1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/checkpoint.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io,unsigned char reason)29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
30 unsigned char reason)
31 {
32 f2fs_build_fault_attr(sbi, 0, 0);
33 set_ckpt_flags(sbi, CP_ERROR_FLAG);
34 if (!end_io) {
35 f2fs_flush_merged_writes(sbi);
36
37 f2fs_handle_stop(sbi, reason);
38 }
39 }
40
41 /*
42 * We guarantee no failure on the returned page.
43 */
f2fs_grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)44 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
45 {
46 struct address_space *mapping = META_MAPPING(sbi);
47 struct page *page;
48 repeat:
49 page = f2fs_grab_cache_page(mapping, index, false);
50 if (!page) {
51 cond_resched();
52 goto repeat;
53 }
54 f2fs_wait_on_page_writeback(page, META, true, true);
55 if (!PageUptodate(page))
56 SetPageUptodate(page);
57 return page;
58 }
59
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)60 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
61 bool is_meta)
62 {
63 struct address_space *mapping = META_MAPPING(sbi);
64 struct page *page;
65 struct f2fs_io_info fio = {
66 .sbi = sbi,
67 .type = META,
68 .op = REQ_OP_READ,
69 .op_flags = REQ_META | REQ_PRIO,
70 .old_blkaddr = index,
71 .new_blkaddr = index,
72 .encrypted_page = NULL,
73 .is_por = !is_meta ? 1 : 0,
74 };
75 int err;
76
77 if (unlikely(!is_meta))
78 fio.op_flags &= ~REQ_META;
79 repeat:
80 page = f2fs_grab_cache_page(mapping, index, false);
81 if (!page) {
82 cond_resched();
83 goto repeat;
84 }
85 if (PageUptodate(page))
86 goto out;
87
88 fio.page = page;
89
90 err = f2fs_submit_page_bio(&fio);
91 if (err) {
92 f2fs_put_page(page, 1);
93 return ERR_PTR(err);
94 }
95
96 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
97
98 lock_page(page);
99 if (unlikely(page->mapping != mapping)) {
100 f2fs_put_page(page, 1);
101 goto repeat;
102 }
103
104 if (unlikely(!PageUptodate(page))) {
105 f2fs_handle_page_eio(sbi, page->index, META);
106 f2fs_put_page(page, 1);
107 return ERR_PTR(-EIO);
108 }
109 out:
110 return page;
111 }
112
f2fs_get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)113 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
114 {
115 return __get_meta_page(sbi, index, true);
116 }
117
f2fs_get_meta_page_retry(struct f2fs_sb_info * sbi,pgoff_t index)118 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
119 {
120 struct page *page;
121 int count = 0;
122
123 retry:
124 page = __get_meta_page(sbi, index, true);
125 if (IS_ERR(page)) {
126 if (PTR_ERR(page) == -EIO &&
127 ++count <= DEFAULT_RETRY_IO_COUNT)
128 goto retry;
129 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
130 }
131 return page;
132 }
133
134 /* for POR only */
f2fs_get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)135 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
136 {
137 return __get_meta_page(sbi, index, false);
138 }
139
__is_bitmap_valid(struct f2fs_sb_info * sbi,block_t blkaddr,int type)140 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
141 int type)
142 {
143 struct seg_entry *se;
144 unsigned int segno, offset;
145 bool exist;
146
147 if (type == DATA_GENERIC)
148 return true;
149
150 segno = GET_SEGNO(sbi, blkaddr);
151 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
152 se = get_seg_entry(sbi, segno);
153
154 exist = f2fs_test_bit(offset, se->cur_valid_map);
155 if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) {
156 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
157 blkaddr, exist);
158 set_sbi_flag(sbi, SBI_NEED_FSCK);
159 return exist;
160 }
161
162 if (!exist && type == DATA_GENERIC_ENHANCE) {
163 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
164 blkaddr, exist);
165 set_sbi_flag(sbi, SBI_NEED_FSCK);
166 dump_stack();
167 }
168 return exist;
169 }
170
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)171 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
172 block_t blkaddr, int type)
173 {
174 if (time_to_inject(sbi, FAULT_BLKADDR))
175 return false;
176
177 switch (type) {
178 case META_NAT:
179 break;
180 case META_SIT:
181 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
182 return false;
183 break;
184 case META_SSA:
185 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
186 blkaddr < SM_I(sbi)->ssa_blkaddr))
187 return false;
188 break;
189 case META_CP:
190 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
191 blkaddr < __start_cp_addr(sbi)))
192 return false;
193 break;
194 case META_POR:
195 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
196 blkaddr < MAIN_BLKADDR(sbi)))
197 return false;
198 break;
199 case DATA_GENERIC:
200 case DATA_GENERIC_ENHANCE:
201 case DATA_GENERIC_ENHANCE_READ:
202 case DATA_GENERIC_ENHANCE_UPDATE:
203 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
204 blkaddr < MAIN_BLKADDR(sbi))) {
205 f2fs_warn(sbi, "access invalid blkaddr:%u",
206 blkaddr);
207 set_sbi_flag(sbi, SBI_NEED_FSCK);
208 dump_stack();
209 return false;
210 } else {
211 return __is_bitmap_valid(sbi, blkaddr, type);
212 }
213 break;
214 case META_GENERIC:
215 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
216 blkaddr >= MAIN_BLKADDR(sbi)))
217 return false;
218 break;
219 default:
220 BUG();
221 }
222
223 return true;
224 }
225
226 /*
227 * Readahead CP/NAT/SIT/SSA/POR pages
228 */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)229 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
230 int type, bool sync)
231 {
232 struct page *page;
233 block_t blkno = start;
234 struct f2fs_io_info fio = {
235 .sbi = sbi,
236 .type = META,
237 .op = REQ_OP_READ,
238 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
239 .encrypted_page = NULL,
240 .in_list = 0,
241 .is_por = (type == META_POR) ? 1 : 0,
242 };
243 struct blk_plug plug;
244 int err;
245
246 if (unlikely(type == META_POR))
247 fio.op_flags &= ~REQ_META;
248
249 blk_start_plug(&plug);
250 for (; nrpages-- > 0; blkno++) {
251
252 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
253 goto out;
254
255 switch (type) {
256 case META_NAT:
257 if (unlikely(blkno >=
258 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
259 blkno = 0;
260 /* get nat block addr */
261 fio.new_blkaddr = current_nat_addr(sbi,
262 blkno * NAT_ENTRY_PER_BLOCK);
263 break;
264 case META_SIT:
265 if (unlikely(blkno >= TOTAL_SEGS(sbi)))
266 goto out;
267 /* get sit block addr */
268 fio.new_blkaddr = current_sit_addr(sbi,
269 blkno * SIT_ENTRY_PER_BLOCK);
270 break;
271 case META_SSA:
272 case META_CP:
273 case META_POR:
274 fio.new_blkaddr = blkno;
275 break;
276 default:
277 BUG();
278 }
279
280 page = f2fs_grab_cache_page(META_MAPPING(sbi),
281 fio.new_blkaddr, false);
282 if (!page)
283 continue;
284 if (PageUptodate(page)) {
285 f2fs_put_page(page, 1);
286 continue;
287 }
288
289 fio.page = page;
290 err = f2fs_submit_page_bio(&fio);
291 f2fs_put_page(page, err ? 1 : 0);
292
293 if (!err)
294 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
295 F2FS_BLKSIZE);
296 }
297 out:
298 blk_finish_plug(&plug);
299 return blkno - start;
300 }
301
f2fs_ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index,unsigned int ra_blocks)302 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
303 unsigned int ra_blocks)
304 {
305 struct page *page;
306 bool readahead = false;
307
308 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
309 return;
310
311 page = find_get_page(META_MAPPING(sbi), index);
312 if (!page || !PageUptodate(page))
313 readahead = true;
314 f2fs_put_page(page, 0);
315
316 if (readahead)
317 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
318 }
319
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)320 static int __f2fs_write_meta_page(struct page *page,
321 struct writeback_control *wbc,
322 enum iostat_type io_type)
323 {
324 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
325
326 trace_f2fs_writepage(page, META);
327
328 if (unlikely(f2fs_cp_error(sbi)))
329 goto redirty_out;
330 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
331 goto redirty_out;
332 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
333 goto redirty_out;
334
335 f2fs_do_write_meta_page(sbi, page, io_type);
336 dec_page_count(sbi, F2FS_DIRTY_META);
337
338 if (wbc->for_reclaim)
339 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
340
341 unlock_page(page);
342
343 if (unlikely(f2fs_cp_error(sbi)))
344 f2fs_submit_merged_write(sbi, META);
345
346 return 0;
347
348 redirty_out:
349 redirty_page_for_writepage(wbc, page);
350 return AOP_WRITEPAGE_ACTIVATE;
351 }
352
f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)353 static int f2fs_write_meta_page(struct page *page,
354 struct writeback_control *wbc)
355 {
356 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
357 }
358
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)359 static int f2fs_write_meta_pages(struct address_space *mapping,
360 struct writeback_control *wbc)
361 {
362 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
363 long diff, written;
364
365 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
366 goto skip_write;
367
368 /* collect a number of dirty meta pages and write together */
369 if (wbc->sync_mode != WB_SYNC_ALL &&
370 get_pages(sbi, F2FS_DIRTY_META) <
371 nr_pages_to_skip(sbi, META))
372 goto skip_write;
373
374 /* if locked failed, cp will flush dirty pages instead */
375 if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
376 goto skip_write;
377
378 trace_f2fs_writepages(mapping->host, wbc, META);
379 diff = nr_pages_to_write(sbi, META, wbc);
380 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
381 f2fs_up_write(&sbi->cp_global_sem);
382 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
383 return 0;
384
385 skip_write:
386 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
387 trace_f2fs_writepages(mapping->host, wbc, META);
388 return 0;
389 }
390
f2fs_sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)391 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
392 long nr_to_write, enum iostat_type io_type)
393 {
394 struct address_space *mapping = META_MAPPING(sbi);
395 pgoff_t index = 0, prev = ULONG_MAX;
396 struct folio_batch fbatch;
397 long nwritten = 0;
398 int nr_folios;
399 struct writeback_control wbc = {
400 .for_reclaim = 0,
401 };
402 struct blk_plug plug;
403
404 folio_batch_init(&fbatch);
405
406 blk_start_plug(&plug);
407
408 while ((nr_folios = filemap_get_folios_tag(mapping, &index,
409 (pgoff_t)-1,
410 PAGECACHE_TAG_DIRTY, &fbatch))) {
411 int i;
412
413 for (i = 0; i < nr_folios; i++) {
414 struct folio *folio = fbatch.folios[i];
415
416 if (nr_to_write != LONG_MAX && i != 0 &&
417 folio->index != prev +
418 folio_nr_pages(fbatch.folios[i-1])) {
419 folio_batch_release(&fbatch);
420 goto stop;
421 }
422
423 folio_lock(folio);
424
425 if (unlikely(folio->mapping != mapping)) {
426 continue_unlock:
427 folio_unlock(folio);
428 continue;
429 }
430 if (!folio_test_dirty(folio)) {
431 /* someone wrote it for us */
432 goto continue_unlock;
433 }
434
435 f2fs_wait_on_page_writeback(&folio->page, META,
436 true, true);
437
438 if (!folio_clear_dirty_for_io(folio))
439 goto continue_unlock;
440
441 if (__f2fs_write_meta_page(&folio->page, &wbc,
442 io_type)) {
443 folio_unlock(folio);
444 break;
445 }
446 nwritten += folio_nr_pages(folio);
447 prev = folio->index;
448 if (unlikely(nwritten >= nr_to_write))
449 break;
450 }
451 folio_batch_release(&fbatch);
452 cond_resched();
453 }
454 stop:
455 if (nwritten)
456 f2fs_submit_merged_write(sbi, type);
457
458 blk_finish_plug(&plug);
459
460 return nwritten;
461 }
462
f2fs_dirty_meta_folio(struct address_space * mapping,struct folio * folio)463 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
464 struct folio *folio)
465 {
466 trace_f2fs_set_page_dirty(&folio->page, META);
467
468 if (!folio_test_uptodate(folio))
469 folio_mark_uptodate(folio);
470 if (filemap_dirty_folio(mapping, folio)) {
471 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
472 set_page_private_reference(&folio->page);
473 return true;
474 }
475 return false;
476 }
477
478 const struct address_space_operations f2fs_meta_aops = {
479 .writepage = f2fs_write_meta_page,
480 .writepages = f2fs_write_meta_pages,
481 .dirty_folio = f2fs_dirty_meta_folio,
482 .invalidate_folio = f2fs_invalidate_folio,
483 .release_folio = f2fs_release_folio,
484 .migrate_folio = filemap_migrate_folio,
485 };
486
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)487 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
488 unsigned int devidx, int type)
489 {
490 struct inode_management *im = &sbi->im[type];
491 struct ino_entry *e = NULL, *new = NULL;
492
493 if (type == FLUSH_INO) {
494 rcu_read_lock();
495 e = radix_tree_lookup(&im->ino_root, ino);
496 rcu_read_unlock();
497 }
498
499 retry:
500 if (!e)
501 new = f2fs_kmem_cache_alloc(ino_entry_slab,
502 GFP_NOFS, true, NULL);
503
504 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
505
506 spin_lock(&im->ino_lock);
507 e = radix_tree_lookup(&im->ino_root, ino);
508 if (!e) {
509 if (!new) {
510 spin_unlock(&im->ino_lock);
511 goto retry;
512 }
513 e = new;
514 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
515 f2fs_bug_on(sbi, 1);
516
517 memset(e, 0, sizeof(struct ino_entry));
518 e->ino = ino;
519
520 list_add_tail(&e->list, &im->ino_list);
521 if (type != ORPHAN_INO)
522 im->ino_num++;
523 }
524
525 if (type == FLUSH_INO)
526 f2fs_set_bit(devidx, (char *)&e->dirty_device);
527
528 spin_unlock(&im->ino_lock);
529 radix_tree_preload_end();
530
531 if (new && e != new)
532 kmem_cache_free(ino_entry_slab, new);
533 }
534
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)535 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
536 {
537 struct inode_management *im = &sbi->im[type];
538 struct ino_entry *e;
539
540 spin_lock(&im->ino_lock);
541 e = radix_tree_lookup(&im->ino_root, ino);
542 if (e) {
543 list_del(&e->list);
544 radix_tree_delete(&im->ino_root, ino);
545 im->ino_num--;
546 spin_unlock(&im->ino_lock);
547 kmem_cache_free(ino_entry_slab, e);
548 return;
549 }
550 spin_unlock(&im->ino_lock);
551 }
552
f2fs_add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)553 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
554 {
555 /* add new dirty ino entry into list */
556 __add_ino_entry(sbi, ino, 0, type);
557 }
558
f2fs_remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)559 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
560 {
561 /* remove dirty ino entry from list */
562 __remove_ino_entry(sbi, ino, type);
563 }
564
565 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
f2fs_exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)566 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
567 {
568 struct inode_management *im = &sbi->im[mode];
569 struct ino_entry *e;
570
571 spin_lock(&im->ino_lock);
572 e = radix_tree_lookup(&im->ino_root, ino);
573 spin_unlock(&im->ino_lock);
574 return e ? true : false;
575 }
576
f2fs_release_ino_entry(struct f2fs_sb_info * sbi,bool all)577 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
578 {
579 struct ino_entry *e, *tmp;
580 int i;
581
582 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
583 struct inode_management *im = &sbi->im[i];
584
585 spin_lock(&im->ino_lock);
586 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
587 list_del(&e->list);
588 radix_tree_delete(&im->ino_root, e->ino);
589 kmem_cache_free(ino_entry_slab, e);
590 im->ino_num--;
591 }
592 spin_unlock(&im->ino_lock);
593 }
594 }
595
f2fs_set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)596 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
597 unsigned int devidx, int type)
598 {
599 __add_ino_entry(sbi, ino, devidx, type);
600 }
601
f2fs_is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)602 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
603 unsigned int devidx, int type)
604 {
605 struct inode_management *im = &sbi->im[type];
606 struct ino_entry *e;
607 bool is_dirty = false;
608
609 spin_lock(&im->ino_lock);
610 e = radix_tree_lookup(&im->ino_root, ino);
611 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
612 is_dirty = true;
613 spin_unlock(&im->ino_lock);
614 return is_dirty;
615 }
616
f2fs_acquire_orphan_inode(struct f2fs_sb_info * sbi)617 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
618 {
619 struct inode_management *im = &sbi->im[ORPHAN_INO];
620 int err = 0;
621
622 spin_lock(&im->ino_lock);
623
624 if (time_to_inject(sbi, FAULT_ORPHAN)) {
625 spin_unlock(&im->ino_lock);
626 return -ENOSPC;
627 }
628
629 if (unlikely(im->ino_num >= sbi->max_orphans))
630 err = -ENOSPC;
631 else
632 im->ino_num++;
633 spin_unlock(&im->ino_lock);
634
635 return err;
636 }
637
f2fs_release_orphan_inode(struct f2fs_sb_info * sbi)638 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
639 {
640 struct inode_management *im = &sbi->im[ORPHAN_INO];
641
642 spin_lock(&im->ino_lock);
643 f2fs_bug_on(sbi, im->ino_num == 0);
644 im->ino_num--;
645 spin_unlock(&im->ino_lock);
646 }
647
f2fs_add_orphan_inode(struct inode * inode)648 void f2fs_add_orphan_inode(struct inode *inode)
649 {
650 /* add new orphan ino entry into list */
651 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
652 f2fs_update_inode_page(inode);
653 }
654
f2fs_remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)655 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
656 {
657 /* remove orphan entry from orphan list */
658 __remove_ino_entry(sbi, ino, ORPHAN_INO);
659 }
660
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)661 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
662 {
663 struct inode *inode;
664 struct node_info ni;
665 int err;
666
667 inode = f2fs_iget_retry(sbi->sb, ino);
668 if (IS_ERR(inode)) {
669 /*
670 * there should be a bug that we can't find the entry
671 * to orphan inode.
672 */
673 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
674 return PTR_ERR(inode);
675 }
676
677 err = f2fs_dquot_initialize(inode);
678 if (err) {
679 iput(inode);
680 goto err_out;
681 }
682
683 clear_nlink(inode);
684
685 /* truncate all the data during iput */
686 iput(inode);
687
688 err = f2fs_get_node_info(sbi, ino, &ni, false);
689 if (err)
690 goto err_out;
691
692 /* ENOMEM was fully retried in f2fs_evict_inode. */
693 if (ni.blk_addr != NULL_ADDR) {
694 err = -EIO;
695 goto err_out;
696 }
697 return 0;
698
699 err_out:
700 set_sbi_flag(sbi, SBI_NEED_FSCK);
701 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
702 __func__, ino);
703 return err;
704 }
705
f2fs_recover_orphan_inodes(struct f2fs_sb_info * sbi)706 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
707 {
708 block_t start_blk, orphan_blocks, i, j;
709 unsigned int s_flags = sbi->sb->s_flags;
710 int err = 0;
711 #ifdef CONFIG_QUOTA
712 int quota_enabled;
713 #endif
714
715 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
716 return 0;
717
718 if (bdev_read_only(sbi->sb->s_bdev)) {
719 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
720 return 0;
721 }
722
723 if (s_flags & SB_RDONLY) {
724 f2fs_info(sbi, "orphan cleanup on readonly fs");
725 sbi->sb->s_flags &= ~SB_RDONLY;
726 }
727
728 #ifdef CONFIG_QUOTA
729 /*
730 * Turn on quotas which were not enabled for read-only mounts if
731 * filesystem has quota feature, so that they are updated correctly.
732 */
733 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
734 #endif
735
736 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
737 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
738
739 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
740
741 for (i = 0; i < orphan_blocks; i++) {
742 struct page *page;
743 struct f2fs_orphan_block *orphan_blk;
744
745 page = f2fs_get_meta_page(sbi, start_blk + i);
746 if (IS_ERR(page)) {
747 err = PTR_ERR(page);
748 goto out;
749 }
750
751 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
752 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
753 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
754
755 err = recover_orphan_inode(sbi, ino);
756 if (err) {
757 f2fs_put_page(page, 1);
758 goto out;
759 }
760 }
761 f2fs_put_page(page, 1);
762 }
763 /* clear Orphan Flag */
764 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
765 out:
766 set_sbi_flag(sbi, SBI_IS_RECOVERED);
767
768 #ifdef CONFIG_QUOTA
769 /* Turn quotas off */
770 if (quota_enabled)
771 f2fs_quota_off_umount(sbi->sb);
772 #endif
773 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
774
775 return err;
776 }
777
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)778 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
779 {
780 struct list_head *head;
781 struct f2fs_orphan_block *orphan_blk = NULL;
782 unsigned int nentries = 0;
783 unsigned short index = 1;
784 unsigned short orphan_blocks;
785 struct page *page = NULL;
786 struct ino_entry *orphan = NULL;
787 struct inode_management *im = &sbi->im[ORPHAN_INO];
788
789 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
790
791 /*
792 * we don't need to do spin_lock(&im->ino_lock) here, since all the
793 * orphan inode operations are covered under f2fs_lock_op().
794 * And, spin_lock should be avoided due to page operations below.
795 */
796 head = &im->ino_list;
797
798 /* loop for each orphan inode entry and write them in journal block */
799 list_for_each_entry(orphan, head, list) {
800 if (!page) {
801 page = f2fs_grab_meta_page(sbi, start_blk++);
802 orphan_blk =
803 (struct f2fs_orphan_block *)page_address(page);
804 memset(orphan_blk, 0, sizeof(*orphan_blk));
805 }
806
807 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
808
809 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
810 /*
811 * an orphan block is full of 1020 entries,
812 * then we need to flush current orphan blocks
813 * and bring another one in memory
814 */
815 orphan_blk->blk_addr = cpu_to_le16(index);
816 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
817 orphan_blk->entry_count = cpu_to_le32(nentries);
818 set_page_dirty(page);
819 f2fs_put_page(page, 1);
820 index++;
821 nentries = 0;
822 page = NULL;
823 }
824 }
825
826 if (page) {
827 orphan_blk->blk_addr = cpu_to_le16(index);
828 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
829 orphan_blk->entry_count = cpu_to_le32(nentries);
830 set_page_dirty(page);
831 f2fs_put_page(page, 1);
832 }
833 }
834
f2fs_checkpoint_chksum(struct f2fs_sb_info * sbi,struct f2fs_checkpoint * ckpt)835 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
836 struct f2fs_checkpoint *ckpt)
837 {
838 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
839 __u32 chksum;
840
841 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
842 if (chksum_ofs < CP_CHKSUM_OFFSET) {
843 chksum_ofs += sizeof(chksum);
844 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
845 F2FS_BLKSIZE - chksum_ofs);
846 }
847 return chksum;
848 }
849
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)850 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
851 struct f2fs_checkpoint **cp_block, struct page **cp_page,
852 unsigned long long *version)
853 {
854 size_t crc_offset = 0;
855 __u32 crc;
856
857 *cp_page = f2fs_get_meta_page(sbi, cp_addr);
858 if (IS_ERR(*cp_page))
859 return PTR_ERR(*cp_page);
860
861 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
862
863 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
864 if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
865 crc_offset > CP_CHKSUM_OFFSET) {
866 f2fs_put_page(*cp_page, 1);
867 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
868 return -EINVAL;
869 }
870
871 crc = f2fs_checkpoint_chksum(sbi, *cp_block);
872 if (crc != cur_cp_crc(*cp_block)) {
873 f2fs_put_page(*cp_page, 1);
874 f2fs_warn(sbi, "invalid crc value");
875 return -EINVAL;
876 }
877
878 *version = cur_cp_version(*cp_block);
879 return 0;
880 }
881
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)882 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
883 block_t cp_addr, unsigned long long *version)
884 {
885 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
886 struct f2fs_checkpoint *cp_block = NULL;
887 unsigned long long cur_version = 0, pre_version = 0;
888 unsigned int cp_blocks;
889 int err;
890
891 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
892 &cp_page_1, version);
893 if (err)
894 return NULL;
895
896 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
897
898 if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
899 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
900 le32_to_cpu(cp_block->cp_pack_total_block_count));
901 goto invalid_cp;
902 }
903 pre_version = *version;
904
905 cp_addr += cp_blocks - 1;
906 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
907 &cp_page_2, version);
908 if (err)
909 goto invalid_cp;
910 cur_version = *version;
911
912 if (cur_version == pre_version) {
913 *version = cur_version;
914 f2fs_put_page(cp_page_2, 1);
915 return cp_page_1;
916 }
917 f2fs_put_page(cp_page_2, 1);
918 invalid_cp:
919 f2fs_put_page(cp_page_1, 1);
920 return NULL;
921 }
922
f2fs_get_valid_checkpoint(struct f2fs_sb_info * sbi)923 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
924 {
925 struct f2fs_checkpoint *cp_block;
926 struct f2fs_super_block *fsb = sbi->raw_super;
927 struct page *cp1, *cp2, *cur_page;
928 unsigned long blk_size = sbi->blocksize;
929 unsigned long long cp1_version = 0, cp2_version = 0;
930 unsigned long long cp_start_blk_no;
931 unsigned int cp_blks = 1 + __cp_payload(sbi);
932 block_t cp_blk_no;
933 int i;
934 int err;
935
936 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
937 GFP_KERNEL);
938 if (!sbi->ckpt)
939 return -ENOMEM;
940 /*
941 * Finding out valid cp block involves read both
942 * sets( cp pack 1 and cp pack 2)
943 */
944 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
945 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
946
947 /* The second checkpoint pack should start at the next segment */
948 cp_start_blk_no += ((unsigned long long)1) <<
949 le32_to_cpu(fsb->log_blocks_per_seg);
950 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
951
952 if (cp1 && cp2) {
953 if (ver_after(cp2_version, cp1_version))
954 cur_page = cp2;
955 else
956 cur_page = cp1;
957 } else if (cp1) {
958 cur_page = cp1;
959 } else if (cp2) {
960 cur_page = cp2;
961 } else {
962 err = -EFSCORRUPTED;
963 goto fail_no_cp;
964 }
965
966 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
967 memcpy(sbi->ckpt, cp_block, blk_size);
968
969 if (cur_page == cp1)
970 sbi->cur_cp_pack = 1;
971 else
972 sbi->cur_cp_pack = 2;
973
974 /* Sanity checking of checkpoint */
975 if (f2fs_sanity_check_ckpt(sbi)) {
976 err = -EFSCORRUPTED;
977 goto free_fail_no_cp;
978 }
979
980 if (cp_blks <= 1)
981 goto done;
982
983 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
984 if (cur_page == cp2)
985 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
986
987 for (i = 1; i < cp_blks; i++) {
988 void *sit_bitmap_ptr;
989 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
990
991 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
992 if (IS_ERR(cur_page)) {
993 err = PTR_ERR(cur_page);
994 goto free_fail_no_cp;
995 }
996 sit_bitmap_ptr = page_address(cur_page);
997 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
998 f2fs_put_page(cur_page, 1);
999 }
1000 done:
1001 f2fs_put_page(cp1, 1);
1002 f2fs_put_page(cp2, 1);
1003 return 0;
1004
1005 free_fail_no_cp:
1006 f2fs_put_page(cp1, 1);
1007 f2fs_put_page(cp2, 1);
1008 fail_no_cp:
1009 kvfree(sbi->ckpt);
1010 return err;
1011 }
1012
__add_dirty_inode(struct inode * inode,enum inode_type type)1013 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1014 {
1015 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1016 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1017
1018 if (is_inode_flag_set(inode, flag))
1019 return;
1020
1021 set_inode_flag(inode, flag);
1022 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
1023 stat_inc_dirty_inode(sbi, type);
1024 }
1025
__remove_dirty_inode(struct inode * inode,enum inode_type type)1026 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1027 {
1028 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1029
1030 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1031 return;
1032
1033 list_del_init(&F2FS_I(inode)->dirty_list);
1034 clear_inode_flag(inode, flag);
1035 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1036 }
1037
f2fs_update_dirty_folio(struct inode * inode,struct folio * folio)1038 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1039 {
1040 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1041 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1042
1043 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1044 !S_ISLNK(inode->i_mode))
1045 return;
1046
1047 spin_lock(&sbi->inode_lock[type]);
1048 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1049 __add_dirty_inode(inode, type);
1050 inode_inc_dirty_pages(inode);
1051 spin_unlock(&sbi->inode_lock[type]);
1052
1053 set_page_private_reference(&folio->page);
1054 }
1055
f2fs_remove_dirty_inode(struct inode * inode)1056 void f2fs_remove_dirty_inode(struct inode *inode)
1057 {
1058 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1059 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1060
1061 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1062 !S_ISLNK(inode->i_mode))
1063 return;
1064
1065 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1066 return;
1067
1068 spin_lock(&sbi->inode_lock[type]);
1069 __remove_dirty_inode(inode, type);
1070 spin_unlock(&sbi->inode_lock[type]);
1071 }
1072
f2fs_sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type,bool from_cp)1073 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1074 bool from_cp)
1075 {
1076 struct list_head *head;
1077 struct inode *inode;
1078 struct f2fs_inode_info *fi;
1079 bool is_dir = (type == DIR_INODE);
1080 unsigned long ino = 0;
1081
1082 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1083 get_pages(sbi, is_dir ?
1084 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1085 retry:
1086 if (unlikely(f2fs_cp_error(sbi))) {
1087 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1088 get_pages(sbi, is_dir ?
1089 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1090 return -EIO;
1091 }
1092
1093 spin_lock(&sbi->inode_lock[type]);
1094
1095 head = &sbi->inode_list[type];
1096 if (list_empty(head)) {
1097 spin_unlock(&sbi->inode_lock[type]);
1098 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1099 get_pages(sbi, is_dir ?
1100 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1101 return 0;
1102 }
1103 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1104 inode = igrab(&fi->vfs_inode);
1105 spin_unlock(&sbi->inode_lock[type]);
1106 if (inode) {
1107 unsigned long cur_ino = inode->i_ino;
1108
1109 if (from_cp)
1110 F2FS_I(inode)->cp_task = current;
1111 F2FS_I(inode)->wb_task = current;
1112
1113 filemap_fdatawrite(inode->i_mapping);
1114
1115 F2FS_I(inode)->wb_task = NULL;
1116 if (from_cp)
1117 F2FS_I(inode)->cp_task = NULL;
1118
1119 iput(inode);
1120 /* We need to give cpu to another writers. */
1121 if (ino == cur_ino)
1122 cond_resched();
1123 else
1124 ino = cur_ino;
1125 } else {
1126 /*
1127 * We should submit bio, since it exists several
1128 * writebacking dentry pages in the freeing inode.
1129 */
1130 f2fs_submit_merged_write(sbi, DATA);
1131 cond_resched();
1132 }
1133 goto retry;
1134 }
1135
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1136 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1137 {
1138 struct list_head *head = &sbi->inode_list[DIRTY_META];
1139 struct inode *inode;
1140 struct f2fs_inode_info *fi;
1141 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1142
1143 while (total--) {
1144 if (unlikely(f2fs_cp_error(sbi)))
1145 return -EIO;
1146
1147 spin_lock(&sbi->inode_lock[DIRTY_META]);
1148 if (list_empty(head)) {
1149 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1150 return 0;
1151 }
1152 fi = list_first_entry(head, struct f2fs_inode_info,
1153 gdirty_list);
1154 inode = igrab(&fi->vfs_inode);
1155 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1156 if (inode) {
1157 sync_inode_metadata(inode, 0);
1158
1159 /* it's on eviction */
1160 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1161 f2fs_update_inode_page(inode);
1162 iput(inode);
1163 }
1164 }
1165 return 0;
1166 }
1167
__prepare_cp_block(struct f2fs_sb_info * sbi)1168 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1169 {
1170 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1171 struct f2fs_nm_info *nm_i = NM_I(sbi);
1172 nid_t last_nid = nm_i->next_scan_nid;
1173
1174 next_free_nid(sbi, &last_nid);
1175 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1176 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1177 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1178 ckpt->next_free_nid = cpu_to_le32(last_nid);
1179 }
1180
__need_flush_quota(struct f2fs_sb_info * sbi)1181 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1182 {
1183 bool ret = false;
1184
1185 if (!is_journalled_quota(sbi))
1186 return false;
1187
1188 if (!f2fs_down_write_trylock(&sbi->quota_sem))
1189 return true;
1190 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1191 ret = false;
1192 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1193 ret = false;
1194 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1195 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1196 ret = true;
1197 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1198 ret = true;
1199 }
1200 f2fs_up_write(&sbi->quota_sem);
1201 return ret;
1202 }
1203
1204 /*
1205 * Freeze all the FS-operations for checkpoint.
1206 */
block_operations(struct f2fs_sb_info * sbi)1207 static int block_operations(struct f2fs_sb_info *sbi)
1208 {
1209 struct writeback_control wbc = {
1210 .sync_mode = WB_SYNC_ALL,
1211 .nr_to_write = LONG_MAX,
1212 .for_reclaim = 0,
1213 };
1214 int err = 0, cnt = 0;
1215
1216 /*
1217 * Let's flush inline_data in dirty node pages.
1218 */
1219 f2fs_flush_inline_data(sbi);
1220
1221 retry_flush_quotas:
1222 f2fs_lock_all(sbi);
1223 if (__need_flush_quota(sbi)) {
1224 int locked;
1225
1226 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1227 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1228 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1229 goto retry_flush_dents;
1230 }
1231 f2fs_unlock_all(sbi);
1232
1233 /* only failed during mount/umount/freeze/quotactl */
1234 locked = down_read_trylock(&sbi->sb->s_umount);
1235 f2fs_quota_sync(sbi->sb, -1);
1236 if (locked)
1237 up_read(&sbi->sb->s_umount);
1238 cond_resched();
1239 goto retry_flush_quotas;
1240 }
1241
1242 retry_flush_dents:
1243 /* write all the dirty dentry pages */
1244 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1245 f2fs_unlock_all(sbi);
1246 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1247 if (err)
1248 return err;
1249 cond_resched();
1250 goto retry_flush_quotas;
1251 }
1252
1253 /*
1254 * POR: we should ensure that there are no dirty node pages
1255 * until finishing nat/sit flush. inode->i_blocks can be updated.
1256 */
1257 f2fs_down_write(&sbi->node_change);
1258
1259 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1260 f2fs_up_write(&sbi->node_change);
1261 f2fs_unlock_all(sbi);
1262 err = f2fs_sync_inode_meta(sbi);
1263 if (err)
1264 return err;
1265 cond_resched();
1266 goto retry_flush_quotas;
1267 }
1268
1269 retry_flush_nodes:
1270 f2fs_down_write(&sbi->node_write);
1271
1272 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1273 f2fs_up_write(&sbi->node_write);
1274 atomic_inc(&sbi->wb_sync_req[NODE]);
1275 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1276 atomic_dec(&sbi->wb_sync_req[NODE]);
1277 if (err) {
1278 f2fs_up_write(&sbi->node_change);
1279 f2fs_unlock_all(sbi);
1280 return err;
1281 }
1282 cond_resched();
1283 goto retry_flush_nodes;
1284 }
1285
1286 /*
1287 * sbi->node_change is used only for AIO write_begin path which produces
1288 * dirty node blocks and some checkpoint values by block allocation.
1289 */
1290 __prepare_cp_block(sbi);
1291 f2fs_up_write(&sbi->node_change);
1292 return err;
1293 }
1294
unblock_operations(struct f2fs_sb_info * sbi)1295 static void unblock_operations(struct f2fs_sb_info *sbi)
1296 {
1297 f2fs_up_write(&sbi->node_write);
1298 f2fs_unlock_all(sbi);
1299 }
1300
f2fs_wait_on_all_pages(struct f2fs_sb_info * sbi,int type)1301 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1302 {
1303 DEFINE_WAIT(wait);
1304
1305 for (;;) {
1306 if (!get_pages(sbi, type))
1307 break;
1308
1309 if (unlikely(f2fs_cp_error(sbi)))
1310 break;
1311
1312 if (type == F2FS_DIRTY_META)
1313 f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1314 FS_CP_META_IO);
1315 else if (type == F2FS_WB_CP_DATA)
1316 f2fs_submit_merged_write(sbi, DATA);
1317
1318 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1319 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1320 }
1321 finish_wait(&sbi->cp_wait, &wait);
1322 }
1323
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1324 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1325 {
1326 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1327 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1328 unsigned long flags;
1329
1330 if (cpc->reason & CP_UMOUNT) {
1331 if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1332 NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
1333 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1334 f2fs_notice(sbi, "Disable nat_bits due to no space");
1335 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1336 f2fs_nat_bitmap_enabled(sbi)) {
1337 f2fs_enable_nat_bits(sbi);
1338 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1339 f2fs_notice(sbi, "Rebuild and enable nat_bits");
1340 }
1341 }
1342
1343 spin_lock_irqsave(&sbi->cp_lock, flags);
1344
1345 if (cpc->reason & CP_TRIMMED)
1346 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1347 else
1348 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1349
1350 if (cpc->reason & CP_UMOUNT)
1351 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1352 else
1353 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1354
1355 if (cpc->reason & CP_FASTBOOT)
1356 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1357 else
1358 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1359
1360 if (orphan_num)
1361 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1362 else
1363 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1364
1365 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1366 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1367
1368 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1369 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1370 else
1371 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1372
1373 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1374 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1375 else
1376 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1377
1378 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1379 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1380 else
1381 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1382
1383 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1384 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1385 else
1386 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1387
1388 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1389 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1390
1391 /* set this flag to activate crc|cp_ver for recovery */
1392 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1393 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1394
1395 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1396 }
1397
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1398 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1399 void *src, block_t blk_addr)
1400 {
1401 struct writeback_control wbc = {
1402 .for_reclaim = 0,
1403 };
1404
1405 /*
1406 * filemap_get_folios_tag and lock_page again will take
1407 * some extra time. Therefore, f2fs_update_meta_pages and
1408 * f2fs_sync_meta_pages are combined in this function.
1409 */
1410 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1411 int err;
1412
1413 f2fs_wait_on_page_writeback(page, META, true, true);
1414
1415 memcpy(page_address(page), src, PAGE_SIZE);
1416
1417 set_page_dirty(page);
1418 if (unlikely(!clear_page_dirty_for_io(page)))
1419 f2fs_bug_on(sbi, 1);
1420
1421 /* writeout cp pack 2 page */
1422 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1423 if (unlikely(err && f2fs_cp_error(sbi))) {
1424 f2fs_put_page(page, 1);
1425 return;
1426 }
1427
1428 f2fs_bug_on(sbi, err);
1429 f2fs_put_page(page, 0);
1430
1431 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1432 f2fs_submit_merged_write(sbi, META_FLUSH);
1433 }
1434
get_sectors_written(struct block_device * bdev)1435 static inline u64 get_sectors_written(struct block_device *bdev)
1436 {
1437 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1438 }
1439
f2fs_get_sectors_written(struct f2fs_sb_info * sbi)1440 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1441 {
1442 if (f2fs_is_multi_device(sbi)) {
1443 u64 sectors = 0;
1444 int i;
1445
1446 for (i = 0; i < sbi->s_ndevs; i++)
1447 sectors += get_sectors_written(FDEV(i).bdev);
1448
1449 return sectors;
1450 }
1451
1452 return get_sectors_written(sbi->sb->s_bdev);
1453 }
1454
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1455 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1456 {
1457 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1458 struct f2fs_nm_info *nm_i = NM_I(sbi);
1459 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1460 block_t start_blk;
1461 unsigned int data_sum_blocks, orphan_blocks;
1462 __u32 crc32 = 0;
1463 int i;
1464 int cp_payload_blks = __cp_payload(sbi);
1465 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1466 u64 kbytes_written;
1467 int err;
1468
1469 /* Flush all the NAT/SIT pages */
1470 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1471
1472 /* start to update checkpoint, cp ver is already updated previously */
1473 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1474 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1475 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1476 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE);
1477
1478 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno);
1479 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1480 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type;
1481 }
1482 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1483 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA);
1484
1485 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno);
1486 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1487 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type;
1488 }
1489
1490 /* 2 cp + n data seg summary + orphan inode blocks */
1491 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1492 spin_lock_irqsave(&sbi->cp_lock, flags);
1493 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1494 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1495 else
1496 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1497 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1498
1499 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1500 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1501 orphan_blocks);
1502
1503 if (__remain_node_summaries(cpc->reason))
1504 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1505 cp_payload_blks + data_sum_blocks +
1506 orphan_blocks + NR_CURSEG_NODE_TYPE);
1507 else
1508 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1509 cp_payload_blks + data_sum_blocks +
1510 orphan_blocks);
1511
1512 /* update ckpt flag for checkpoint */
1513 update_ckpt_flags(sbi, cpc);
1514
1515 /* update SIT/NAT bitmap */
1516 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1517 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1518
1519 crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1520 *((__le32 *)((unsigned char *)ckpt +
1521 le32_to_cpu(ckpt->checksum_offset)))
1522 = cpu_to_le32(crc32);
1523
1524 start_blk = __start_cp_next_addr(sbi);
1525
1526 /* write nat bits */
1527 if ((cpc->reason & CP_UMOUNT) &&
1528 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1529 __u64 cp_ver = cur_cp_version(ckpt);
1530 block_t blk;
1531
1532 cp_ver |= ((__u64)crc32 << 32);
1533 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1534
1535 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1536 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1537 f2fs_update_meta_page(sbi, nm_i->nat_bits +
1538 (i << F2FS_BLKSIZE_BITS), blk + i);
1539 }
1540
1541 /* write out checkpoint buffer at block 0 */
1542 f2fs_update_meta_page(sbi, ckpt, start_blk++);
1543
1544 for (i = 1; i < 1 + cp_payload_blks; i++)
1545 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1546 start_blk++);
1547
1548 if (orphan_num) {
1549 write_orphan_inodes(sbi, start_blk);
1550 start_blk += orphan_blocks;
1551 }
1552
1553 f2fs_write_data_summaries(sbi, start_blk);
1554 start_blk += data_sum_blocks;
1555
1556 /* Record write statistics in the hot node summary */
1557 kbytes_written = sbi->kbytes_written;
1558 kbytes_written += (f2fs_get_sectors_written(sbi) -
1559 sbi->sectors_written_start) >> 1;
1560 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1561
1562 if (__remain_node_summaries(cpc->reason)) {
1563 f2fs_write_node_summaries(sbi, start_blk);
1564 start_blk += NR_CURSEG_NODE_TYPE;
1565 }
1566
1567 /* update user_block_counts */
1568 sbi->last_valid_block_count = sbi->total_valid_block_count;
1569 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1570 percpu_counter_set(&sbi->rf_node_block_count, 0);
1571
1572 /* Here, we have one bio having CP pack except cp pack 2 page */
1573 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1574 /* Wait for all dirty meta pages to be submitted for IO */
1575 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1576
1577 /* wait for previous submitted meta pages writeback */
1578 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1579
1580 /* flush all device cache */
1581 err = f2fs_flush_device_cache(sbi);
1582 if (err)
1583 return err;
1584
1585 /* barrier and flush checkpoint cp pack 2 page if it can */
1586 commit_checkpoint(sbi, ckpt, start_blk);
1587 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1588
1589 /*
1590 * invalidate intermediate page cache borrowed from meta inode which are
1591 * used for migration of encrypted, verity or compressed inode's blocks.
1592 */
1593 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1594 f2fs_sb_has_compression(sbi))
1595 invalidate_mapping_pages(META_MAPPING(sbi),
1596 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1597
1598 f2fs_release_ino_entry(sbi, false);
1599
1600 f2fs_reset_fsync_node_info(sbi);
1601
1602 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1603 clear_sbi_flag(sbi, SBI_NEED_CP);
1604 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1605
1606 spin_lock(&sbi->stat_lock);
1607 sbi->unusable_block_count = 0;
1608 spin_unlock(&sbi->stat_lock);
1609
1610 __set_cp_next_pack(sbi);
1611
1612 /*
1613 * redirty superblock if metadata like node page or inode cache is
1614 * updated during writing checkpoint.
1615 */
1616 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1617 get_pages(sbi, F2FS_DIRTY_IMETA))
1618 set_sbi_flag(sbi, SBI_IS_DIRTY);
1619
1620 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1621
1622 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1623 }
1624
f2fs_write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1625 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1626 {
1627 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1628 unsigned long long ckpt_ver;
1629 int err = 0;
1630
1631 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1632 return -EROFS;
1633
1634 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1635 if (cpc->reason != CP_PAUSE)
1636 return 0;
1637 f2fs_warn(sbi, "Start checkpoint disabled!");
1638 }
1639 if (cpc->reason != CP_RESIZE)
1640 f2fs_down_write(&sbi->cp_global_sem);
1641
1642 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1643 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1644 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1645 goto out;
1646 if (unlikely(f2fs_cp_error(sbi))) {
1647 err = -EIO;
1648 goto out;
1649 }
1650
1651 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1652
1653 err = block_operations(sbi);
1654 if (err)
1655 goto out;
1656
1657 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1658
1659 f2fs_flush_merged_writes(sbi);
1660
1661 /* this is the case of multiple fstrims without any changes */
1662 if (cpc->reason & CP_DISCARD) {
1663 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1664 unblock_operations(sbi);
1665 goto out;
1666 }
1667
1668 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1669 SIT_I(sbi)->dirty_sentries == 0 &&
1670 prefree_segments(sbi) == 0) {
1671 f2fs_flush_sit_entries(sbi, cpc);
1672 f2fs_clear_prefree_segments(sbi, cpc);
1673 unblock_operations(sbi);
1674 goto out;
1675 }
1676 }
1677
1678 /*
1679 * update checkpoint pack index
1680 * Increase the version number so that
1681 * SIT entries and seg summaries are written at correct place
1682 */
1683 ckpt_ver = cur_cp_version(ckpt);
1684 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1685
1686 /* write cached NAT/SIT entries to NAT/SIT area */
1687 err = f2fs_flush_nat_entries(sbi, cpc);
1688 if (err) {
1689 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1690 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1691 goto stop;
1692 }
1693
1694 f2fs_flush_sit_entries(sbi, cpc);
1695
1696 /* save inmem log status */
1697 f2fs_save_inmem_curseg(sbi);
1698
1699 err = do_checkpoint(sbi, cpc);
1700 if (err) {
1701 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1702 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1703 f2fs_release_discard_addrs(sbi);
1704 } else {
1705 f2fs_clear_prefree_segments(sbi, cpc);
1706 }
1707
1708 f2fs_restore_inmem_curseg(sbi);
1709 stop:
1710 unblock_operations(sbi);
1711 stat_inc_cp_count(sbi->stat_info);
1712
1713 if (cpc->reason & CP_RECOVERY)
1714 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1715
1716 /* update CP_TIME to trigger checkpoint periodically */
1717 f2fs_update_time(sbi, CP_TIME);
1718 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1719 out:
1720 if (cpc->reason != CP_RESIZE)
1721 f2fs_up_write(&sbi->cp_global_sem);
1722 return err;
1723 }
1724
f2fs_init_ino_entry_info(struct f2fs_sb_info * sbi)1725 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1726 {
1727 int i;
1728
1729 for (i = 0; i < MAX_INO_ENTRY; i++) {
1730 struct inode_management *im = &sbi->im[i];
1731
1732 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1733 spin_lock_init(&im->ino_lock);
1734 INIT_LIST_HEAD(&im->ino_list);
1735 im->ino_num = 0;
1736 }
1737
1738 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1739 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1740 F2FS_ORPHANS_PER_BLOCK;
1741 }
1742
f2fs_create_checkpoint_caches(void)1743 int __init f2fs_create_checkpoint_caches(void)
1744 {
1745 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1746 sizeof(struct ino_entry));
1747 if (!ino_entry_slab)
1748 return -ENOMEM;
1749 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1750 sizeof(struct inode_entry));
1751 if (!f2fs_inode_entry_slab) {
1752 kmem_cache_destroy(ino_entry_slab);
1753 return -ENOMEM;
1754 }
1755 return 0;
1756 }
1757
f2fs_destroy_checkpoint_caches(void)1758 void f2fs_destroy_checkpoint_caches(void)
1759 {
1760 kmem_cache_destroy(ino_entry_slab);
1761 kmem_cache_destroy(f2fs_inode_entry_slab);
1762 }
1763
__write_checkpoint_sync(struct f2fs_sb_info * sbi)1764 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1765 {
1766 struct cp_control cpc = { .reason = CP_SYNC, };
1767 int err;
1768
1769 f2fs_down_write(&sbi->gc_lock);
1770 err = f2fs_write_checkpoint(sbi, &cpc);
1771 f2fs_up_write(&sbi->gc_lock);
1772
1773 return err;
1774 }
1775
__checkpoint_and_complete_reqs(struct f2fs_sb_info * sbi)1776 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1777 {
1778 struct ckpt_req_control *cprc = &sbi->cprc_info;
1779 struct ckpt_req *req, *next;
1780 struct llist_node *dispatch_list;
1781 u64 sum_diff = 0, diff, count = 0;
1782 int ret;
1783
1784 dispatch_list = llist_del_all(&cprc->issue_list);
1785 if (!dispatch_list)
1786 return;
1787 dispatch_list = llist_reverse_order(dispatch_list);
1788
1789 ret = __write_checkpoint_sync(sbi);
1790 atomic_inc(&cprc->issued_ckpt);
1791
1792 llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1793 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1794 req->ret = ret;
1795 complete(&req->wait);
1796
1797 sum_diff += diff;
1798 count++;
1799 }
1800 atomic_sub(count, &cprc->queued_ckpt);
1801 atomic_add(count, &cprc->total_ckpt);
1802
1803 spin_lock(&cprc->stat_lock);
1804 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1805 if (cprc->peak_time < cprc->cur_time)
1806 cprc->peak_time = cprc->cur_time;
1807 spin_unlock(&cprc->stat_lock);
1808 }
1809
issue_checkpoint_thread(void * data)1810 static int issue_checkpoint_thread(void *data)
1811 {
1812 struct f2fs_sb_info *sbi = data;
1813 struct ckpt_req_control *cprc = &sbi->cprc_info;
1814 wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1815 repeat:
1816 if (kthread_should_stop())
1817 return 0;
1818
1819 if (!llist_empty(&cprc->issue_list))
1820 __checkpoint_and_complete_reqs(sbi);
1821
1822 wait_event_interruptible(*q,
1823 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1824 goto repeat;
1825 }
1826
flush_remained_ckpt_reqs(struct f2fs_sb_info * sbi,struct ckpt_req * wait_req)1827 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1828 struct ckpt_req *wait_req)
1829 {
1830 struct ckpt_req_control *cprc = &sbi->cprc_info;
1831
1832 if (!llist_empty(&cprc->issue_list)) {
1833 __checkpoint_and_complete_reqs(sbi);
1834 } else {
1835 /* already dispatched by issue_checkpoint_thread */
1836 if (wait_req)
1837 wait_for_completion(&wait_req->wait);
1838 }
1839 }
1840
init_ckpt_req(struct ckpt_req * req)1841 static void init_ckpt_req(struct ckpt_req *req)
1842 {
1843 memset(req, 0, sizeof(struct ckpt_req));
1844
1845 init_completion(&req->wait);
1846 req->queue_time = ktime_get();
1847 }
1848
f2fs_issue_checkpoint(struct f2fs_sb_info * sbi)1849 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1850 {
1851 struct ckpt_req_control *cprc = &sbi->cprc_info;
1852 struct ckpt_req req;
1853 struct cp_control cpc;
1854
1855 cpc.reason = __get_cp_reason(sbi);
1856 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1857 int ret;
1858
1859 f2fs_down_write(&sbi->gc_lock);
1860 ret = f2fs_write_checkpoint(sbi, &cpc);
1861 f2fs_up_write(&sbi->gc_lock);
1862
1863 return ret;
1864 }
1865
1866 if (!cprc->f2fs_issue_ckpt)
1867 return __write_checkpoint_sync(sbi);
1868
1869 init_ckpt_req(&req);
1870
1871 llist_add(&req.llnode, &cprc->issue_list);
1872 atomic_inc(&cprc->queued_ckpt);
1873
1874 /*
1875 * update issue_list before we wake up issue_checkpoint thread,
1876 * this smp_mb() pairs with another barrier in ___wait_event(),
1877 * see more details in comments of waitqueue_active().
1878 */
1879 smp_mb();
1880
1881 if (waitqueue_active(&cprc->ckpt_wait_queue))
1882 wake_up(&cprc->ckpt_wait_queue);
1883
1884 if (cprc->f2fs_issue_ckpt)
1885 wait_for_completion(&req.wait);
1886 else
1887 flush_remained_ckpt_reqs(sbi, &req);
1888
1889 return req.ret;
1890 }
1891
f2fs_start_ckpt_thread(struct f2fs_sb_info * sbi)1892 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1893 {
1894 dev_t dev = sbi->sb->s_bdev->bd_dev;
1895 struct ckpt_req_control *cprc = &sbi->cprc_info;
1896
1897 if (cprc->f2fs_issue_ckpt)
1898 return 0;
1899
1900 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1901 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1902 if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1903 int err = PTR_ERR(cprc->f2fs_issue_ckpt);
1904
1905 cprc->f2fs_issue_ckpt = NULL;
1906 return err;
1907 }
1908
1909 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1910
1911 return 0;
1912 }
1913
f2fs_stop_ckpt_thread(struct f2fs_sb_info * sbi)1914 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1915 {
1916 struct ckpt_req_control *cprc = &sbi->cprc_info;
1917 struct task_struct *ckpt_task;
1918
1919 if (!cprc->f2fs_issue_ckpt)
1920 return;
1921
1922 ckpt_task = cprc->f2fs_issue_ckpt;
1923 cprc->f2fs_issue_ckpt = NULL;
1924 kthread_stop(ckpt_task);
1925
1926 f2fs_flush_ckpt_thread(sbi);
1927 }
1928
f2fs_flush_ckpt_thread(struct f2fs_sb_info * sbi)1929 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1930 {
1931 struct ckpt_req_control *cprc = &sbi->cprc_info;
1932
1933 flush_remained_ckpt_reqs(sbi, NULL);
1934
1935 /* Let's wait for the previous dispatched checkpoint. */
1936 while (atomic_read(&cprc->queued_ckpt))
1937 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1938 }
1939
f2fs_init_ckpt_req_control(struct f2fs_sb_info * sbi)1940 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1941 {
1942 struct ckpt_req_control *cprc = &sbi->cprc_info;
1943
1944 atomic_set(&cprc->issued_ckpt, 0);
1945 atomic_set(&cprc->total_ckpt, 0);
1946 atomic_set(&cprc->queued_ckpt, 0);
1947 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1948 init_waitqueue_head(&cprc->ckpt_wait_queue);
1949 init_llist_head(&cprc->issue_list);
1950 spin_lock_init(&cprc->stat_lock);
1951 }
1952