1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs extent cache support
4 *
5 * Copyright (c) 2015 Motorola Mobility
6 * Copyright (c) 2015 Samsung Electronics
7 * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
8 * Chao Yu <chao2.yu@samsung.com>
9 *
10 * block_age-based extent cache added by:
11 * Copyright (c) 2022 xiaomi Co., Ltd.
12 * http://www.xiaomi.com/
13 */
14
15 #include <linux/fs.h>
16 #include <linux/f2fs_fs.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include <trace/events/f2fs.h>
21
sanity_check_extent_cache(struct inode * inode)22 bool sanity_check_extent_cache(struct inode *inode)
23 {
24 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
25 struct f2fs_inode_info *fi = F2FS_I(inode);
26 struct extent_info *ei;
27
28 if (!fi->extent_tree[EX_READ])
29 return true;
30
31 ei = &fi->extent_tree[EX_READ]->largest;
32
33 if (ei->len &&
34 (!f2fs_is_valid_blkaddr(sbi, ei->blk,
35 DATA_GENERIC_ENHANCE) ||
36 !f2fs_is_valid_blkaddr(sbi, ei->blk + ei->len - 1,
37 DATA_GENERIC_ENHANCE))) {
38 set_sbi_flag(sbi, SBI_NEED_FSCK);
39 f2fs_warn(sbi, "%s: inode (ino=%lx) extent info [%u, %u, %u] is incorrect, run fsck to fix",
40 __func__, inode->i_ino,
41 ei->blk, ei->fofs, ei->len);
42 return false;
43 }
44 return true;
45 }
46
__set_extent_info(struct extent_info * ei,unsigned int fofs,unsigned int len,block_t blk,bool keep_clen,unsigned long age,unsigned long last_blocks,enum extent_type type)47 static void __set_extent_info(struct extent_info *ei,
48 unsigned int fofs, unsigned int len,
49 block_t blk, bool keep_clen,
50 unsigned long age, unsigned long last_blocks,
51 enum extent_type type)
52 {
53 ei->fofs = fofs;
54 ei->len = len;
55
56 if (type == EX_READ) {
57 ei->blk = blk;
58 if (keep_clen)
59 return;
60 #ifdef CONFIG_F2FS_FS_COMPRESSION
61 ei->c_len = 0;
62 #endif
63 } else if (type == EX_BLOCK_AGE) {
64 ei->age = age;
65 ei->last_blocks = last_blocks;
66 }
67 }
68
__may_read_extent_tree(struct inode * inode)69 static bool __may_read_extent_tree(struct inode *inode)
70 {
71 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
72
73 if (!test_opt(sbi, READ_EXTENT_CACHE))
74 return false;
75 if (is_inode_flag_set(inode, FI_NO_EXTENT))
76 return false;
77 if (is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
78 !f2fs_sb_has_readonly(sbi))
79 return false;
80 return S_ISREG(inode->i_mode);
81 }
82
__may_age_extent_tree(struct inode * inode)83 static bool __may_age_extent_tree(struct inode *inode)
84 {
85 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
86
87 if (!test_opt(sbi, AGE_EXTENT_CACHE))
88 return false;
89 /* don't cache block age info for cold file */
90 if (is_inode_flag_set(inode, FI_COMPRESSED_FILE))
91 return false;
92 if (file_is_cold(inode))
93 return false;
94
95 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
96 }
97
__init_may_extent_tree(struct inode * inode,enum extent_type type)98 static bool __init_may_extent_tree(struct inode *inode, enum extent_type type)
99 {
100 if (type == EX_READ)
101 return __may_read_extent_tree(inode);
102 else if (type == EX_BLOCK_AGE)
103 return __may_age_extent_tree(inode);
104 return false;
105 }
106
__may_extent_tree(struct inode * inode,enum extent_type type)107 static bool __may_extent_tree(struct inode *inode, enum extent_type type)
108 {
109 /*
110 * for recovered files during mount do not create extents
111 * if shrinker is not registered.
112 */
113 if (list_empty(&F2FS_I_SB(inode)->s_list))
114 return false;
115
116 return __init_may_extent_tree(inode, type);
117 }
118
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)119 static void __try_update_largest_extent(struct extent_tree *et,
120 struct extent_node *en)
121 {
122 if (et->type != EX_READ)
123 return;
124 if (en->ei.len <= et->largest.len)
125 return;
126
127 et->largest = en->ei;
128 et->largest_updated = true;
129 }
130
__is_extent_mergeable(struct extent_info * back,struct extent_info * front,enum extent_type type)131 static bool __is_extent_mergeable(struct extent_info *back,
132 struct extent_info *front, enum extent_type type)
133 {
134 if (type == EX_READ) {
135 #ifdef CONFIG_F2FS_FS_COMPRESSION
136 if (back->c_len && back->len != back->c_len)
137 return false;
138 if (front->c_len && front->len != front->c_len)
139 return false;
140 #endif
141 return (back->fofs + back->len == front->fofs &&
142 back->blk + back->len == front->blk);
143 } else if (type == EX_BLOCK_AGE) {
144 return (back->fofs + back->len == front->fofs &&
145 abs(back->age - front->age) <= SAME_AGE_REGION &&
146 abs(back->last_blocks - front->last_blocks) <=
147 SAME_AGE_REGION);
148 }
149 return false;
150 }
151
__is_back_mergeable(struct extent_info * cur,struct extent_info * back,enum extent_type type)152 static bool __is_back_mergeable(struct extent_info *cur,
153 struct extent_info *back, enum extent_type type)
154 {
155 return __is_extent_mergeable(back, cur, type);
156 }
157
__is_front_mergeable(struct extent_info * cur,struct extent_info * front,enum extent_type type)158 static bool __is_front_mergeable(struct extent_info *cur,
159 struct extent_info *front, enum extent_type type)
160 {
161 return __is_extent_mergeable(cur, front, type);
162 }
163
__lookup_rb_tree_fast(struct rb_entry * cached_re,unsigned int ofs)164 static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re,
165 unsigned int ofs)
166 {
167 if (cached_re) {
168 if (cached_re->ofs <= ofs &&
169 cached_re->ofs + cached_re->len > ofs) {
170 return cached_re;
171 }
172 }
173 return NULL;
174 }
175
__lookup_rb_tree_slow(struct rb_root_cached * root,unsigned int ofs)176 static struct rb_entry *__lookup_rb_tree_slow(struct rb_root_cached *root,
177 unsigned int ofs)
178 {
179 struct rb_node *node = root->rb_root.rb_node;
180 struct rb_entry *re;
181
182 while (node) {
183 re = rb_entry(node, struct rb_entry, rb_node);
184
185 if (ofs < re->ofs)
186 node = node->rb_left;
187 else if (ofs >= re->ofs + re->len)
188 node = node->rb_right;
189 else
190 return re;
191 }
192 return NULL;
193 }
194
f2fs_lookup_rb_tree(struct rb_root_cached * root,struct rb_entry * cached_re,unsigned int ofs)195 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
196 struct rb_entry *cached_re, unsigned int ofs)
197 {
198 struct rb_entry *re;
199
200 re = __lookup_rb_tree_fast(cached_re, ofs);
201 if (!re)
202 return __lookup_rb_tree_slow(root, ofs);
203
204 return re;
205 }
206
f2fs_lookup_rb_tree_ext(struct f2fs_sb_info * sbi,struct rb_root_cached * root,struct rb_node ** parent,unsigned long long key,bool * leftmost)207 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
208 struct rb_root_cached *root,
209 struct rb_node **parent,
210 unsigned long long key, bool *leftmost)
211 {
212 struct rb_node **p = &root->rb_root.rb_node;
213 struct rb_entry *re;
214
215 while (*p) {
216 *parent = *p;
217 re = rb_entry(*parent, struct rb_entry, rb_node);
218
219 if (key < re->key) {
220 p = &(*p)->rb_left;
221 } else {
222 p = &(*p)->rb_right;
223 *leftmost = false;
224 }
225 }
226
227 return p;
228 }
229
f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info * sbi,struct rb_root_cached * root,struct rb_node ** parent,unsigned int ofs,bool * leftmost)230 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
231 struct rb_root_cached *root,
232 struct rb_node **parent,
233 unsigned int ofs, bool *leftmost)
234 {
235 struct rb_node **p = &root->rb_root.rb_node;
236 struct rb_entry *re;
237
238 while (*p) {
239 *parent = *p;
240 re = rb_entry(*parent, struct rb_entry, rb_node);
241
242 if (ofs < re->ofs) {
243 p = &(*p)->rb_left;
244 } else if (ofs >= re->ofs + re->len) {
245 p = &(*p)->rb_right;
246 *leftmost = false;
247 } else {
248 f2fs_bug_on(sbi, 1);
249 }
250 }
251
252 return p;
253 }
254
255 /*
256 * lookup rb entry in position of @ofs in rb-tree,
257 * if hit, return the entry, otherwise, return NULL
258 * @prev_ex: extent before ofs
259 * @next_ex: extent after ofs
260 * @insert_p: insert point for new extent at ofs
261 * in order to simplify the insertion after.
262 * tree must stay unchanged between lookup and insertion.
263 */
f2fs_lookup_rb_tree_ret(struct rb_root_cached * root,struct rb_entry * cached_re,unsigned int ofs,struct rb_entry ** prev_entry,struct rb_entry ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent,bool force,bool * leftmost)264 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
265 struct rb_entry *cached_re,
266 unsigned int ofs,
267 struct rb_entry **prev_entry,
268 struct rb_entry **next_entry,
269 struct rb_node ***insert_p,
270 struct rb_node **insert_parent,
271 bool force, bool *leftmost)
272 {
273 struct rb_node **pnode = &root->rb_root.rb_node;
274 struct rb_node *parent = NULL, *tmp_node;
275 struct rb_entry *re = cached_re;
276
277 *insert_p = NULL;
278 *insert_parent = NULL;
279 *prev_entry = NULL;
280 *next_entry = NULL;
281
282 if (RB_EMPTY_ROOT(&root->rb_root))
283 return NULL;
284
285 if (re) {
286 if (re->ofs <= ofs && re->ofs + re->len > ofs)
287 goto lookup_neighbors;
288 }
289
290 if (leftmost)
291 *leftmost = true;
292
293 while (*pnode) {
294 parent = *pnode;
295 re = rb_entry(*pnode, struct rb_entry, rb_node);
296
297 if (ofs < re->ofs) {
298 pnode = &(*pnode)->rb_left;
299 } else if (ofs >= re->ofs + re->len) {
300 pnode = &(*pnode)->rb_right;
301 if (leftmost)
302 *leftmost = false;
303 } else {
304 goto lookup_neighbors;
305 }
306 }
307
308 *insert_p = pnode;
309 *insert_parent = parent;
310
311 re = rb_entry(parent, struct rb_entry, rb_node);
312 tmp_node = parent;
313 if (parent && ofs > re->ofs)
314 tmp_node = rb_next(parent);
315 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
316
317 tmp_node = parent;
318 if (parent && ofs < re->ofs)
319 tmp_node = rb_prev(parent);
320 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
321 return NULL;
322
323 lookup_neighbors:
324 if (ofs == re->ofs || force) {
325 /* lookup prev node for merging backward later */
326 tmp_node = rb_prev(&re->rb_node);
327 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
328 }
329 if (ofs == re->ofs + re->len - 1 || force) {
330 /* lookup next node for merging frontward later */
331 tmp_node = rb_next(&re->rb_node);
332 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
333 }
334 return re;
335 }
336
f2fs_check_rb_tree_consistence(struct f2fs_sb_info * sbi,struct rb_root_cached * root,bool check_key)337 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
338 struct rb_root_cached *root, bool check_key)
339 {
340 #ifdef CONFIG_F2FS_CHECK_FS
341 struct rb_node *cur = rb_first_cached(root), *next;
342 struct rb_entry *cur_re, *next_re;
343
344 if (!cur)
345 return true;
346
347 while (cur) {
348 next = rb_next(cur);
349 if (!next)
350 return true;
351
352 cur_re = rb_entry(cur, struct rb_entry, rb_node);
353 next_re = rb_entry(next, struct rb_entry, rb_node);
354
355 if (check_key) {
356 if (cur_re->key > next_re->key) {
357 f2fs_info(sbi, "inconsistent rbtree, "
358 "cur(%llu) next(%llu)",
359 cur_re->key, next_re->key);
360 return false;
361 }
362 goto next;
363 }
364
365 if (cur_re->ofs + cur_re->len > next_re->ofs) {
366 f2fs_info(sbi, "inconsistent rbtree, cur(%u, %u) next(%u, %u)",
367 cur_re->ofs, cur_re->len,
368 next_re->ofs, next_re->len);
369 return false;
370 }
371 next:
372 cur = next;
373 }
374 #endif
375 return true;
376 }
377
378 static struct kmem_cache *extent_tree_slab;
379 static struct kmem_cache *extent_node_slab;
380
__attach_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_info * ei,struct rb_node * parent,struct rb_node ** p,bool leftmost)381 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
382 struct extent_tree *et, struct extent_info *ei,
383 struct rb_node *parent, struct rb_node **p,
384 bool leftmost)
385 {
386 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
387 struct extent_node *en;
388
389 en = f2fs_kmem_cache_alloc(extent_node_slab, GFP_ATOMIC, false, sbi);
390 if (!en)
391 return NULL;
392
393 en->ei = *ei;
394 INIT_LIST_HEAD(&en->list);
395 en->et = et;
396
397 rb_link_node(&en->rb_node, parent, p);
398 rb_insert_color_cached(&en->rb_node, &et->root, leftmost);
399 atomic_inc(&et->node_cnt);
400 atomic_inc(&eti->total_ext_node);
401 return en;
402 }
403
__detach_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_node * en)404 static void __detach_extent_node(struct f2fs_sb_info *sbi,
405 struct extent_tree *et, struct extent_node *en)
406 {
407 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
408
409 rb_erase_cached(&en->rb_node, &et->root);
410 atomic_dec(&et->node_cnt);
411 atomic_dec(&eti->total_ext_node);
412
413 if (et->cached_en == en)
414 et->cached_en = NULL;
415 kmem_cache_free(extent_node_slab, en);
416 }
417
418 /*
419 * Flow to release an extent_node:
420 * 1. list_del_init
421 * 2. __detach_extent_node
422 * 3. kmem_cache_free.
423 */
__release_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_node * en)424 static void __release_extent_node(struct f2fs_sb_info *sbi,
425 struct extent_tree *et, struct extent_node *en)
426 {
427 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
428
429 spin_lock(&eti->extent_lock);
430 f2fs_bug_on(sbi, list_empty(&en->list));
431 list_del_init(&en->list);
432 spin_unlock(&eti->extent_lock);
433
434 __detach_extent_node(sbi, et, en);
435 }
436
__grab_extent_tree(struct inode * inode,enum extent_type type)437 static struct extent_tree *__grab_extent_tree(struct inode *inode,
438 enum extent_type type)
439 {
440 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
441 struct extent_tree_info *eti = &sbi->extent_tree[type];
442 struct extent_tree *et;
443 nid_t ino = inode->i_ino;
444
445 mutex_lock(&eti->extent_tree_lock);
446 et = radix_tree_lookup(&eti->extent_tree_root, ino);
447 if (!et) {
448 et = f2fs_kmem_cache_alloc(extent_tree_slab,
449 GFP_NOFS, true, NULL);
450 f2fs_radix_tree_insert(&eti->extent_tree_root, ino, et);
451 memset(et, 0, sizeof(struct extent_tree));
452 et->ino = ino;
453 et->type = type;
454 et->root = RB_ROOT_CACHED;
455 et->cached_en = NULL;
456 rwlock_init(&et->lock);
457 INIT_LIST_HEAD(&et->list);
458 atomic_set(&et->node_cnt, 0);
459 atomic_inc(&eti->total_ext_tree);
460 } else {
461 atomic_dec(&eti->total_zombie_tree);
462 list_del_init(&et->list);
463 }
464 mutex_unlock(&eti->extent_tree_lock);
465
466 /* never died until evict_inode */
467 F2FS_I(inode)->extent_tree[type] = et;
468
469 return et;
470 }
471
__free_extent_tree(struct f2fs_sb_info * sbi,struct extent_tree * et)472 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
473 struct extent_tree *et)
474 {
475 struct rb_node *node, *next;
476 struct extent_node *en;
477 unsigned int count = atomic_read(&et->node_cnt);
478
479 node = rb_first_cached(&et->root);
480 while (node) {
481 next = rb_next(node);
482 en = rb_entry(node, struct extent_node, rb_node);
483 __release_extent_node(sbi, et, en);
484 node = next;
485 }
486
487 return count - atomic_read(&et->node_cnt);
488 }
489
__drop_largest_extent(struct extent_tree * et,pgoff_t fofs,unsigned int len)490 static void __drop_largest_extent(struct extent_tree *et,
491 pgoff_t fofs, unsigned int len)
492 {
493 if (fofs < et->largest.fofs + et->largest.len &&
494 fofs + len > et->largest.fofs) {
495 et->largest.len = 0;
496 et->largest_updated = true;
497 }
498 }
499
f2fs_init_read_extent_tree(struct inode * inode,struct page * ipage)500 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage)
501 {
502 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
503 struct extent_tree_info *eti = &sbi->extent_tree[EX_READ];
504 struct f2fs_extent *i_ext = &F2FS_INODE(ipage)->i_ext;
505 struct extent_tree *et;
506 struct extent_node *en;
507 struct extent_info ei;
508
509 if (!__may_extent_tree(inode, EX_READ)) {
510 /* drop largest read extent */
511 if (i_ext && i_ext->len) {
512 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
513 i_ext->len = 0;
514 set_page_dirty(ipage);
515 }
516 goto out;
517 }
518
519 et = __grab_extent_tree(inode, EX_READ);
520
521 if (!i_ext || !i_ext->len)
522 goto out;
523
524 get_read_extent_info(&ei, i_ext);
525
526 write_lock(&et->lock);
527 if (atomic_read(&et->node_cnt))
528 goto unlock_out;
529
530 en = __attach_extent_node(sbi, et, &ei, NULL,
531 &et->root.rb_root.rb_node, true);
532 if (en) {
533 et->largest = en->ei;
534 et->cached_en = en;
535
536 spin_lock(&eti->extent_lock);
537 list_add_tail(&en->list, &eti->extent_list);
538 spin_unlock(&eti->extent_lock);
539 }
540 unlock_out:
541 write_unlock(&et->lock);
542 out:
543 if (!F2FS_I(inode)->extent_tree[EX_READ])
544 set_inode_flag(inode, FI_NO_EXTENT);
545 }
546
f2fs_init_age_extent_tree(struct inode * inode)547 void f2fs_init_age_extent_tree(struct inode *inode)
548 {
549 if (!__init_may_extent_tree(inode, EX_BLOCK_AGE))
550 return;
551 __grab_extent_tree(inode, EX_BLOCK_AGE);
552 }
553
f2fs_init_extent_tree(struct inode * inode)554 void f2fs_init_extent_tree(struct inode *inode)
555 {
556 /* initialize read cache */
557 if (__init_may_extent_tree(inode, EX_READ))
558 __grab_extent_tree(inode, EX_READ);
559
560 /* initialize block age cache */
561 if (__init_may_extent_tree(inode, EX_BLOCK_AGE))
562 __grab_extent_tree(inode, EX_BLOCK_AGE);
563 }
564
__lookup_extent_tree(struct inode * inode,pgoff_t pgofs,struct extent_info * ei,enum extent_type type)565 static bool __lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
566 struct extent_info *ei, enum extent_type type)
567 {
568 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
569 struct extent_tree_info *eti = &sbi->extent_tree[type];
570 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
571 struct extent_node *en;
572 bool ret = false;
573
574 if (!et)
575 return false;
576
577 trace_f2fs_lookup_extent_tree_start(inode, pgofs, type);
578
579 read_lock(&et->lock);
580
581 if (type == EX_READ &&
582 et->largest.fofs <= pgofs &&
583 et->largest.fofs + et->largest.len > pgofs) {
584 *ei = et->largest;
585 ret = true;
586 stat_inc_largest_node_hit(sbi);
587 goto out;
588 }
589
590 en = (struct extent_node *)f2fs_lookup_rb_tree(&et->root,
591 (struct rb_entry *)et->cached_en, pgofs);
592 if (!en)
593 goto out;
594
595 if (en == et->cached_en)
596 stat_inc_cached_node_hit(sbi, type);
597 else
598 stat_inc_rbtree_node_hit(sbi, type);
599
600 *ei = en->ei;
601 spin_lock(&eti->extent_lock);
602 if (!list_empty(&en->list)) {
603 list_move_tail(&en->list, &eti->extent_list);
604 et->cached_en = en;
605 }
606 spin_unlock(&eti->extent_lock);
607 ret = true;
608 out:
609 stat_inc_total_hit(sbi, type);
610 read_unlock(&et->lock);
611
612 if (type == EX_READ)
613 trace_f2fs_lookup_read_extent_tree_end(inode, pgofs, ei);
614 else if (type == EX_BLOCK_AGE)
615 trace_f2fs_lookup_age_extent_tree_end(inode, pgofs, ei);
616 return ret;
617 }
618
__try_merge_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_info * ei,struct extent_node * prev_ex,struct extent_node * next_ex)619 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
620 struct extent_tree *et, struct extent_info *ei,
621 struct extent_node *prev_ex,
622 struct extent_node *next_ex)
623 {
624 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
625 struct extent_node *en = NULL;
626
627 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei, et->type)) {
628 prev_ex->ei.len += ei->len;
629 ei = &prev_ex->ei;
630 en = prev_ex;
631 }
632
633 if (next_ex && __is_front_mergeable(ei, &next_ex->ei, et->type)) {
634 next_ex->ei.fofs = ei->fofs;
635 next_ex->ei.len += ei->len;
636 if (et->type == EX_READ)
637 next_ex->ei.blk = ei->blk;
638 if (en)
639 __release_extent_node(sbi, et, prev_ex);
640
641 en = next_ex;
642 }
643
644 if (!en)
645 return NULL;
646
647 __try_update_largest_extent(et, en);
648
649 spin_lock(&eti->extent_lock);
650 if (!list_empty(&en->list)) {
651 list_move_tail(&en->list, &eti->extent_list);
652 et->cached_en = en;
653 }
654 spin_unlock(&eti->extent_lock);
655 return en;
656 }
657
__insert_extent_tree(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_info * ei,struct rb_node ** insert_p,struct rb_node * insert_parent,bool leftmost)658 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
659 struct extent_tree *et, struct extent_info *ei,
660 struct rb_node **insert_p,
661 struct rb_node *insert_parent,
662 bool leftmost)
663 {
664 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
665 struct rb_node **p;
666 struct rb_node *parent = NULL;
667 struct extent_node *en = NULL;
668
669 if (insert_p && insert_parent) {
670 parent = insert_parent;
671 p = insert_p;
672 goto do_insert;
673 }
674
675 leftmost = true;
676
677 p = f2fs_lookup_rb_tree_for_insert(sbi, &et->root, &parent,
678 ei->fofs, &leftmost);
679 do_insert:
680 en = __attach_extent_node(sbi, et, ei, parent, p, leftmost);
681 if (!en)
682 return NULL;
683
684 __try_update_largest_extent(et, en);
685
686 /* update in global extent list */
687 spin_lock(&eti->extent_lock);
688 list_add_tail(&en->list, &eti->extent_list);
689 et->cached_en = en;
690 spin_unlock(&eti->extent_lock);
691 return en;
692 }
693
__update_extent_tree_range(struct inode * inode,struct extent_info * tei,enum extent_type type)694 static void __update_extent_tree_range(struct inode *inode,
695 struct extent_info *tei, enum extent_type type)
696 {
697 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
698 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
699 struct extent_node *en = NULL, *en1 = NULL;
700 struct extent_node *prev_en = NULL, *next_en = NULL;
701 struct extent_info ei, dei, prev;
702 struct rb_node **insert_p = NULL, *insert_parent = NULL;
703 unsigned int fofs = tei->fofs, len = tei->len;
704 unsigned int end = fofs + len;
705 bool updated = false;
706 bool leftmost = false;
707
708 if (!et)
709 return;
710
711 if (type == EX_READ)
712 trace_f2fs_update_read_extent_tree_range(inode, fofs, len,
713 tei->blk, 0);
714 else if (type == EX_BLOCK_AGE)
715 trace_f2fs_update_age_extent_tree_range(inode, fofs, len,
716 tei->age, tei->last_blocks);
717
718 write_lock(&et->lock);
719
720 if (type == EX_READ) {
721 if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
722 write_unlock(&et->lock);
723 return;
724 }
725
726 prev = et->largest;
727 dei.len = 0;
728
729 /*
730 * drop largest extent before lookup, in case it's already
731 * been shrunk from extent tree
732 */
733 __drop_largest_extent(et, fofs, len);
734 }
735
736 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
737 en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
738 (struct rb_entry *)et->cached_en, fofs,
739 (struct rb_entry **)&prev_en,
740 (struct rb_entry **)&next_en,
741 &insert_p, &insert_parent, false,
742 &leftmost);
743 if (!en)
744 en = next_en;
745
746 /* 2. invalidate all extent nodes in range [fofs, fofs + len - 1] */
747 while (en && en->ei.fofs < end) {
748 unsigned int org_end;
749 int parts = 0; /* # of parts current extent split into */
750
751 next_en = en1 = NULL;
752
753 dei = en->ei;
754 org_end = dei.fofs + dei.len;
755 f2fs_bug_on(sbi, fofs >= org_end);
756
757 if (fofs > dei.fofs && (type != EX_READ ||
758 fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN)) {
759 en->ei.len = fofs - en->ei.fofs;
760 prev_en = en;
761 parts = 1;
762 }
763
764 if (end < org_end && (type != EX_READ ||
765 org_end - end >= F2FS_MIN_EXTENT_LEN)) {
766 if (parts) {
767 __set_extent_info(&ei,
768 end, org_end - end,
769 end - dei.fofs + dei.blk, false,
770 dei.age, dei.last_blocks,
771 type);
772 en1 = __insert_extent_tree(sbi, et, &ei,
773 NULL, NULL, true);
774 next_en = en1;
775 } else {
776 __set_extent_info(&en->ei,
777 end, en->ei.len - (end - dei.fofs),
778 en->ei.blk + (end - dei.fofs), true,
779 dei.age, dei.last_blocks,
780 type);
781 next_en = en;
782 }
783 parts++;
784 }
785
786 if (!next_en) {
787 struct rb_node *node = rb_next(&en->rb_node);
788
789 next_en = rb_entry_safe(node, struct extent_node,
790 rb_node);
791 }
792
793 if (parts)
794 __try_update_largest_extent(et, en);
795 else
796 __release_extent_node(sbi, et, en);
797
798 /*
799 * if original extent is split into zero or two parts, extent
800 * tree has been altered by deletion or insertion, therefore
801 * invalidate pointers regard to tree.
802 */
803 if (parts != 1) {
804 insert_p = NULL;
805 insert_parent = NULL;
806 }
807 en = next_en;
808 }
809
810 if (type == EX_BLOCK_AGE)
811 goto update_age_extent_cache;
812
813 /* 3. update extent in read extent cache */
814 BUG_ON(type != EX_READ);
815
816 if (tei->blk) {
817 __set_extent_info(&ei, fofs, len, tei->blk, false,
818 0, 0, EX_READ);
819 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
820 __insert_extent_tree(sbi, et, &ei,
821 insert_p, insert_parent, leftmost);
822
823 /* give up extent_cache, if split and small updates happen */
824 if (dei.len >= 1 &&
825 prev.len < F2FS_MIN_EXTENT_LEN &&
826 et->largest.len < F2FS_MIN_EXTENT_LEN) {
827 et->largest.len = 0;
828 et->largest_updated = true;
829 set_inode_flag(inode, FI_NO_EXTENT);
830 }
831 }
832
833 if (is_inode_flag_set(inode, FI_NO_EXTENT))
834 __free_extent_tree(sbi, et);
835
836 if (et->largest_updated) {
837 et->largest_updated = false;
838 updated = true;
839 }
840 goto out_read_extent_cache;
841 update_age_extent_cache:
842 if (!tei->last_blocks)
843 goto out_read_extent_cache;
844
845 __set_extent_info(&ei, fofs, len, 0, false,
846 tei->age, tei->last_blocks, EX_BLOCK_AGE);
847 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
848 __insert_extent_tree(sbi, et, &ei,
849 insert_p, insert_parent, leftmost);
850 out_read_extent_cache:
851 write_unlock(&et->lock);
852
853 if (updated)
854 f2fs_mark_inode_dirty_sync(inode, true);
855 }
856
857 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)858 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
859 pgoff_t fofs, block_t blkaddr, unsigned int llen,
860 unsigned int c_len)
861 {
862 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
863 struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
864 struct extent_node *en = NULL;
865 struct extent_node *prev_en = NULL, *next_en = NULL;
866 struct extent_info ei;
867 struct rb_node **insert_p = NULL, *insert_parent = NULL;
868 bool leftmost = false;
869
870 trace_f2fs_update_read_extent_tree_range(inode, fofs, llen,
871 blkaddr, c_len);
872
873 /* it is safe here to check FI_NO_EXTENT w/o et->lock in ro image */
874 if (is_inode_flag_set(inode, FI_NO_EXTENT))
875 return;
876
877 write_lock(&et->lock);
878
879 en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
880 (struct rb_entry *)et->cached_en, fofs,
881 (struct rb_entry **)&prev_en,
882 (struct rb_entry **)&next_en,
883 &insert_p, &insert_parent, false,
884 &leftmost);
885 if (en)
886 goto unlock_out;
887
888 __set_extent_info(&ei, fofs, llen, blkaddr, true, 0, 0, EX_READ);
889 ei.c_len = c_len;
890
891 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
892 __insert_extent_tree(sbi, et, &ei,
893 insert_p, insert_parent, leftmost);
894 unlock_out:
895 write_unlock(&et->lock);
896 }
897 #endif
898
__calculate_block_age(struct f2fs_sb_info * sbi,unsigned long long new,unsigned long long old)899 static unsigned long long __calculate_block_age(struct f2fs_sb_info *sbi,
900 unsigned long long new,
901 unsigned long long old)
902 {
903 unsigned int rem_old, rem_new;
904 unsigned long long res;
905 unsigned int weight = sbi->last_age_weight;
906
907 res = div_u64_rem(new, 100, &rem_new) * (100 - weight)
908 + div_u64_rem(old, 100, &rem_old) * weight;
909
910 if (rem_new)
911 res += rem_new * (100 - weight) / 100;
912 if (rem_old)
913 res += rem_old * weight / 100;
914
915 return res;
916 }
917
918 /* This returns a new age and allocated blocks in ei */
__get_new_block_age(struct inode * inode,struct extent_info * ei,block_t blkaddr)919 static int __get_new_block_age(struct inode *inode, struct extent_info *ei,
920 block_t blkaddr)
921 {
922 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
923 loff_t f_size = i_size_read(inode);
924 unsigned long long cur_blocks =
925 atomic64_read(&sbi->allocated_data_blocks);
926 struct extent_info tei = *ei; /* only fofs and len are valid */
927
928 /*
929 * When I/O is not aligned to a PAGE_SIZE, update will happen to the last
930 * file block even in seq write. So don't record age for newly last file
931 * block here.
932 */
933 if ((f_size >> PAGE_SHIFT) == ei->fofs && f_size & (PAGE_SIZE - 1) &&
934 blkaddr == NEW_ADDR)
935 return -EINVAL;
936
937 if (__lookup_extent_tree(inode, ei->fofs, &tei, EX_BLOCK_AGE)) {
938 unsigned long long cur_age;
939
940 if (cur_blocks >= tei.last_blocks)
941 cur_age = cur_blocks - tei.last_blocks;
942 else
943 /* allocated_data_blocks overflow */
944 cur_age = ULLONG_MAX - tei.last_blocks + cur_blocks;
945
946 if (tei.age)
947 ei->age = __calculate_block_age(sbi, cur_age, tei.age);
948 else
949 ei->age = cur_age;
950 ei->last_blocks = cur_blocks;
951 WARN_ON(ei->age > cur_blocks);
952 return 0;
953 }
954
955 f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
956
957 /* the data block was allocated for the first time */
958 if (blkaddr == NEW_ADDR)
959 goto out;
960
961 if (__is_valid_data_blkaddr(blkaddr) &&
962 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
963 f2fs_bug_on(sbi, 1);
964 return -EINVAL;
965 }
966 out:
967 /*
968 * init block age with zero, this can happen when the block age extent
969 * was reclaimed due to memory constraint or system reboot
970 */
971 ei->age = 0;
972 ei->last_blocks = cur_blocks;
973 return 0;
974 }
975
__update_extent_cache(struct dnode_of_data * dn,enum extent_type type)976 static void __update_extent_cache(struct dnode_of_data *dn, enum extent_type type)
977 {
978 struct extent_info ei = {};
979
980 if (!__may_extent_tree(dn->inode, type))
981 return;
982
983 ei.fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
984 dn->ofs_in_node;
985 ei.len = 1;
986
987 if (type == EX_READ) {
988 if (dn->data_blkaddr == NEW_ADDR)
989 ei.blk = NULL_ADDR;
990 else
991 ei.blk = dn->data_blkaddr;
992 } else if (type == EX_BLOCK_AGE) {
993 if (__get_new_block_age(dn->inode, &ei, dn->data_blkaddr))
994 return;
995 }
996 __update_extent_tree_range(dn->inode, &ei, type);
997 }
998
__shrink_extent_tree(struct f2fs_sb_info * sbi,int nr_shrink,enum extent_type type)999 static unsigned int __shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink,
1000 enum extent_type type)
1001 {
1002 struct extent_tree_info *eti = &sbi->extent_tree[type];
1003 struct extent_tree *et, *next;
1004 struct extent_node *en;
1005 unsigned int node_cnt = 0, tree_cnt = 0;
1006 int remained;
1007
1008 if (!atomic_read(&eti->total_zombie_tree))
1009 goto free_node;
1010
1011 if (!mutex_trylock(&eti->extent_tree_lock))
1012 goto out;
1013
1014 /* 1. remove unreferenced extent tree */
1015 list_for_each_entry_safe(et, next, &eti->zombie_list, list) {
1016 if (atomic_read(&et->node_cnt)) {
1017 write_lock(&et->lock);
1018 node_cnt += __free_extent_tree(sbi, et);
1019 write_unlock(&et->lock);
1020 }
1021 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
1022 list_del_init(&et->list);
1023 radix_tree_delete(&eti->extent_tree_root, et->ino);
1024 kmem_cache_free(extent_tree_slab, et);
1025 atomic_dec(&eti->total_ext_tree);
1026 atomic_dec(&eti->total_zombie_tree);
1027 tree_cnt++;
1028
1029 if (node_cnt + tree_cnt >= nr_shrink)
1030 goto unlock_out;
1031 cond_resched();
1032 }
1033 mutex_unlock(&eti->extent_tree_lock);
1034
1035 free_node:
1036 /* 2. remove LRU extent entries */
1037 if (!mutex_trylock(&eti->extent_tree_lock))
1038 goto out;
1039
1040 remained = nr_shrink - (node_cnt + tree_cnt);
1041
1042 spin_lock(&eti->extent_lock);
1043 for (; remained > 0; remained--) {
1044 if (list_empty(&eti->extent_list))
1045 break;
1046 en = list_first_entry(&eti->extent_list,
1047 struct extent_node, list);
1048 et = en->et;
1049 if (!write_trylock(&et->lock)) {
1050 /* refresh this extent node's position in extent list */
1051 list_move_tail(&en->list, &eti->extent_list);
1052 continue;
1053 }
1054
1055 list_del_init(&en->list);
1056 spin_unlock(&eti->extent_lock);
1057
1058 __detach_extent_node(sbi, et, en);
1059
1060 write_unlock(&et->lock);
1061 node_cnt++;
1062 spin_lock(&eti->extent_lock);
1063 }
1064 spin_unlock(&eti->extent_lock);
1065
1066 unlock_out:
1067 mutex_unlock(&eti->extent_tree_lock);
1068 out:
1069 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt, type);
1070
1071 return node_cnt + tree_cnt;
1072 }
1073
1074 /* read extent cache operations */
f2fs_lookup_read_extent_cache(struct inode * inode,pgoff_t pgofs,struct extent_info * ei)1075 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
1076 struct extent_info *ei)
1077 {
1078 if (!__may_extent_tree(inode, EX_READ))
1079 return false;
1080
1081 return __lookup_extent_tree(inode, pgofs, ei, EX_READ);
1082 }
1083
f2fs_lookup_read_extent_cache_block(struct inode * inode,pgoff_t index,block_t * blkaddr)1084 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
1085 block_t *blkaddr)
1086 {
1087 struct extent_info ei = {};
1088
1089 if (!f2fs_lookup_read_extent_cache(inode, index, &ei))
1090 return false;
1091 *blkaddr = ei.blk + index - ei.fofs;
1092 return true;
1093 }
1094
f2fs_update_read_extent_cache(struct dnode_of_data * dn)1095 void f2fs_update_read_extent_cache(struct dnode_of_data *dn)
1096 {
1097 return __update_extent_cache(dn, EX_READ);
1098 }
1099
f2fs_update_read_extent_cache_range(struct dnode_of_data * dn,pgoff_t fofs,block_t blkaddr,unsigned int len)1100 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
1101 pgoff_t fofs, block_t blkaddr, unsigned int len)
1102 {
1103 struct extent_info ei = {
1104 .fofs = fofs,
1105 .len = len,
1106 .blk = blkaddr,
1107 };
1108
1109 if (!__may_extent_tree(dn->inode, EX_READ))
1110 return;
1111
1112 __update_extent_tree_range(dn->inode, &ei, EX_READ);
1113 }
1114
f2fs_shrink_read_extent_tree(struct f2fs_sb_info * sbi,int nr_shrink)1115 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
1116 {
1117 if (!test_opt(sbi, READ_EXTENT_CACHE))
1118 return 0;
1119
1120 return __shrink_extent_tree(sbi, nr_shrink, EX_READ);
1121 }
1122
1123 /* block age extent cache operations */
f2fs_lookup_age_extent_cache(struct inode * inode,pgoff_t pgofs,struct extent_info * ei)1124 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
1125 struct extent_info *ei)
1126 {
1127 if (!__may_extent_tree(inode, EX_BLOCK_AGE))
1128 return false;
1129
1130 return __lookup_extent_tree(inode, pgofs, ei, EX_BLOCK_AGE);
1131 }
1132
f2fs_update_age_extent_cache(struct dnode_of_data * dn)1133 void f2fs_update_age_extent_cache(struct dnode_of_data *dn)
1134 {
1135 return __update_extent_cache(dn, EX_BLOCK_AGE);
1136 }
1137
f2fs_update_age_extent_cache_range(struct dnode_of_data * dn,pgoff_t fofs,unsigned int len)1138 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
1139 pgoff_t fofs, unsigned int len)
1140 {
1141 struct extent_info ei = {
1142 .fofs = fofs,
1143 .len = len,
1144 };
1145
1146 if (!__may_extent_tree(dn->inode, EX_BLOCK_AGE))
1147 return;
1148
1149 __update_extent_tree_range(dn->inode, &ei, EX_BLOCK_AGE);
1150 }
1151
f2fs_shrink_age_extent_tree(struct f2fs_sb_info * sbi,int nr_shrink)1152 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
1153 {
1154 if (!test_opt(sbi, AGE_EXTENT_CACHE))
1155 return 0;
1156
1157 return __shrink_extent_tree(sbi, nr_shrink, EX_BLOCK_AGE);
1158 }
1159
__destroy_extent_node(struct inode * inode,enum extent_type type)1160 static unsigned int __destroy_extent_node(struct inode *inode,
1161 enum extent_type type)
1162 {
1163 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1164 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1165 unsigned int node_cnt = 0;
1166
1167 if (!et || !atomic_read(&et->node_cnt))
1168 return 0;
1169
1170 write_lock(&et->lock);
1171 node_cnt = __free_extent_tree(sbi, et);
1172 write_unlock(&et->lock);
1173
1174 return node_cnt;
1175 }
1176
f2fs_destroy_extent_node(struct inode * inode)1177 void f2fs_destroy_extent_node(struct inode *inode)
1178 {
1179 __destroy_extent_node(inode, EX_READ);
1180 __destroy_extent_node(inode, EX_BLOCK_AGE);
1181 }
1182
__drop_extent_tree(struct inode * inode,enum extent_type type)1183 static void __drop_extent_tree(struct inode *inode, enum extent_type type)
1184 {
1185 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1186 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1187 bool updated = false;
1188
1189 if (!__may_extent_tree(inode, type))
1190 return;
1191
1192 write_lock(&et->lock);
1193 __free_extent_tree(sbi, et);
1194 if (type == EX_READ) {
1195 set_inode_flag(inode, FI_NO_EXTENT);
1196 if (et->largest.len) {
1197 et->largest.len = 0;
1198 updated = true;
1199 }
1200 }
1201 write_unlock(&et->lock);
1202 if (updated)
1203 f2fs_mark_inode_dirty_sync(inode, true);
1204 }
1205
f2fs_drop_extent_tree(struct inode * inode)1206 void f2fs_drop_extent_tree(struct inode *inode)
1207 {
1208 __drop_extent_tree(inode, EX_READ);
1209 __drop_extent_tree(inode, EX_BLOCK_AGE);
1210 }
1211
__destroy_extent_tree(struct inode * inode,enum extent_type type)1212 static void __destroy_extent_tree(struct inode *inode, enum extent_type type)
1213 {
1214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1215 struct extent_tree_info *eti = &sbi->extent_tree[type];
1216 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1217 unsigned int node_cnt = 0;
1218
1219 if (!et)
1220 return;
1221
1222 if (inode->i_nlink && !is_bad_inode(inode) &&
1223 atomic_read(&et->node_cnt)) {
1224 mutex_lock(&eti->extent_tree_lock);
1225 list_add_tail(&et->list, &eti->zombie_list);
1226 atomic_inc(&eti->total_zombie_tree);
1227 mutex_unlock(&eti->extent_tree_lock);
1228 return;
1229 }
1230
1231 /* free all extent info belong to this extent tree */
1232 node_cnt = __destroy_extent_node(inode, type);
1233
1234 /* delete extent tree entry in radix tree */
1235 mutex_lock(&eti->extent_tree_lock);
1236 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
1237 radix_tree_delete(&eti->extent_tree_root, inode->i_ino);
1238 kmem_cache_free(extent_tree_slab, et);
1239 atomic_dec(&eti->total_ext_tree);
1240 mutex_unlock(&eti->extent_tree_lock);
1241
1242 F2FS_I(inode)->extent_tree[type] = NULL;
1243
1244 trace_f2fs_destroy_extent_tree(inode, node_cnt, type);
1245 }
1246
f2fs_destroy_extent_tree(struct inode * inode)1247 void f2fs_destroy_extent_tree(struct inode *inode)
1248 {
1249 __destroy_extent_tree(inode, EX_READ);
1250 __destroy_extent_tree(inode, EX_BLOCK_AGE);
1251 }
1252
__init_extent_tree_info(struct extent_tree_info * eti)1253 static void __init_extent_tree_info(struct extent_tree_info *eti)
1254 {
1255 INIT_RADIX_TREE(&eti->extent_tree_root, GFP_NOIO);
1256 mutex_init(&eti->extent_tree_lock);
1257 INIT_LIST_HEAD(&eti->extent_list);
1258 spin_lock_init(&eti->extent_lock);
1259 atomic_set(&eti->total_ext_tree, 0);
1260 INIT_LIST_HEAD(&eti->zombie_list);
1261 atomic_set(&eti->total_zombie_tree, 0);
1262 atomic_set(&eti->total_ext_node, 0);
1263 }
1264
f2fs_init_extent_cache_info(struct f2fs_sb_info * sbi)1265 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi)
1266 {
1267 __init_extent_tree_info(&sbi->extent_tree[EX_READ]);
1268 __init_extent_tree_info(&sbi->extent_tree[EX_BLOCK_AGE]);
1269
1270 /* initialize for block age extents */
1271 atomic64_set(&sbi->allocated_data_blocks, 0);
1272 sbi->hot_data_age_threshold = DEF_HOT_DATA_AGE_THRESHOLD;
1273 sbi->warm_data_age_threshold = DEF_WARM_DATA_AGE_THRESHOLD;
1274 sbi->last_age_weight = LAST_AGE_WEIGHT;
1275 }
1276
f2fs_create_extent_cache(void)1277 int __init f2fs_create_extent_cache(void)
1278 {
1279 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1280 sizeof(struct extent_tree));
1281 if (!extent_tree_slab)
1282 return -ENOMEM;
1283 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1284 sizeof(struct extent_node));
1285 if (!extent_node_slab) {
1286 kmem_cache_destroy(extent_tree_slab);
1287 return -ENOMEM;
1288 }
1289 return 0;
1290 }
1291
f2fs_destroy_extent_cache(void)1292 void f2fs_destroy_extent_cache(void)
1293 {
1294 kmem_cache_destroy(extent_node_slab);
1295 kmem_cache_destroy(extent_tree_slab);
1296 }
1297