1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Tests Memory Protection Keys (see Documentation/core-api/protection-keys.rst)
4 *
5 * There are examples in here of:
6 * * how to set protection keys on memory
7 * * how to set/clear bits in pkey registers (the rights register)
8 * * how to handle SEGV_PKUERR signals and extract pkey-relevant
9 * information from the siginfo
10 *
11 * Things to add:
12 * make sure KSM and KSM COW breaking works
13 * prefault pages in at malloc, or not
14 * protect MPX bounds tables with protection keys?
15 * make sure VMA splitting/merging is working correctly
16 * OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
17 * look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
18 * do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
19 *
20 * Compile like this:
21 * gcc -mxsave -o protection_keys -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
22 * gcc -mxsave -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
23 */
24 #define _GNU_SOURCE
25 #define __SANE_USERSPACE_TYPES__
26 #include <errno.h>
27 #include <linux/elf.h>
28 #include <linux/futex.h>
29 #include <time.h>
30 #include <sys/time.h>
31 #include <sys/syscall.h>
32 #include <string.h>
33 #include <stdio.h>
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <signal.h>
37 #include <assert.h>
38 #include <stdlib.h>
39 #include <ucontext.h>
40 #include <sys/mman.h>
41 #include <sys/types.h>
42 #include <sys/wait.h>
43 #include <sys/stat.h>
44 #include <fcntl.h>
45 #include <unistd.h>
46 #include <sys/ptrace.h>
47 #include <setjmp.h>
48
49 #include "pkey-helpers.h"
50
51 int iteration_nr = 1;
52 int test_nr;
53
54 u64 shadow_pkey_reg;
55 int dprint_in_signal;
56 char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE];
57
cat_into_file(char * str,char * file)58 void cat_into_file(char *str, char *file)
59 {
60 int fd = open(file, O_RDWR);
61 int ret;
62
63 dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
64 /*
65 * these need to be raw because they are called under
66 * pkey_assert()
67 */
68 if (fd < 0) {
69 fprintf(stderr, "error opening '%s'\n", str);
70 perror("error: ");
71 exit(__LINE__);
72 }
73
74 ret = write(fd, str, strlen(str));
75 if (ret != strlen(str)) {
76 perror("write to file failed");
77 fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
78 exit(__LINE__);
79 }
80 close(fd);
81 }
82
83 #if CONTROL_TRACING > 0
84 static int warned_tracing;
tracing_root_ok(void)85 int tracing_root_ok(void)
86 {
87 if (geteuid() != 0) {
88 if (!warned_tracing)
89 fprintf(stderr, "WARNING: not run as root, "
90 "can not do tracing control\n");
91 warned_tracing = 1;
92 return 0;
93 }
94 return 1;
95 }
96 #endif
97
tracing_on(void)98 void tracing_on(void)
99 {
100 #if CONTROL_TRACING > 0
101 #define TRACEDIR "/sys/kernel/debug/tracing"
102 char pidstr[32];
103
104 if (!tracing_root_ok())
105 return;
106
107 sprintf(pidstr, "%d", getpid());
108 cat_into_file("0", TRACEDIR "/tracing_on");
109 cat_into_file("\n", TRACEDIR "/trace");
110 if (1) {
111 cat_into_file("function_graph", TRACEDIR "/current_tracer");
112 cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
113 } else {
114 cat_into_file("nop", TRACEDIR "/current_tracer");
115 }
116 cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
117 cat_into_file("1", TRACEDIR "/tracing_on");
118 dprintf1("enabled tracing\n");
119 #endif
120 }
121
tracing_off(void)122 void tracing_off(void)
123 {
124 #if CONTROL_TRACING > 0
125 if (!tracing_root_ok())
126 return;
127 cat_into_file("0", "/sys/kernel/debug/tracing/tracing_on");
128 #endif
129 }
130
abort_hooks(void)131 void abort_hooks(void)
132 {
133 fprintf(stderr, "running %s()...\n", __func__);
134 tracing_off();
135 #ifdef SLEEP_ON_ABORT
136 sleep(SLEEP_ON_ABORT);
137 #endif
138 }
139
140 /*
141 * This attempts to have roughly a page of instructions followed by a few
142 * instructions that do a write, and another page of instructions. That
143 * way, we are pretty sure that the write is in the second page of
144 * instructions and has at least a page of padding behind it.
145 *
146 * *That* lets us be sure to madvise() away the write instruction, which
147 * will then fault, which makes sure that the fault code handles
148 * execute-only memory properly.
149 */
150 #ifdef __powerpc64__
151 /* This way, both 4K and 64K alignment are maintained */
152 __attribute__((__aligned__(65536)))
153 #else
154 __attribute__((__aligned__(PAGE_SIZE)))
155 #endif
lots_o_noops_around_write(int * write_to_me)156 void lots_o_noops_around_write(int *write_to_me)
157 {
158 dprintf3("running %s()\n", __func__);
159 __page_o_noops();
160 /* Assume this happens in the second page of instructions: */
161 *write_to_me = __LINE__;
162 /* pad out by another page: */
163 __page_o_noops();
164 dprintf3("%s() done\n", __func__);
165 }
166
dump_mem(void * dumpme,int len_bytes)167 void dump_mem(void *dumpme, int len_bytes)
168 {
169 char *c = (void *)dumpme;
170 int i;
171
172 for (i = 0; i < len_bytes; i += sizeof(u64)) {
173 u64 *ptr = (u64 *)(c + i);
174 dprintf1("dump[%03d][@%p]: %016llx\n", i, ptr, *ptr);
175 }
176 }
177
hw_pkey_get(int pkey,unsigned long flags)178 static u32 hw_pkey_get(int pkey, unsigned long flags)
179 {
180 u64 pkey_reg = __read_pkey_reg();
181
182 dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
183 __func__, pkey, flags, 0, 0);
184 dprintf2("%s() raw pkey_reg: %016llx\n", __func__, pkey_reg);
185
186 return (u32) get_pkey_bits(pkey_reg, pkey);
187 }
188
hw_pkey_set(int pkey,unsigned long rights,unsigned long flags)189 static int hw_pkey_set(int pkey, unsigned long rights, unsigned long flags)
190 {
191 u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
192 u64 old_pkey_reg = __read_pkey_reg();
193 u64 new_pkey_reg;
194
195 /* make sure that 'rights' only contains the bits we expect: */
196 assert(!(rights & ~mask));
197
198 /* modify bits accordingly in old pkey_reg and assign it */
199 new_pkey_reg = set_pkey_bits(old_pkey_reg, pkey, rights);
200
201 __write_pkey_reg(new_pkey_reg);
202
203 dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x"
204 " pkey_reg now: %016llx old_pkey_reg: %016llx\n",
205 __func__, pkey, rights, flags, 0, __read_pkey_reg(),
206 old_pkey_reg);
207 return 0;
208 }
209
pkey_disable_set(int pkey,int flags)210 void pkey_disable_set(int pkey, int flags)
211 {
212 unsigned long syscall_flags = 0;
213 int ret;
214 int pkey_rights;
215 u64 orig_pkey_reg = read_pkey_reg();
216
217 dprintf1("START->%s(%d, 0x%x)\n", __func__,
218 pkey, flags);
219 pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
220
221 pkey_rights = hw_pkey_get(pkey, syscall_flags);
222
223 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
224 pkey, pkey, pkey_rights);
225
226 pkey_assert(pkey_rights >= 0);
227
228 pkey_rights |= flags;
229
230 ret = hw_pkey_set(pkey, pkey_rights, syscall_flags);
231 assert(!ret);
232 /* pkey_reg and flags have the same format */
233 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
234 dprintf1("%s(%d) shadow: 0x%016llx\n",
235 __func__, pkey, shadow_pkey_reg);
236
237 pkey_assert(ret >= 0);
238
239 pkey_rights = hw_pkey_get(pkey, syscall_flags);
240 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
241 pkey, pkey, pkey_rights);
242
243 dprintf1("%s(%d) pkey_reg: 0x%016llx\n",
244 __func__, pkey, read_pkey_reg());
245 if (flags)
246 pkey_assert(read_pkey_reg() >= orig_pkey_reg);
247 dprintf1("END<---%s(%d, 0x%x)\n", __func__,
248 pkey, flags);
249 }
250
pkey_disable_clear(int pkey,int flags)251 void pkey_disable_clear(int pkey, int flags)
252 {
253 unsigned long syscall_flags = 0;
254 int ret;
255 int pkey_rights = hw_pkey_get(pkey, syscall_flags);
256 u64 orig_pkey_reg = read_pkey_reg();
257
258 pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
259
260 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
261 pkey, pkey, pkey_rights);
262 pkey_assert(pkey_rights >= 0);
263
264 pkey_rights &= ~flags;
265
266 ret = hw_pkey_set(pkey, pkey_rights, 0);
267 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
268 pkey_assert(ret >= 0);
269
270 pkey_rights = hw_pkey_get(pkey, syscall_flags);
271 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
272 pkey, pkey, pkey_rights);
273
274 dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__,
275 pkey, read_pkey_reg());
276 if (flags)
277 assert(read_pkey_reg() <= orig_pkey_reg);
278 }
279
pkey_write_allow(int pkey)280 void pkey_write_allow(int pkey)
281 {
282 pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
283 }
pkey_write_deny(int pkey)284 void pkey_write_deny(int pkey)
285 {
286 pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
287 }
pkey_access_allow(int pkey)288 void pkey_access_allow(int pkey)
289 {
290 pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
291 }
pkey_access_deny(int pkey)292 void pkey_access_deny(int pkey)
293 {
294 pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
295 }
296
297 /* Failed address bound checks: */
298 #ifndef SEGV_BNDERR
299 # define SEGV_BNDERR 3
300 #endif
301
302 #ifndef SEGV_PKUERR
303 # define SEGV_PKUERR 4
304 #endif
305
si_code_str(int si_code)306 static char *si_code_str(int si_code)
307 {
308 if (si_code == SEGV_MAPERR)
309 return "SEGV_MAPERR";
310 if (si_code == SEGV_ACCERR)
311 return "SEGV_ACCERR";
312 if (si_code == SEGV_BNDERR)
313 return "SEGV_BNDERR";
314 if (si_code == SEGV_PKUERR)
315 return "SEGV_PKUERR";
316 return "UNKNOWN";
317 }
318
319 int pkey_faults;
320 int last_si_pkey = -1;
signal_handler(int signum,siginfo_t * si,void * vucontext)321 void signal_handler(int signum, siginfo_t *si, void *vucontext)
322 {
323 ucontext_t *uctxt = vucontext;
324 int trapno;
325 unsigned long ip;
326 char *fpregs;
327 #if defined(__i386__) || defined(__x86_64__) /* arch */
328 u32 *pkey_reg_ptr;
329 int pkey_reg_offset;
330 #endif /* arch */
331 u64 siginfo_pkey;
332 u32 *si_pkey_ptr;
333
334 dprint_in_signal = 1;
335 dprintf1(">>>>===============SIGSEGV============================\n");
336 dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
337 __func__, __LINE__,
338 __read_pkey_reg(), shadow_pkey_reg);
339
340 trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
341 ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
342 fpregs = (char *) uctxt->uc_mcontext.fpregs;
343
344 dprintf2("%s() trapno: %d ip: 0x%016lx info->si_code: %s/%d\n",
345 __func__, trapno, ip, si_code_str(si->si_code),
346 si->si_code);
347
348 #if defined(__i386__) || defined(__x86_64__) /* arch */
349 #ifdef __i386__
350 /*
351 * 32-bit has some extra padding so that userspace can tell whether
352 * the XSTATE header is present in addition to the "legacy" FPU
353 * state. We just assume that it is here.
354 */
355 fpregs += 0x70;
356 #endif /* i386 */
357 pkey_reg_offset = pkey_reg_xstate_offset();
358 pkey_reg_ptr = (void *)(&fpregs[pkey_reg_offset]);
359
360 /*
361 * If we got a PKEY fault, we *HAVE* to have at least one bit set in
362 * here.
363 */
364 dprintf1("pkey_reg_xstate_offset: %d\n", pkey_reg_xstate_offset());
365 if (DEBUG_LEVEL > 4)
366 dump_mem(pkey_reg_ptr - 128, 256);
367 pkey_assert(*pkey_reg_ptr);
368 #endif /* arch */
369
370 dprintf1("siginfo: %p\n", si);
371 dprintf1(" fpregs: %p\n", fpregs);
372
373 if ((si->si_code == SEGV_MAPERR) ||
374 (si->si_code == SEGV_ACCERR) ||
375 (si->si_code == SEGV_BNDERR)) {
376 printf("non-PK si_code, exiting...\n");
377 exit(4);
378 }
379
380 si_pkey_ptr = siginfo_get_pkey_ptr(si);
381 dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
382 dump_mem((u8 *)si_pkey_ptr - 8, 24);
383 siginfo_pkey = *si_pkey_ptr;
384 pkey_assert(siginfo_pkey < NR_PKEYS);
385 last_si_pkey = siginfo_pkey;
386
387 /*
388 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
389 * checking
390 */
391 dprintf1("signal pkey_reg from pkey_reg: %016llx\n",
392 __read_pkey_reg());
393 dprintf1("pkey from siginfo: %016llx\n", siginfo_pkey);
394 #if defined(__i386__) || defined(__x86_64__) /* arch */
395 dprintf1("signal pkey_reg from xsave: %08x\n", *pkey_reg_ptr);
396 *(u64 *)pkey_reg_ptr = 0x00000000;
397 dprintf1("WARNING: set PKEY_REG=0 to allow faulting instruction to continue\n");
398 #elif defined(__powerpc64__) /* arch */
399 /* restore access and let the faulting instruction continue */
400 pkey_access_allow(siginfo_pkey);
401 #endif /* arch */
402 pkey_faults++;
403 dprintf1("<<<<==================================================\n");
404 dprint_in_signal = 0;
405 }
406
wait_all_children(void)407 int wait_all_children(void)
408 {
409 int status;
410 return waitpid(-1, &status, 0);
411 }
412
sig_chld(int x)413 void sig_chld(int x)
414 {
415 dprint_in_signal = 1;
416 dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
417 dprint_in_signal = 0;
418 }
419
setup_sigsegv_handler(void)420 void setup_sigsegv_handler(void)
421 {
422 int r, rs;
423 struct sigaction newact;
424 struct sigaction oldact;
425
426 /* #PF is mapped to sigsegv */
427 int signum = SIGSEGV;
428
429 newact.sa_handler = 0;
430 newact.sa_sigaction = signal_handler;
431
432 /*sigset_t - signals to block while in the handler */
433 /* get the old signal mask. */
434 rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
435 pkey_assert(rs == 0);
436
437 /* call sa_sigaction, not sa_handler*/
438 newact.sa_flags = SA_SIGINFO;
439
440 newact.sa_restorer = 0; /* void(*)(), obsolete */
441 r = sigaction(signum, &newact, &oldact);
442 r = sigaction(SIGALRM, &newact, &oldact);
443 pkey_assert(r == 0);
444 }
445
setup_handlers(void)446 void setup_handlers(void)
447 {
448 signal(SIGCHLD, &sig_chld);
449 setup_sigsegv_handler();
450 }
451
fork_lazy_child(void)452 pid_t fork_lazy_child(void)
453 {
454 pid_t forkret;
455
456 forkret = fork();
457 pkey_assert(forkret >= 0);
458 dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
459
460 if (!forkret) {
461 /* in the child */
462 while (1) {
463 dprintf1("child sleeping...\n");
464 sleep(30);
465 }
466 }
467 return forkret;
468 }
469
sys_mprotect_pkey(void * ptr,size_t size,unsigned long orig_prot,unsigned long pkey)470 int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
471 unsigned long pkey)
472 {
473 int sret;
474
475 dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__,
476 ptr, size, orig_prot, pkey);
477
478 errno = 0;
479 sret = syscall(SYS_mprotect_key, ptr, size, orig_prot, pkey);
480 if (errno) {
481 dprintf2("SYS_mprotect_key sret: %d\n", sret);
482 dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot);
483 dprintf2("SYS_mprotect_key failed, errno: %d\n", errno);
484 if (DEBUG_LEVEL >= 2)
485 perror("SYS_mprotect_pkey");
486 }
487 return sret;
488 }
489
sys_pkey_alloc(unsigned long flags,unsigned long init_val)490 int sys_pkey_alloc(unsigned long flags, unsigned long init_val)
491 {
492 int ret = syscall(SYS_pkey_alloc, flags, init_val);
493 dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n",
494 __func__, flags, init_val, ret, errno);
495 return ret;
496 }
497
alloc_pkey(void)498 int alloc_pkey(void)
499 {
500 int ret;
501 unsigned long init_val = 0x0;
502
503 dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
504 __func__, __LINE__, __read_pkey_reg(), shadow_pkey_reg);
505 ret = sys_pkey_alloc(0, init_val);
506 /*
507 * pkey_alloc() sets PKEY register, so we need to reflect it in
508 * shadow_pkey_reg:
509 */
510 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
511 " shadow: 0x%016llx\n",
512 __func__, __LINE__, ret, __read_pkey_reg(),
513 shadow_pkey_reg);
514 if (ret > 0) {
515 /* clear both the bits: */
516 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
517 ~PKEY_MASK);
518 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
519 " shadow: 0x%016llx\n",
520 __func__,
521 __LINE__, ret, __read_pkey_reg(),
522 shadow_pkey_reg);
523 /*
524 * move the new state in from init_val
525 * (remember, we cheated and init_val == pkey_reg format)
526 */
527 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
528 init_val);
529 }
530 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
531 " shadow: 0x%016llx\n",
532 __func__, __LINE__, ret, __read_pkey_reg(),
533 shadow_pkey_reg);
534 dprintf1("%s()::%d errno: %d\n", __func__, __LINE__, errno);
535 /* for shadow checking: */
536 read_pkey_reg();
537 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
538 " shadow: 0x%016llx\n",
539 __func__, __LINE__, ret, __read_pkey_reg(),
540 shadow_pkey_reg);
541 return ret;
542 }
543
sys_pkey_free(unsigned long pkey)544 int sys_pkey_free(unsigned long pkey)
545 {
546 int ret = syscall(SYS_pkey_free, pkey);
547 dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret);
548 return ret;
549 }
550
551 /*
552 * I had a bug where pkey bits could be set by mprotect() but
553 * not cleared. This ensures we get lots of random bit sets
554 * and clears on the vma and pte pkey bits.
555 */
alloc_random_pkey(void)556 int alloc_random_pkey(void)
557 {
558 int max_nr_pkey_allocs;
559 int ret;
560 int i;
561 int alloced_pkeys[NR_PKEYS];
562 int nr_alloced = 0;
563 int random_index;
564 memset(alloced_pkeys, 0, sizeof(alloced_pkeys));
565
566 /* allocate every possible key and make a note of which ones we got */
567 max_nr_pkey_allocs = NR_PKEYS;
568 for (i = 0; i < max_nr_pkey_allocs; i++) {
569 int new_pkey = alloc_pkey();
570 if (new_pkey < 0)
571 break;
572 alloced_pkeys[nr_alloced++] = new_pkey;
573 }
574
575 pkey_assert(nr_alloced > 0);
576 /* select a random one out of the allocated ones */
577 random_index = rand() % nr_alloced;
578 ret = alloced_pkeys[random_index];
579 /* now zero it out so we don't free it next */
580 alloced_pkeys[random_index] = 0;
581
582 /* go through the allocated ones that we did not want and free them */
583 for (i = 0; i < nr_alloced; i++) {
584 int free_ret;
585 if (!alloced_pkeys[i])
586 continue;
587 free_ret = sys_pkey_free(alloced_pkeys[i]);
588 pkey_assert(!free_ret);
589 }
590 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
591 " shadow: 0x%016llx\n", __func__,
592 __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
593 return ret;
594 }
595
mprotect_pkey(void * ptr,size_t size,unsigned long orig_prot,unsigned long pkey)596 int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
597 unsigned long pkey)
598 {
599 int nr_iterations = random() % 100;
600 int ret;
601
602 while (0) {
603 int rpkey = alloc_random_pkey();
604 ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
605 dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
606 ptr, size, orig_prot, pkey, ret);
607 if (nr_iterations-- < 0)
608 break;
609
610 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
611 " shadow: 0x%016llx\n",
612 __func__, __LINE__, ret, __read_pkey_reg(),
613 shadow_pkey_reg);
614 sys_pkey_free(rpkey);
615 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
616 " shadow: 0x%016llx\n",
617 __func__, __LINE__, ret, __read_pkey_reg(),
618 shadow_pkey_reg);
619 }
620 pkey_assert(pkey < NR_PKEYS);
621
622 ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
623 dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
624 ptr, size, orig_prot, pkey, ret);
625 pkey_assert(!ret);
626 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
627 " shadow: 0x%016llx\n", __func__,
628 __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
629 return ret;
630 }
631
632 struct pkey_malloc_record {
633 void *ptr;
634 long size;
635 int prot;
636 };
637 struct pkey_malloc_record *pkey_malloc_records;
638 struct pkey_malloc_record *pkey_last_malloc_record;
639 long nr_pkey_malloc_records;
record_pkey_malloc(void * ptr,long size,int prot)640 void record_pkey_malloc(void *ptr, long size, int prot)
641 {
642 long i;
643 struct pkey_malloc_record *rec = NULL;
644
645 for (i = 0; i < nr_pkey_malloc_records; i++) {
646 rec = &pkey_malloc_records[i];
647 /* find a free record */
648 if (rec)
649 break;
650 }
651 if (!rec) {
652 /* every record is full */
653 size_t old_nr_records = nr_pkey_malloc_records;
654 size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
655 size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
656 dprintf2("new_nr_records: %zd\n", new_nr_records);
657 dprintf2("new_size: %zd\n", new_size);
658 pkey_malloc_records = realloc(pkey_malloc_records, new_size);
659 pkey_assert(pkey_malloc_records != NULL);
660 rec = &pkey_malloc_records[nr_pkey_malloc_records];
661 /*
662 * realloc() does not initialize memory, so zero it from
663 * the first new record all the way to the end.
664 */
665 for (i = 0; i < new_nr_records - old_nr_records; i++)
666 memset(rec + i, 0, sizeof(*rec));
667 }
668 dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
669 (int)(rec - pkey_malloc_records), rec, ptr, size);
670 rec->ptr = ptr;
671 rec->size = size;
672 rec->prot = prot;
673 pkey_last_malloc_record = rec;
674 nr_pkey_malloc_records++;
675 }
676
free_pkey_malloc(void * ptr)677 void free_pkey_malloc(void *ptr)
678 {
679 long i;
680 int ret;
681 dprintf3("%s(%p)\n", __func__, ptr);
682 for (i = 0; i < nr_pkey_malloc_records; i++) {
683 struct pkey_malloc_record *rec = &pkey_malloc_records[i];
684 dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
685 ptr, i, rec, rec->ptr, rec->size);
686 if ((ptr < rec->ptr) ||
687 (ptr >= rec->ptr + rec->size))
688 continue;
689
690 dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
691 ptr, i, rec, rec->ptr, rec->size);
692 nr_pkey_malloc_records--;
693 ret = munmap(rec->ptr, rec->size);
694 dprintf3("munmap ret: %d\n", ret);
695 pkey_assert(!ret);
696 dprintf3("clearing rec->ptr, rec: %p\n", rec);
697 rec->ptr = NULL;
698 dprintf3("done clearing rec->ptr, rec: %p\n", rec);
699 return;
700 }
701 pkey_assert(false);
702 }
703
704
malloc_pkey_with_mprotect(long size,int prot,u16 pkey)705 void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
706 {
707 void *ptr;
708 int ret;
709
710 read_pkey_reg();
711 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
712 size, prot, pkey);
713 pkey_assert(pkey < NR_PKEYS);
714 ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
715 pkey_assert(ptr != (void *)-1);
716 ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
717 pkey_assert(!ret);
718 record_pkey_malloc(ptr, size, prot);
719 read_pkey_reg();
720
721 dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
722 return ptr;
723 }
724
malloc_pkey_anon_huge(long size,int prot,u16 pkey)725 void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
726 {
727 int ret;
728 void *ptr;
729
730 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
731 size, prot, pkey);
732 /*
733 * Guarantee we can fit at least one huge page in the resulting
734 * allocation by allocating space for 2:
735 */
736 size = ALIGN_UP(size, HPAGE_SIZE * 2);
737 ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
738 pkey_assert(ptr != (void *)-1);
739 record_pkey_malloc(ptr, size, prot);
740 mprotect_pkey(ptr, size, prot, pkey);
741
742 dprintf1("unaligned ptr: %p\n", ptr);
743 ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
744 dprintf1(" aligned ptr: %p\n", ptr);
745 ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
746 dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
747 ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
748 dprintf1("MADV_WILLNEED ret: %d\n", ret);
749 memset(ptr, 0, HPAGE_SIZE);
750
751 dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
752 return ptr;
753 }
754
755 int hugetlb_setup_ok;
756 #define SYSFS_FMT_NR_HUGE_PAGES "/sys/kernel/mm/hugepages/hugepages-%ldkB/nr_hugepages"
757 #define GET_NR_HUGE_PAGES 10
setup_hugetlbfs(void)758 void setup_hugetlbfs(void)
759 {
760 int err;
761 int fd;
762 char buf[256];
763 long hpagesz_kb;
764 long hpagesz_mb;
765
766 if (geteuid() != 0) {
767 fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
768 return;
769 }
770
771 cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");
772
773 /*
774 * Now go make sure that we got the pages and that they
775 * are PMD-level pages. Someone might have made PUD-level
776 * pages the default.
777 */
778 hpagesz_kb = HPAGE_SIZE / 1024;
779 hpagesz_mb = hpagesz_kb / 1024;
780 sprintf(buf, SYSFS_FMT_NR_HUGE_PAGES, hpagesz_kb);
781 fd = open(buf, O_RDONLY);
782 if (fd < 0) {
783 fprintf(stderr, "opening sysfs %ldM hugetlb config: %s\n",
784 hpagesz_mb, strerror(errno));
785 return;
786 }
787
788 /* -1 to guarantee leaving the trailing \0 */
789 err = read(fd, buf, sizeof(buf)-1);
790 close(fd);
791 if (err <= 0) {
792 fprintf(stderr, "reading sysfs %ldM hugetlb config: %s\n",
793 hpagesz_mb, strerror(errno));
794 return;
795 }
796
797 if (atoi(buf) != GET_NR_HUGE_PAGES) {
798 fprintf(stderr, "could not confirm %ldM pages, got: '%s' expected %d\n",
799 hpagesz_mb, buf, GET_NR_HUGE_PAGES);
800 return;
801 }
802
803 hugetlb_setup_ok = 1;
804 }
805
malloc_pkey_hugetlb(long size,int prot,u16 pkey)806 void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
807 {
808 void *ptr;
809 int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;
810
811 if (!hugetlb_setup_ok)
812 return PTR_ERR_ENOTSUP;
813
814 dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
815 size = ALIGN_UP(size, HPAGE_SIZE * 2);
816 pkey_assert(pkey < NR_PKEYS);
817 ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
818 pkey_assert(ptr != (void *)-1);
819 mprotect_pkey(ptr, size, prot, pkey);
820
821 record_pkey_malloc(ptr, size, prot);
822
823 dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
824 return ptr;
825 }
826
malloc_pkey_mmap_dax(long size,int prot,u16 pkey)827 void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey)
828 {
829 void *ptr;
830 int fd;
831
832 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
833 size, prot, pkey);
834 pkey_assert(pkey < NR_PKEYS);
835 fd = open("/dax/foo", O_RDWR);
836 pkey_assert(fd >= 0);
837
838 ptr = mmap(0, size, prot, MAP_SHARED, fd, 0);
839 pkey_assert(ptr != (void *)-1);
840
841 mprotect_pkey(ptr, size, prot, pkey);
842
843 record_pkey_malloc(ptr, size, prot);
844
845 dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr);
846 close(fd);
847 return ptr;
848 }
849
850 void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {
851
852 malloc_pkey_with_mprotect,
853 malloc_pkey_with_mprotect_subpage,
854 malloc_pkey_anon_huge,
855 malloc_pkey_hugetlb
856 /* can not do direct with the pkey_mprotect() API:
857 malloc_pkey_mmap_direct,
858 malloc_pkey_mmap_dax,
859 */
860 };
861
malloc_pkey(long size,int prot,u16 pkey)862 void *malloc_pkey(long size, int prot, u16 pkey)
863 {
864 void *ret;
865 static int malloc_type;
866 int nr_malloc_types = ARRAY_SIZE(pkey_malloc);
867
868 pkey_assert(pkey < NR_PKEYS);
869
870 while (1) {
871 pkey_assert(malloc_type < nr_malloc_types);
872
873 ret = pkey_malloc[malloc_type](size, prot, pkey);
874 pkey_assert(ret != (void *)-1);
875
876 malloc_type++;
877 if (malloc_type >= nr_malloc_types)
878 malloc_type = (random()%nr_malloc_types);
879
880 /* try again if the malloc_type we tried is unsupported */
881 if (ret == PTR_ERR_ENOTSUP)
882 continue;
883
884 break;
885 }
886
887 dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
888 size, prot, pkey, ret);
889 return ret;
890 }
891
892 int last_pkey_faults;
893 #define UNKNOWN_PKEY -2
expected_pkey_fault(int pkey)894 void expected_pkey_fault(int pkey)
895 {
896 dprintf2("%s(): last_pkey_faults: %d pkey_faults: %d\n",
897 __func__, last_pkey_faults, pkey_faults);
898 dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
899 pkey_assert(last_pkey_faults + 1 == pkey_faults);
900
901 /*
902 * For exec-only memory, we do not know the pkey in
903 * advance, so skip this check.
904 */
905 if (pkey != UNKNOWN_PKEY)
906 pkey_assert(last_si_pkey == pkey);
907
908 #if defined(__i386__) || defined(__x86_64__) /* arch */
909 /*
910 * The signal handler shold have cleared out PKEY register to let the
911 * test program continue. We now have to restore it.
912 */
913 if (__read_pkey_reg() != 0)
914 #else /* arch */
915 if (__read_pkey_reg() != shadow_pkey_reg)
916 #endif /* arch */
917 pkey_assert(0);
918
919 __write_pkey_reg(shadow_pkey_reg);
920 dprintf1("%s() set pkey_reg=%016llx to restore state after signal "
921 "nuked it\n", __func__, shadow_pkey_reg);
922 last_pkey_faults = pkey_faults;
923 last_si_pkey = -1;
924 }
925
926 #define do_not_expect_pkey_fault(msg) do { \
927 if (last_pkey_faults != pkey_faults) \
928 dprintf0("unexpected PKey fault: %s\n", msg); \
929 pkey_assert(last_pkey_faults == pkey_faults); \
930 } while (0)
931
932 int test_fds[10] = { -1 };
933 int nr_test_fds;
__save_test_fd(int fd)934 void __save_test_fd(int fd)
935 {
936 pkey_assert(fd >= 0);
937 pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
938 test_fds[nr_test_fds] = fd;
939 nr_test_fds++;
940 }
941
get_test_read_fd(void)942 int get_test_read_fd(void)
943 {
944 int test_fd = open("/etc/passwd", O_RDONLY);
945 __save_test_fd(test_fd);
946 return test_fd;
947 }
948
close_test_fds(void)949 void close_test_fds(void)
950 {
951 int i;
952
953 for (i = 0; i < nr_test_fds; i++) {
954 if (test_fds[i] < 0)
955 continue;
956 close(test_fds[i]);
957 test_fds[i] = -1;
958 }
959 nr_test_fds = 0;
960 }
961
962 #define barrier() __asm__ __volatile__("": : :"memory")
read_ptr(int * ptr)963 __attribute__((noinline)) int read_ptr(int *ptr)
964 {
965 /*
966 * Keep GCC from optimizing this away somehow
967 */
968 barrier();
969 return *ptr;
970 }
971
test_pkey_alloc_free_attach_pkey0(int * ptr,u16 pkey)972 void test_pkey_alloc_free_attach_pkey0(int *ptr, u16 pkey)
973 {
974 int i, err;
975 int max_nr_pkey_allocs;
976 int alloced_pkeys[NR_PKEYS];
977 int nr_alloced = 0;
978 long size;
979
980 pkey_assert(pkey_last_malloc_record);
981 size = pkey_last_malloc_record->size;
982 /*
983 * This is a bit of a hack. But mprotect() requires
984 * huge-page-aligned sizes when operating on hugetlbfs.
985 * So, make sure that we use something that's a multiple
986 * of a huge page when we can.
987 */
988 if (size >= HPAGE_SIZE)
989 size = HPAGE_SIZE;
990
991 /* allocate every possible key and make sure key-0 never got allocated */
992 max_nr_pkey_allocs = NR_PKEYS;
993 for (i = 0; i < max_nr_pkey_allocs; i++) {
994 int new_pkey = alloc_pkey();
995 pkey_assert(new_pkey != 0);
996
997 if (new_pkey < 0)
998 break;
999 alloced_pkeys[nr_alloced++] = new_pkey;
1000 }
1001 /* free all the allocated keys */
1002 for (i = 0; i < nr_alloced; i++) {
1003 int free_ret;
1004
1005 if (!alloced_pkeys[i])
1006 continue;
1007 free_ret = sys_pkey_free(alloced_pkeys[i]);
1008 pkey_assert(!free_ret);
1009 }
1010
1011 /* attach key-0 in various modes */
1012 err = sys_mprotect_pkey(ptr, size, PROT_READ, 0);
1013 pkey_assert(!err);
1014 err = sys_mprotect_pkey(ptr, size, PROT_WRITE, 0);
1015 pkey_assert(!err);
1016 err = sys_mprotect_pkey(ptr, size, PROT_EXEC, 0);
1017 pkey_assert(!err);
1018 err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE, 0);
1019 pkey_assert(!err);
1020 err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE|PROT_EXEC, 0);
1021 pkey_assert(!err);
1022 }
1023
test_read_of_write_disabled_region(int * ptr,u16 pkey)1024 void test_read_of_write_disabled_region(int *ptr, u16 pkey)
1025 {
1026 int ptr_contents;
1027
1028 dprintf1("disabling write access to PKEY[1], doing read\n");
1029 pkey_write_deny(pkey);
1030 ptr_contents = read_ptr(ptr);
1031 dprintf1("*ptr: %d\n", ptr_contents);
1032 dprintf1("\n");
1033 }
test_read_of_access_disabled_region(int * ptr,u16 pkey)1034 void test_read_of_access_disabled_region(int *ptr, u16 pkey)
1035 {
1036 int ptr_contents;
1037
1038 dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
1039 read_pkey_reg();
1040 pkey_access_deny(pkey);
1041 ptr_contents = read_ptr(ptr);
1042 dprintf1("*ptr: %d\n", ptr_contents);
1043 expected_pkey_fault(pkey);
1044 }
1045
test_read_of_access_disabled_region_with_page_already_mapped(int * ptr,u16 pkey)1046 void test_read_of_access_disabled_region_with_page_already_mapped(int *ptr,
1047 u16 pkey)
1048 {
1049 int ptr_contents;
1050
1051 dprintf1("disabling access to PKEY[%02d], doing read @ %p\n",
1052 pkey, ptr);
1053 ptr_contents = read_ptr(ptr);
1054 dprintf1("reading ptr before disabling the read : %d\n",
1055 ptr_contents);
1056 read_pkey_reg();
1057 pkey_access_deny(pkey);
1058 ptr_contents = read_ptr(ptr);
1059 dprintf1("*ptr: %d\n", ptr_contents);
1060 expected_pkey_fault(pkey);
1061 }
1062
test_write_of_write_disabled_region_with_page_already_mapped(int * ptr,u16 pkey)1063 void test_write_of_write_disabled_region_with_page_already_mapped(int *ptr,
1064 u16 pkey)
1065 {
1066 *ptr = __LINE__;
1067 dprintf1("disabling write access; after accessing the page, "
1068 "to PKEY[%02d], doing write\n", pkey);
1069 pkey_write_deny(pkey);
1070 *ptr = __LINE__;
1071 expected_pkey_fault(pkey);
1072 }
1073
test_write_of_write_disabled_region(int * ptr,u16 pkey)1074 void test_write_of_write_disabled_region(int *ptr, u16 pkey)
1075 {
1076 dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
1077 pkey_write_deny(pkey);
1078 *ptr = __LINE__;
1079 expected_pkey_fault(pkey);
1080 }
test_write_of_access_disabled_region(int * ptr,u16 pkey)1081 void test_write_of_access_disabled_region(int *ptr, u16 pkey)
1082 {
1083 dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
1084 pkey_access_deny(pkey);
1085 *ptr = __LINE__;
1086 expected_pkey_fault(pkey);
1087 }
1088
test_write_of_access_disabled_region_with_page_already_mapped(int * ptr,u16 pkey)1089 void test_write_of_access_disabled_region_with_page_already_mapped(int *ptr,
1090 u16 pkey)
1091 {
1092 *ptr = __LINE__;
1093 dprintf1("disabling access; after accessing the page, "
1094 " to PKEY[%02d], doing write\n", pkey);
1095 pkey_access_deny(pkey);
1096 *ptr = __LINE__;
1097 expected_pkey_fault(pkey);
1098 }
1099
test_kernel_write_of_access_disabled_region(int * ptr,u16 pkey)1100 void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
1101 {
1102 int ret;
1103 int test_fd = get_test_read_fd();
1104
1105 dprintf1("disabling access to PKEY[%02d], "
1106 "having kernel read() to buffer\n", pkey);
1107 pkey_access_deny(pkey);
1108 ret = read(test_fd, ptr, 1);
1109 dprintf1("read ret: %d\n", ret);
1110 pkey_assert(ret);
1111 }
test_kernel_write_of_write_disabled_region(int * ptr,u16 pkey)1112 void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
1113 {
1114 int ret;
1115 int test_fd = get_test_read_fd();
1116
1117 pkey_write_deny(pkey);
1118 ret = read(test_fd, ptr, 100);
1119 dprintf1("read ret: %d\n", ret);
1120 if (ret < 0 && (DEBUG_LEVEL > 0))
1121 perror("verbose read result (OK for this to be bad)");
1122 pkey_assert(ret);
1123 }
1124
test_kernel_gup_of_access_disabled_region(int * ptr,u16 pkey)1125 void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
1126 {
1127 int pipe_ret, vmsplice_ret;
1128 struct iovec iov;
1129 int pipe_fds[2];
1130
1131 pipe_ret = pipe(pipe_fds);
1132
1133 pkey_assert(pipe_ret == 0);
1134 dprintf1("disabling access to PKEY[%02d], "
1135 "having kernel vmsplice from buffer\n", pkey);
1136 pkey_access_deny(pkey);
1137 iov.iov_base = ptr;
1138 iov.iov_len = PAGE_SIZE;
1139 vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
1140 dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
1141 pkey_assert(vmsplice_ret == -1);
1142
1143 close(pipe_fds[0]);
1144 close(pipe_fds[1]);
1145 }
1146
test_kernel_gup_write_to_write_disabled_region(int * ptr,u16 pkey)1147 void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
1148 {
1149 int ignored = 0xdada;
1150 int futex_ret;
1151 int some_int = __LINE__;
1152
1153 dprintf1("disabling write to PKEY[%02d], "
1154 "doing futex gunk in buffer\n", pkey);
1155 *ptr = some_int;
1156 pkey_write_deny(pkey);
1157 futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
1158 &ignored, ignored);
1159 if (DEBUG_LEVEL > 0)
1160 perror("futex");
1161 dprintf1("futex() ret: %d\n", futex_ret);
1162 }
1163
1164 /* Assumes that all pkeys other than 'pkey' are unallocated */
test_pkey_syscalls_on_non_allocated_pkey(int * ptr,u16 pkey)1165 void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
1166 {
1167 int err;
1168 int i;
1169
1170 /* Note: 0 is the default pkey, so don't mess with it */
1171 for (i = 1; i < NR_PKEYS; i++) {
1172 if (pkey == i)
1173 continue;
1174
1175 dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
1176 err = sys_pkey_free(i);
1177 pkey_assert(err);
1178
1179 err = sys_pkey_free(i);
1180 pkey_assert(err);
1181
1182 err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
1183 pkey_assert(err);
1184 }
1185 }
1186
1187 /* Assumes that all pkeys other than 'pkey' are unallocated */
test_pkey_syscalls_bad_args(int * ptr,u16 pkey)1188 void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
1189 {
1190 int err;
1191 int bad_pkey = NR_PKEYS+99;
1192
1193 /* pass a known-invalid pkey in: */
1194 err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
1195 pkey_assert(err);
1196 }
1197
become_child(void)1198 void become_child(void)
1199 {
1200 pid_t forkret;
1201
1202 forkret = fork();
1203 pkey_assert(forkret >= 0);
1204 dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
1205
1206 if (!forkret) {
1207 /* in the child */
1208 return;
1209 }
1210 exit(0);
1211 }
1212
1213 /* Assumes that all pkeys other than 'pkey' are unallocated */
test_pkey_alloc_exhaust(int * ptr,u16 pkey)1214 void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
1215 {
1216 int err;
1217 int allocated_pkeys[NR_PKEYS] = {0};
1218 int nr_allocated_pkeys = 0;
1219 int i;
1220
1221 for (i = 0; i < NR_PKEYS*3; i++) {
1222 int new_pkey;
1223 dprintf1("%s() alloc loop: %d\n", __func__, i);
1224 new_pkey = alloc_pkey();
1225 dprintf4("%s()::%d, err: %d pkey_reg: 0x%016llx"
1226 " shadow: 0x%016llx\n",
1227 __func__, __LINE__, err, __read_pkey_reg(),
1228 shadow_pkey_reg);
1229 read_pkey_reg(); /* for shadow checking */
1230 dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
1231 if ((new_pkey == -1) && (errno == ENOSPC)) {
1232 dprintf2("%s() failed to allocate pkey after %d tries\n",
1233 __func__, nr_allocated_pkeys);
1234 } else {
1235 /*
1236 * Ensure the number of successes never
1237 * exceeds the number of keys supported
1238 * in the hardware.
1239 */
1240 pkey_assert(nr_allocated_pkeys < NR_PKEYS);
1241 allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1242 }
1243
1244 /*
1245 * Make sure that allocation state is properly
1246 * preserved across fork().
1247 */
1248 if (i == NR_PKEYS*2)
1249 become_child();
1250 }
1251
1252 dprintf3("%s()::%d\n", __func__, __LINE__);
1253
1254 /*
1255 * On x86:
1256 * There are 16 pkeys supported in hardware. Three are
1257 * allocated by the time we get here:
1258 * 1. The default key (0)
1259 * 2. One possibly consumed by an execute-only mapping.
1260 * 3. One allocated by the test code and passed in via
1261 * 'pkey' to this function.
1262 * Ensure that we can allocate at least another 13 (16-3).
1263 *
1264 * On powerpc:
1265 * There are either 5, 28, 29 or 32 pkeys supported in
1266 * hardware depending on the page size (4K or 64K) and
1267 * platform (powernv or powervm). Four are allocated by
1268 * the time we get here. These include pkey-0, pkey-1,
1269 * exec-only pkey and the one allocated by the test code.
1270 * Ensure that we can allocate the remaining.
1271 */
1272 pkey_assert(i >= (NR_PKEYS - get_arch_reserved_keys() - 1));
1273
1274 for (i = 0; i < nr_allocated_pkeys; i++) {
1275 err = sys_pkey_free(allocated_pkeys[i]);
1276 pkey_assert(!err);
1277 read_pkey_reg(); /* for shadow checking */
1278 }
1279 }
1280
arch_force_pkey_reg_init(void)1281 void arch_force_pkey_reg_init(void)
1282 {
1283 #if defined(__i386__) || defined(__x86_64__) /* arch */
1284 u64 *buf;
1285
1286 /*
1287 * All keys should be allocated and set to allow reads and
1288 * writes, so the register should be all 0. If not, just
1289 * skip the test.
1290 */
1291 if (read_pkey_reg())
1292 return;
1293
1294 /*
1295 * Just allocate an absurd about of memory rather than
1296 * doing the XSAVE size enumeration dance.
1297 */
1298 buf = mmap(NULL, 1*MB, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1299
1300 /* These __builtins require compiling with -mxsave */
1301
1302 /* XSAVE to build a valid buffer: */
1303 __builtin_ia32_xsave(buf, XSTATE_PKEY);
1304 /* Clear XSTATE_BV[PKRU]: */
1305 buf[XSTATE_BV_OFFSET/sizeof(u64)] &= ~XSTATE_PKEY;
1306 /* XRSTOR will likely get PKRU back to the init state: */
1307 __builtin_ia32_xrstor(buf, XSTATE_PKEY);
1308
1309 munmap(buf, 1*MB);
1310 #endif
1311 }
1312
1313
1314 /*
1315 * This is mostly useless on ppc for now. But it will not
1316 * hurt anything and should give some better coverage as
1317 * a long-running test that continually checks the pkey
1318 * register.
1319 */
test_pkey_init_state(int * ptr,u16 pkey)1320 void test_pkey_init_state(int *ptr, u16 pkey)
1321 {
1322 int err;
1323 int allocated_pkeys[NR_PKEYS] = {0};
1324 int nr_allocated_pkeys = 0;
1325 int i;
1326
1327 for (i = 0; i < NR_PKEYS; i++) {
1328 int new_pkey = alloc_pkey();
1329
1330 if (new_pkey < 0)
1331 continue;
1332 allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1333 }
1334
1335 dprintf3("%s()::%d\n", __func__, __LINE__);
1336
1337 arch_force_pkey_reg_init();
1338
1339 /*
1340 * Loop for a bit, hoping to get exercise the kernel
1341 * context switch code.
1342 */
1343 for (i = 0; i < 1000000; i++)
1344 read_pkey_reg();
1345
1346 for (i = 0; i < nr_allocated_pkeys; i++) {
1347 err = sys_pkey_free(allocated_pkeys[i]);
1348 pkey_assert(!err);
1349 read_pkey_reg(); /* for shadow checking */
1350 }
1351 }
1352
1353 /*
1354 * pkey 0 is special. It is allocated by default, so you do not
1355 * have to call pkey_alloc() to use it first. Make sure that it
1356 * is usable.
1357 */
test_mprotect_with_pkey_0(int * ptr,u16 pkey)1358 void test_mprotect_with_pkey_0(int *ptr, u16 pkey)
1359 {
1360 long size;
1361 int prot;
1362
1363 assert(pkey_last_malloc_record);
1364 size = pkey_last_malloc_record->size;
1365 /*
1366 * This is a bit of a hack. But mprotect() requires
1367 * huge-page-aligned sizes when operating on hugetlbfs.
1368 * So, make sure that we use something that's a multiple
1369 * of a huge page when we can.
1370 */
1371 if (size >= HPAGE_SIZE)
1372 size = HPAGE_SIZE;
1373 prot = pkey_last_malloc_record->prot;
1374
1375 /* Use pkey 0 */
1376 mprotect_pkey(ptr, size, prot, 0);
1377
1378 /* Make sure that we can set it back to the original pkey. */
1379 mprotect_pkey(ptr, size, prot, pkey);
1380 }
1381
test_ptrace_of_child(int * ptr,u16 pkey)1382 void test_ptrace_of_child(int *ptr, u16 pkey)
1383 {
1384 __attribute__((__unused__)) int peek_result;
1385 pid_t child_pid;
1386 void *ignored = 0;
1387 long ret;
1388 int status;
1389 /*
1390 * This is the "control" for our little expermient. Make sure
1391 * we can always access it when ptracing.
1392 */
1393 int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
1394 int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);
1395
1396 /*
1397 * Fork a child which is an exact copy of this process, of course.
1398 * That means we can do all of our tests via ptrace() and then plain
1399 * memory access and ensure they work differently.
1400 */
1401 child_pid = fork_lazy_child();
1402 dprintf1("[%d] child pid: %d\n", getpid(), child_pid);
1403
1404 ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
1405 if (ret)
1406 perror("attach");
1407 dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
1408 pkey_assert(ret != -1);
1409 ret = waitpid(child_pid, &status, WUNTRACED);
1410 if ((ret != child_pid) || !(WIFSTOPPED(status))) {
1411 fprintf(stderr, "weird waitpid result %ld stat %x\n",
1412 ret, status);
1413 pkey_assert(0);
1414 }
1415 dprintf2("waitpid ret: %ld\n", ret);
1416 dprintf2("waitpid status: %d\n", status);
1417
1418 pkey_access_deny(pkey);
1419 pkey_write_deny(pkey);
1420
1421 /* Write access, untested for now:
1422 ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
1423 pkey_assert(ret != -1);
1424 dprintf1("poke at %p: %ld\n", peek_at, ret);
1425 */
1426
1427 /*
1428 * Try to access the pkey-protected "ptr" via ptrace:
1429 */
1430 ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
1431 /* expect it to work, without an error: */
1432 pkey_assert(ret != -1);
1433 /* Now access from the current task, and expect an exception: */
1434 peek_result = read_ptr(ptr);
1435 expected_pkey_fault(pkey);
1436
1437 /*
1438 * Try to access the NON-pkey-protected "plain_ptr" via ptrace:
1439 */
1440 ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
1441 /* expect it to work, without an error: */
1442 pkey_assert(ret != -1);
1443 /* Now access from the current task, and expect NO exception: */
1444 peek_result = read_ptr(plain_ptr);
1445 do_not_expect_pkey_fault("read plain pointer after ptrace");
1446
1447 ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
1448 pkey_assert(ret != -1);
1449
1450 ret = kill(child_pid, SIGKILL);
1451 pkey_assert(ret != -1);
1452
1453 wait(&status);
1454
1455 free(plain_ptr_unaligned);
1456 }
1457
get_pointer_to_instructions(void)1458 void *get_pointer_to_instructions(void)
1459 {
1460 void *p1;
1461
1462 p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
1463 dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
1464 /* lots_o_noops_around_write should be page-aligned already */
1465 assert(p1 == &lots_o_noops_around_write);
1466
1467 /* Point 'p1' at the *second* page of the function: */
1468 p1 += PAGE_SIZE;
1469
1470 /*
1471 * Try to ensure we fault this in on next touch to ensure
1472 * we get an instruction fault as opposed to a data one
1473 */
1474 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1475
1476 return p1;
1477 }
1478
test_executing_on_unreadable_memory(int * ptr,u16 pkey)1479 void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
1480 {
1481 void *p1;
1482 int scratch;
1483 int ptr_contents;
1484 int ret;
1485
1486 p1 = get_pointer_to_instructions();
1487 lots_o_noops_around_write(&scratch);
1488 ptr_contents = read_ptr(p1);
1489 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1490
1491 ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
1492 pkey_assert(!ret);
1493 pkey_access_deny(pkey);
1494
1495 dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1496
1497 /*
1498 * Make sure this is an *instruction* fault
1499 */
1500 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1501 lots_o_noops_around_write(&scratch);
1502 do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1503 expect_fault_on_read_execonly_key(p1, pkey);
1504 }
1505
test_implicit_mprotect_exec_only_memory(int * ptr,u16 pkey)1506 void test_implicit_mprotect_exec_only_memory(int *ptr, u16 pkey)
1507 {
1508 void *p1;
1509 int scratch;
1510 int ptr_contents;
1511 int ret;
1512
1513 dprintf1("%s() start\n", __func__);
1514
1515 p1 = get_pointer_to_instructions();
1516 lots_o_noops_around_write(&scratch);
1517 ptr_contents = read_ptr(p1);
1518 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1519
1520 /* Use a *normal* mprotect(), not mprotect_pkey(): */
1521 ret = mprotect(p1, PAGE_SIZE, PROT_EXEC);
1522 pkey_assert(!ret);
1523
1524 /*
1525 * Reset the shadow, assuming that the above mprotect()
1526 * correctly changed PKRU, but to an unknown value since
1527 * the actual allocated pkey is unknown.
1528 */
1529 shadow_pkey_reg = __read_pkey_reg();
1530
1531 dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1532
1533 /* Make sure this is an *instruction* fault */
1534 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1535 lots_o_noops_around_write(&scratch);
1536 do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1537 expect_fault_on_read_execonly_key(p1, UNKNOWN_PKEY);
1538
1539 /*
1540 * Put the memory back to non-PROT_EXEC. Should clear the
1541 * exec-only pkey off the VMA and allow it to be readable
1542 * again. Go to PROT_NONE first to check for a kernel bug
1543 * that did not clear the pkey when doing PROT_NONE.
1544 */
1545 ret = mprotect(p1, PAGE_SIZE, PROT_NONE);
1546 pkey_assert(!ret);
1547
1548 ret = mprotect(p1, PAGE_SIZE, PROT_READ|PROT_EXEC);
1549 pkey_assert(!ret);
1550 ptr_contents = read_ptr(p1);
1551 do_not_expect_pkey_fault("plain read on recently PROT_EXEC area");
1552 }
1553
1554 #if defined(__i386__) || defined(__x86_64__)
test_ptrace_modifies_pkru(int * ptr,u16 pkey)1555 void test_ptrace_modifies_pkru(int *ptr, u16 pkey)
1556 {
1557 u32 new_pkru;
1558 pid_t child;
1559 int status, ret;
1560 int pkey_offset = pkey_reg_xstate_offset();
1561 size_t xsave_size = cpu_max_xsave_size();
1562 void *xsave;
1563 u32 *pkey_register;
1564 u64 *xstate_bv;
1565 struct iovec iov;
1566
1567 new_pkru = ~read_pkey_reg();
1568 /* Don't make PROT_EXEC mappings inaccessible */
1569 new_pkru &= ~3;
1570
1571 child = fork();
1572 pkey_assert(child >= 0);
1573 dprintf3("[%d] fork() ret: %d\n", getpid(), child);
1574 if (!child) {
1575 ptrace(PTRACE_TRACEME, 0, 0, 0);
1576 /* Stop and allow the tracer to modify PKRU directly */
1577 raise(SIGSTOP);
1578
1579 /*
1580 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
1581 * checking
1582 */
1583 if (__read_pkey_reg() != new_pkru)
1584 exit(1);
1585
1586 /* Stop and allow the tracer to clear XSTATE_BV for PKRU */
1587 raise(SIGSTOP);
1588
1589 if (__read_pkey_reg() != 0)
1590 exit(1);
1591
1592 /* Stop and allow the tracer to examine PKRU */
1593 raise(SIGSTOP);
1594
1595 exit(0);
1596 }
1597
1598 pkey_assert(child == waitpid(child, &status, 0));
1599 dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1600 pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1601
1602 xsave = (void *)malloc(xsave_size);
1603 pkey_assert(xsave > 0);
1604
1605 /* Modify the PKRU register directly */
1606 iov.iov_base = xsave;
1607 iov.iov_len = xsave_size;
1608 ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1609 pkey_assert(ret == 0);
1610
1611 pkey_register = (u32 *)(xsave + pkey_offset);
1612 pkey_assert(*pkey_register == read_pkey_reg());
1613
1614 *pkey_register = new_pkru;
1615
1616 ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1617 pkey_assert(ret == 0);
1618
1619 /* Test that the modification is visible in ptrace before any execution */
1620 memset(xsave, 0xCC, xsave_size);
1621 ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1622 pkey_assert(ret == 0);
1623 pkey_assert(*pkey_register == new_pkru);
1624
1625 /* Execute the tracee */
1626 ret = ptrace(PTRACE_CONT, child, 0, 0);
1627 pkey_assert(ret == 0);
1628
1629 /* Test that the tracee saw the PKRU value change */
1630 pkey_assert(child == waitpid(child, &status, 0));
1631 dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1632 pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1633
1634 /* Test that the modification is visible in ptrace after execution */
1635 memset(xsave, 0xCC, xsave_size);
1636 ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1637 pkey_assert(ret == 0);
1638 pkey_assert(*pkey_register == new_pkru);
1639
1640 /* Clear the PKRU bit from XSTATE_BV */
1641 xstate_bv = (u64 *)(xsave + 512);
1642 *xstate_bv &= ~(1 << 9);
1643
1644 ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1645 pkey_assert(ret == 0);
1646
1647 /* Test that the modification is visible in ptrace before any execution */
1648 memset(xsave, 0xCC, xsave_size);
1649 ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1650 pkey_assert(ret == 0);
1651 pkey_assert(*pkey_register == 0);
1652
1653 ret = ptrace(PTRACE_CONT, child, 0, 0);
1654 pkey_assert(ret == 0);
1655
1656 /* Test that the tracee saw the PKRU value go to 0 */
1657 pkey_assert(child == waitpid(child, &status, 0));
1658 dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1659 pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1660
1661 /* Test that the modification is visible in ptrace after execution */
1662 memset(xsave, 0xCC, xsave_size);
1663 ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1664 pkey_assert(ret == 0);
1665 pkey_assert(*pkey_register == 0);
1666
1667 ret = ptrace(PTRACE_CONT, child, 0, 0);
1668 pkey_assert(ret == 0);
1669 pkey_assert(child == waitpid(child, &status, 0));
1670 dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1671 pkey_assert(WIFEXITED(status));
1672 pkey_assert(WEXITSTATUS(status) == 0);
1673 free(xsave);
1674 }
1675 #endif
1676
test_mprotect_pkey_on_unsupported_cpu(int * ptr,u16 pkey)1677 void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
1678 {
1679 int size = PAGE_SIZE;
1680 int sret;
1681
1682 if (cpu_has_pkeys()) {
1683 dprintf1("SKIP: %s: no CPU support\n", __func__);
1684 return;
1685 }
1686
1687 sret = syscall(SYS_mprotect_key, ptr, size, PROT_READ, pkey);
1688 pkey_assert(sret < 0);
1689 }
1690
1691 void (*pkey_tests[])(int *ptr, u16 pkey) = {
1692 test_read_of_write_disabled_region,
1693 test_read_of_access_disabled_region,
1694 test_read_of_access_disabled_region_with_page_already_mapped,
1695 test_write_of_write_disabled_region,
1696 test_write_of_write_disabled_region_with_page_already_mapped,
1697 test_write_of_access_disabled_region,
1698 test_write_of_access_disabled_region_with_page_already_mapped,
1699 test_kernel_write_of_access_disabled_region,
1700 test_kernel_write_of_write_disabled_region,
1701 test_kernel_gup_of_access_disabled_region,
1702 test_kernel_gup_write_to_write_disabled_region,
1703 test_executing_on_unreadable_memory,
1704 test_implicit_mprotect_exec_only_memory,
1705 test_mprotect_with_pkey_0,
1706 test_ptrace_of_child,
1707 test_pkey_init_state,
1708 test_pkey_syscalls_on_non_allocated_pkey,
1709 test_pkey_syscalls_bad_args,
1710 test_pkey_alloc_exhaust,
1711 test_pkey_alloc_free_attach_pkey0,
1712 #if defined(__i386__) || defined(__x86_64__)
1713 test_ptrace_modifies_pkru,
1714 #endif
1715 };
1716
run_tests_once(void)1717 void run_tests_once(void)
1718 {
1719 int *ptr;
1720 int prot = PROT_READ|PROT_WRITE;
1721
1722 for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
1723 int pkey;
1724 int orig_pkey_faults = pkey_faults;
1725
1726 dprintf1("======================\n");
1727 dprintf1("test %d preparing...\n", test_nr);
1728
1729 tracing_on();
1730 pkey = alloc_random_pkey();
1731 dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
1732 ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
1733 dprintf1("test %d starting...\n", test_nr);
1734 pkey_tests[test_nr](ptr, pkey);
1735 dprintf1("freeing test memory: %p\n", ptr);
1736 free_pkey_malloc(ptr);
1737 sys_pkey_free(pkey);
1738
1739 dprintf1("pkey_faults: %d\n", pkey_faults);
1740 dprintf1("orig_pkey_faults: %d\n", orig_pkey_faults);
1741
1742 tracing_off();
1743 close_test_fds();
1744
1745 printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
1746 dprintf1("======================\n\n");
1747 }
1748 iteration_nr++;
1749 }
1750
pkey_setup_shadow(void)1751 void pkey_setup_shadow(void)
1752 {
1753 shadow_pkey_reg = __read_pkey_reg();
1754 }
1755
main(void)1756 int main(void)
1757 {
1758 int nr_iterations = 22;
1759 int pkeys_supported = is_pkeys_supported();
1760
1761 srand((unsigned int)time(NULL));
1762
1763 setup_handlers();
1764
1765 printf("has pkeys: %d\n", pkeys_supported);
1766
1767 if (!pkeys_supported) {
1768 int size = PAGE_SIZE;
1769 int *ptr;
1770
1771 printf("running PKEY tests for unsupported CPU/OS\n");
1772
1773 ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1774 assert(ptr != (void *)-1);
1775 test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
1776 exit(0);
1777 }
1778
1779 pkey_setup_shadow();
1780 printf("startup pkey_reg: %016llx\n", read_pkey_reg());
1781 setup_hugetlbfs();
1782
1783 while (nr_iterations-- > 0)
1784 run_tests_once();
1785
1786 printf("done (all tests OK)\n");
1787 return 0;
1788 }
1789