plat(const struct udevice * dev)616 void *dev_get_parent_plat(const struct udevice *dev)
617 {
618 if (!dev) {
619 dm_warn("%s: null device\n", __func__);
620 return NULL;
621 }
622
623 return dm_priv_to_rw(dev->parent_plat_);
624 }
625
dev_get_uclass_plat(const struct udevice * dev)626 void *dev_get_uclass_plat(const struct udevice *dev)
627 {
628 if (!dev) {
629 dm_warn("%s: null device\n", __func__);
630 return NULL;
631 }
632
633 return dm_priv_to_rw(dev->uclass_plat_);
634 }
635
dev_get_priv(const struct udevice * dev)636 void *dev_get_priv(const struct udevice *dev)
637 {
638 if (!dev) {
639 dm_warn("%s: null device\n", __func__);
640 return NULL;
641 }
642
643 return dm_priv_to_rw(dev->priv_);
644 }
645
dev_get_uclass_priv(const struct udevice * dev)646 void *dev_get_uclass_priv(const struct udevice *dev)
647 {
648 if (!dev) {
649 dm_warn("%s: null device\n", __func__);
650 return NULL;
651 }
652
653 return dm_priv_to_rw(dev->uclass_priv_);
654 }
655
dev_get_parent_priv(const struct udevice * dev)656 void *dev_get_parent_priv(const struct udevice *dev)
657 {
658 if (!dev) {
659 dm_warn("%s: null device\n", __func__);
660 return NULL;
661 }
662
663 return dm_priv_to_rw(dev->parent_priv_);
664 }
665
device_get_device_tail(struct udevice * dev,int ret,struct udevice ** devp)666 static int device_get_device_tail(struct udevice *dev, int ret,
667 struct udevice **devp)
668 {
669 if (ret)
670 return ret;
671
672 ret = device_probe(dev);
673 if (ret)
674 return ret;
675
676 *devp = dev;
677
678 return 0;
679 }
680
681 #if CONFIG_IS_ENABLED(OF_REAL)
682 /**
683 * device_find_by_ofnode() - Return device associated with given ofnode
684 *
685 * The returned device is *not* activated.
686 *
687 * @node: The ofnode for which a associated device should be looked up
688 * @devp: Pointer to structure to hold the found device
689 * Return: 0 if OK, -ve on error
690 */
device_find_by_ofnode(ofnode node,struct udevice ** devp)691 static int device_find_by_ofnode(ofnode node, struct udevice **devp)
692 {
693 struct uclass *uc;
694 struct udevice *dev;
695 int ret;
696
697 list_for_each_entry(uc, gd->uclass_root, sibling_node) {
698 ret = uclass_find_device_by_ofnode(uc->uc_drv->id, node,
699 &dev);
700 if (!ret || dev) {
701 *devp = dev;
702 return 0;
703 }
704 }
705
706 return -ENODEV;
707 }
708 #endif
709
device_get_child(const struct udevice * parent,int index,struct udevice ** devp)710 int device_get_child(const struct udevice *parent, int index,
711 struct udevice **devp)
712 {
713 struct udevice *dev;
714
715 list_for_each_entry(dev, &parent->child_head, sibling_node) {
716 if (!index--)
717 return device_get_device_tail(dev, 0, devp);
718 }
719
720 return -ENODEV;
721 }
722
device_get_child_count(const struct udevice * parent)723 int device_get_child_count(const struct udevice *parent)
724 {
725 struct udevice *dev;
726 int count = 0;
727
728 list_for_each_entry(dev, &parent->child_head, sibling_node)
729 count++;
730
731 return count;
732 }
733
device_find_child_by_seq(const struct udevice * parent,int seq,struct udevice ** devp)734 int device_find_child_by_seq(const struct udevice *parent, int seq,
735 struct udevice **devp)
736 {
737 struct udevice *dev;
738
739 *devp = NULL;
740
741 list_for_each_entry(dev, &parent->child_head, sibling_node) {
742 if (dev->seq_ == seq) {
743 *devp = dev;
744 return 0;
745 }
746 }
747
748 return -ENODEV;
749 }
750
device_get_child_by_seq(const struct udevice * parent,int seq,struct udevice ** devp)751 int device_get_child_by_seq(const struct udevice *parent, int seq,
752 struct udevice **devp)
753 {
754 struct udevice *dev;
755 int ret;
756
757 *devp = NULL;
758 ret = device_find_child_by_seq(parent, seq, &dev);
759
760 return device_get_device_tail(dev, ret, devp);
761 }
762
device_find_child_by_of_offset(const struct udevice * parent,int of_offset,struct udevice ** devp)763 int device_find_child_by_of_offset(const struct udevice *parent, int of_offset,
764 struct udevice **devp)
765 {
766 struct udevice *dev;
767
768 *devp = NULL;
769
770 list_for_each_entry(dev, &parent->child_head, sibling_node) {
771 if (dev_of_offset(dev) == of_offset) {
772 *devp = dev;
773 return 0;
774 }
775 }
776
777 return -ENODEV;
778 }
779
device_get_child_by_of_offset(const struct udevice * parent,int node,struct udevice ** devp)780 int device_get_child_by_of_offset(const struct udevice *parent, int node,
781 struct udevice **devp)
782 {
783 struct udevice *dev;
784 int ret;
785
786 *devp = NULL;
787 ret = device_find_child_by_of_offset(parent, node, &dev);
788 return device_get_device_tail(dev, ret, devp);
789 }
790
_device_find_global_by_ofnode(struct udevice * parent,ofnode ofnode)791 static struct udevice *_device_find_global_by_ofnode(struct udevice *parent,
792 ofnode ofnode)
793 {
794 struct udevice *dev, *found;
795
796 if (ofnode_equal(dev_ofnode(parent), ofnode))
797 return parent;
798
799 list_for_each_entry(dev, &parent->child_head, sibling_node) {
800 found = _device_find_global_by_ofnode(dev, ofnode);
801 if (found)
802 return found;
803 }
804
805 return NULL;
806 }
807
device_find_global_by_ofnode(ofnode ofnode,struct udevice ** devp)808 int device_find_global_by_ofnode(ofnode ofnode, struct udevice **devp)
809 {
810 *devp = _device_find_global_by_ofnode(gd->dm_root, ofnode);
811
812 return *devp ? 0 : -ENOENT;
813 }
814
device_get_global_by_ofnode(ofnode ofnode,struct udevice ** devp)815 int device_get_global_by_ofnode(ofnode ofnode, struct udevice **devp)
816 {
817 struct udevice *dev;
818
819 dev = _device_find_global_by_ofnode(gd->dm_root, ofnode);
820 return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp);
821 }
822
823 #if CONFIG_IS_ENABLED(OF_PLATDATA)
device_get_by_ofplat_idx(uint idx,struct udevice ** devp)824 int device_get_by_ofplat_idx(uint idx, struct udevice **devp)
825 {
826 struct udevice *dev;
827
828 if (CONFIG_IS_ENABLED(OF_PLATDATA_INST)) {
829 struct udevice *base = ll_entry_start(struct udevice, udevice);
830
831 dev = base + idx;
832 } else {
833 struct driver_rt *drt = gd_dm_driver_rt() + idx;
834
835 dev = drt->dev;
836 }
837 *devp = NULL;
838
839 return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp);
840 }
841 #endif
842
device_find_first_child(const struct udevice * parent,struct udevice ** devp)843 int device_find_first_child(const struct udevice *parent, struct udevice **devp)
844 {
845 if (list_empty(&parent->child_head)) {
846 *devp = NULL;
847 } else {
848 *devp = list_first_entry(&parent->child_head, struct udevice,
849 sibling_node);
850 }
851
852 return 0;
853 }
854
device_find_next_child(struct udevice ** devp)855 int device_find_next_child(struct udevice **devp)
856 {
857 struct udevice *dev = *devp;
858 struct udevice *parent = dev->parent;
859
860 if (list_is_last(&dev->sibling_node, &parent->child_head)) {
861 *devp = NULL;
862 } else {
863 *devp = list_entry(dev->sibling_node.next, struct udevice,
864 sibling_node);
865 }
866
867 return 0;
868 }
869
device_find_first_inactive_child(const struct udevice * parent,enum uclass_id uclass_id,struct udevice ** devp)870 int device_find_first_inactive_child(const struct udevice *parent,
871 enum uclass_id uclass_id,
872 struct udevice **devp)
873 {
874 struct udevice *dev;
875
876 *devp = NULL;
877 list_for_each_entry(dev, &parent->child_head, sibling_node) {
878 if (!device_active(dev) &&
879 device_get_uclass_id(dev) == uclass_id) {
880 *devp = dev;
881 return 0;
882 }
883 }
884
885 return -ENODEV;
886 }
887
device_find_first_child_by_uclass(const struct udevice * parent,enum uclass_id uclass_id,struct udevice ** devp)888 int device_find_first_child_by_uclass(const struct udevice *parent,
889 enum uclass_id uclass_id,
890 struct udevice **devp)
891 {
892 struct udevice *dev;
893
894 *devp = NULL;
895 list_for_each_entry(dev, &parent->child_head, sibling_node) {
896 if (device_get_uclass_id(dev) == uclass_id) {
897 *devp = dev;
898 return 0;
899 }
900 }
901
902 return -ENODEV;
903 }
904
device_find_child_by_name(const struct udevice * parent,const char * name,struct udevice ** devp)905 int device_find_child_by_name(const struct udevice *parent, const char *name,
906 struct udevice **devp)
907 {
908 struct udevice *dev;
909
910 *devp = NULL;
911
912 list_for_each_entry(dev, &parent->child_head, sibling_node) {
913 if (!strcmp(dev->name, name)) {
914 *devp = dev;
915 return 0;
916 }
917 }
918
919 return -ENODEV;
920 }
921
device_first_child_err(struct udevice * parent,struct udevice ** devp)922 int device_first_child_err(struct udevice *parent, struct udevice **devp)
923 {
924 struct udevice *dev;
925
926 device_find_first_child(parent, &dev);
927 if (!dev)
928 return -ENODEV;
929
930 return device_get_device_tail(dev, 0, devp);
931 }
932
device_next_child_err(struct udevice ** devp)933 int device_next_child_err(struct udevice **devp)
934 {
935 struct udevice *dev = *devp;
936
937 device_find_next_child(&dev);
938 if (!dev)
939 return -ENODEV;
940
941 return device_get_device_tail(dev, 0, devp);
942 }
943
device_first_child_ofdata_err(struct udevice * parent,struct udevice ** devp)944 int device_first_child_ofdata_err(struct udevice *parent, struct udevice **devp)
945 {
946 struct udevice *dev;
947 int ret;
948
949 device_find_first_child(parent, &dev);
950 if (!dev)
951 return -ENODEV;
952
953 ret = device_of_to_plat(dev);
954 if (ret)
955 return ret;
956
957 *devp = dev;
958
959 return 0;
960 }
961
device_next_child_ofdata_err(struct udevice ** devp)962 int device_next_child_ofdata_err(struct udevice **devp)
963 {
964 struct udevice *dev = *devp;
965 int ret;
966
967 device_find_next_child(&dev);
968 if (!dev)
969 return -ENODEV;
970
971 ret = device_of_to_plat(dev);
972 if (ret)
973 return ret;
974
975 *devp = dev;
976
977 return 0;
978 }
979
dev_get_parent(const struct udevice * child)980 struct udevice *dev_get_parent(const struct udevice *child)
981 {
982 return child->parent;
983 }
984
dev_get_driver_data(const struct udevice * dev)985 ulong dev_get_driver_data(const struct udevice *dev)
986 {
987 return dev->driver_data;
988 }
989
dev_get_driver_ops(const struct udevice * dev)990 const void *dev_get_driver_ops(const struct udevice *dev)
991 {
992 if (!dev || !dev->driver->ops)
993 return NULL;
994
995 return dev->driver->ops;
996 }
997
device_get_uclass_id(const struct udevice * dev)998 enum uclass_id device_get_uclass_id(const struct udevice *dev)
999 {
1000 return dev->uclass->uc_drv->id;
1001 }
1002
dev_get_uclass_name(const struct udevice * dev)1003 const char *dev_get_uclass_name(const struct udevice *dev)
1004 {
1005 if (!dev)
1006 return NULL;
1007
1008 return dev->uclass->uc_drv->name;
1009 }
1010
device_has_children(const struct udevice * dev)1011 bool device_has_children(const struct udevice *dev)
1012 {
1013 return !list_empty(&dev->child_head);
1014 }
1015
device_has_active_children(const struct udevice * dev)1016 bool device_has_active_children(const struct udevice *dev)
1017 {
1018 struct udevice *child;
1019
1020 for (device_find_first_child(dev, &child);
1021 child;
1022 device_find_next_child(&child)) {
1023 if (device_active(child))
1024 return true;
1025 }
1026
1027 return false;
1028 }
1029
device_is_last_sibling(const struct udevice * dev)1030 bool device_is_last_sibling(const struct udevice *dev)
1031 {
1032 struct udevice *parent = dev->parent;
1033
1034 if (!parent)
1035 return false;
1036 return list_is_last(&dev->sibling_node, &parent->child_head);
1037 }
1038
device_set_name_alloced(struct udevice * dev)1039 void device_set_name_alloced(struct udevice *dev)
1040 {
1041 dev_or_flags(dev, DM_FLAG_NAME_ALLOCED);
1042 }
1043
device_set_name(struct udevice * dev,const char * name)1044 int device_set_name(struct udevice *dev, const char *name)
1045 {
1046 name = strdup(name);
1047 if (!name)
1048 return -ENOMEM;
1049 dev->name = name;
1050 device_set_name_alloced(dev);
1051
1052 return 0;
1053 }
1054
dev_set_priv(struct udevice * dev,void * priv)1055 void dev_set_priv(struct udevice *dev, void *priv)
1056 {
1057 dev->priv_ = priv;
1058 }
1059
dev_set_parent_priv(struct udevice * dev,void * parent_priv)1060 void dev_set_parent_priv(struct udevice *dev, void *parent_priv)
1061 {
1062 dev->parent_priv_ = parent_priv;
1063 }
1064
dev_set_uclass_priv(struct udevice * dev,void * uclass_priv)1065 void dev_set_uclass_priv(struct udevice *dev, void *uclass_priv)
1066 {
1067 dev->uclass_priv_ = uclass_priv;
1068 }
1069
dev_set_plat(struct udevice * dev,void * plat)1070 void dev_set_plat(struct udevice *dev, void *plat)
1071 {
1072 dev->plat_ = plat;
1073 }
1074
dev_set_parent_plat(struct udevice * dev,void * parent_plat)1075 void dev_set_parent_plat(struct udevice *dev, void *parent_plat)
1076 {
1077 dev->parent_plat_ = parent_plat;
1078 }
1079
dev_set_uclass_plat(struct udevice * dev,void * uclass_plat)1080 void dev_set_uclass_plat(struct udevice *dev, void *uclass_plat)
1081 {
1082 dev->uclass_plat_ = uclass_plat;
1083 }
1084
1085 #if CONFIG_IS_ENABLED(OF_REAL)
device_is_compatible(const struct udevice * dev,const char * compat)1086 bool device_is_compatible(const struct udevice *dev, const char *compat)
1087 {
1088 return ofnode_device_is_compatible(dev_ofnode(dev), compat);
1089 }
1090
of_machine_is_compatible(const char * compat)1091 bool of_machine_is_compatible(const char *compat)
1092 {
1093 const void *fdt = gd->fdt_blob;
1094
1095 return !fdt_node_check_compatible(fdt, 0, compat);
1096 }
1097
dev_disable_by_path(const char * path)1098 int dev_disable_by_path(const char *path)
1099 {
1100 struct uclass *uc;
1101 ofnode node = ofnode_path(path);
1102 struct udevice *dev;
1103 int ret = 1;
1104
1105 if (!of_live_active())
1106 return -ENOSYS;
1107
1108 list_for_each_entry(uc, gd->uclass_root, sibling_node) {
1109 ret = uclass_find_device_by_ofnode(uc->uc_drv->id, node, &dev);
1110 if (!ret)
1111 break;
1112 }
1113
1114 if (ret)
1115 return ret;
1116
1117 ret = device_remove(dev, DM_REMOVE_NORMAL);
1118 if (ret)
1119 return ret;
1120
1121 ret = device_unbind(dev);
1122 if (ret)
1123 return ret;
1124
1125 return ofnode_set_enabled(node, false);
1126 }
1127
dev_enable_by_path(const char * path)1128 int dev_enable_by_path(const char *path)
1129 {
1130 ofnode node = ofnode_path(path);
1131 ofnode pnode = ofnode_get_parent(node);
1132 struct udevice *parent;
1133 int ret = 1;
1134
1135 if (!of_live_active())
1136 return -ENOSYS;
1137
1138 ret = device_find_by_ofnode(pnode, &parent);
1139 if (ret)
1140 return ret;
1141
1142 ret = ofnode_set_enabled(node, true);
1143 if (ret)
1144 return ret;
1145
1146 return lists_bind_fdt(parent, node, NULL, NULL, false);
1147 }
1148 #endif
1149
1150 #if CONFIG_IS_ENABLED(OF_PLATDATA_RT)
dev_get_rt(const struct udevice * dev)1151 static struct udevice_rt *dev_get_rt(const struct udevice *dev)
1152 {
1153 struct udevice *base = ll_entry_start(struct udevice, udevice);
1154 int idx = dev - base;
1155
1156 struct udevice_rt *urt = gd_dm_udevice_rt() + idx;
1157
1158 return urt;
1159 }
1160
dev_get_flags(const struct udevice * dev)1161 u32 dev_get_flags(const struct udevice *dev)
1162 {
1163 const struct udevice_rt *urt = dev_get_rt(dev);
1164
1165 return urt->flags_;
1166 }
1167
dev_or_flags(const struct udevice * dev,u32 or)1168 void dev_or_flags(const struct udevice *dev, u32 or)
1169 {
1170 struct udevice_rt *urt = dev_get_rt(dev);
1171
1172 urt->flags_ |= or;
1173 }
1174
dev_bic_flags(const struct udevice * dev,u32 bic)1175 void dev_bic_flags(const struct udevice *dev, u32 bic)
1176 {
1177 struct udevice_rt *urt = dev_get_rt(dev);
1178
1179 urt->flags_ &= ~bic;
1180 }
1181 #endif /* OF_PLATDATA_RT */
1182