1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
4  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
5  * (C) Copyright 2008 Armadeus Systems nc
6  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
7  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
8  */
9 
10 #include <common.h>
11 #include <cpu_func.h>
12 #include <dm.h>
13 #include <env.h>
14 #include <log.h>
15 #include <malloc.h>
16 #include <memalign.h>
17 #include <miiphy.h>
18 #include <net.h>
19 #include <netdev.h>
20 #include <asm/cache.h>
21 #include <asm/global_data.h>
22 #include <linux/delay.h>
23 #include <power/regulator.h>
24 
25 #include <asm/io.h>
26 #include <linux/errno.h>
27 #include <linux/compiler.h>
28 
29 #include <asm/arch/clock.h>
30 #include <asm/arch/imx-regs.h>
31 #include <asm/mach-imx/sys_proto.h>
32 #include <asm-generic/gpio.h>
33 
34 #include "fec_mxc.h"
35 #include <eth_phy.h>
36 
37 DECLARE_GLOBAL_DATA_PTR;
38 
39 /*
40  * Timeout the transfer after 5 mS. This is usually a bit more, since
41  * the code in the tightloops this timeout is used in adds some overhead.
42  */
43 #define FEC_XFER_TIMEOUT	5000
44 
45 /*
46  * The standard 32-byte DMA alignment does not work on mx6solox, which requires
47  * 64-byte alignment in the DMA RX FEC buffer.
48  * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
49  * satisfies the alignment on other SoCs (32-bytes)
50  */
51 #define FEC_DMA_RX_MINALIGN	64
52 
53 #ifndef CONFIG_MII
54 #error "CONFIG_MII has to be defined!"
55 #endif
56 
57 #ifndef CONFIG_FEC_XCV_TYPE
58 #define CONFIG_FEC_XCV_TYPE MII100
59 #endif
60 
61 /*
62  * The i.MX28 operates with packets in big endian. We need to swap them before
63  * sending and after receiving.
64  */
65 #ifdef CONFIG_MX28
66 #define CONFIG_FEC_MXC_SWAP_PACKET
67 #endif
68 
69 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
70 
71 /* Check various alignment issues at compile time */
72 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
73 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
74 #endif
75 
76 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
77 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
78 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
79 #endif
80 
81 #undef DEBUG
82 
83 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
swap_packet(uint32_t * packet,int length)84 static void swap_packet(uint32_t *packet, int length)
85 {
86 	int i;
87 
88 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
89 		packet[i] = __swab32(packet[i]);
90 }
91 #endif
92 
93 /* MII-interface related functions */
fec_mdio_read(struct ethernet_regs * eth,uint8_t phyaddr,uint8_t regaddr)94 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
95 		uint8_t regaddr)
96 {
97 	uint32_t reg;		/* convenient holder for the PHY register */
98 	uint32_t phy;		/* convenient holder for the PHY */
99 	uint32_t start;
100 	int val;
101 
102 	/*
103 	 * reading from any PHY's register is done by properly
104 	 * programming the FEC's MII data register.
105 	 */
106 	writel(FEC_IEVENT_MII, &eth->ievent);
107 	reg = regaddr << FEC_MII_DATA_RA_SHIFT;
108 	phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
109 
110 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
111 			phy | reg, &eth->mii_data);
112 
113 	/* wait for the related interrupt */
114 	start = get_timer(0);
115 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
116 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
117 			printf("Read MDIO failed...\n");
118 			return -1;
119 		}
120 	}
121 
122 	/* clear mii interrupt bit */
123 	writel(FEC_IEVENT_MII, &eth->ievent);
124 
125 	/* it's now safe to read the PHY's register */
126 	val = (unsigned short)readl(&eth->mii_data);
127 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
128 	      regaddr, val);
129 	return val;
130 }
131 
132 #ifndef imx_get_fecclk
imx_get_fecclk(void)133 u32 __weak imx_get_fecclk(void)
134 {
135 	return 0;
136 }
137 #endif
138 
fec_get_clk_rate(void * udev,int idx)139 static int fec_get_clk_rate(void *udev, int idx)
140 {
141 	struct fec_priv *fec;
142 	struct udevice *dev;
143 	int ret;
144 
145 	if (IS_ENABLED(CONFIG_IMX8) ||
146 	    CONFIG_IS_ENABLED(CLK_CCF)) {
147 		dev = udev;
148 		if (!dev) {
149 			ret = uclass_get_device_by_seq(UCLASS_ETH, idx, &dev);
150 			if (ret < 0) {
151 				debug("Can't get FEC udev: %d\n", ret);
152 				return ret;
153 			}
154 		}
155 
156 		fec = dev_get_priv(dev);
157 		if (fec)
158 			return fec->clk_rate;
159 
160 		return -EINVAL;
161 	} else {
162 		return imx_get_fecclk();
163 	}
164 }
165 
fec_mii_setspeed(struct ethernet_regs * eth)166 static void fec_mii_setspeed(struct ethernet_regs *eth)
167 {
168 	/*
169 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
170 	 * and do not drop the Preamble.
171 	 *
172 	 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
173 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
174 	 * versions are RAZ there, so just ignore the difference and write the
175 	 * register always.
176 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
177 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
178 	 * output.
179 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
180 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
181 	 * holdtime cannot result in a value greater than 3.
182 	 */
183 	u32 pclk;
184 	u32 speed;
185 	u32 hold;
186 	int ret;
187 
188 	ret = fec_get_clk_rate(NULL, 0);
189 	if (ret < 0) {
190 		printf("Can't find FEC0 clk rate: %d\n", ret);
191 		return;
192 	}
193 	pclk = ret;
194 	speed = DIV_ROUND_UP(pclk, 5000000);
195 	hold = DIV_ROUND_UP(pclk, 100000000) - 1;
196 
197 #ifdef FEC_QUIRK_ENET_MAC
198 	speed--;
199 #endif
200 	writel(speed << 1 | hold << 8, &eth->mii_speed);
201 	debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
202 }
203 
fec_mdio_write(struct ethernet_regs * eth,uint8_t phyaddr,uint8_t regaddr,uint16_t data)204 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
205 		uint8_t regaddr, uint16_t data)
206 {
207 	uint32_t reg;		/* convenient holder for the PHY register */
208 	uint32_t phy;		/* convenient holder for the PHY */
209 	uint32_t start;
210 
211 	reg = regaddr << FEC_MII_DATA_RA_SHIFT;
212 	phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
213 
214 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
215 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
216 
217 	/* wait for the MII interrupt */
218 	start = get_timer(0);
219 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
220 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
221 			printf("Write MDIO failed...\n");
222 			return -1;
223 		}
224 	}
225 
226 	/* clear MII interrupt bit */
227 	writel(FEC_IEVENT_MII, &eth->ievent);
228 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
229 	      regaddr, data);
230 
231 	return 0;
232 }
233 
fec_phy_read(struct mii_dev * bus,int phyaddr,int dev_addr,int regaddr)234 static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
235 			int regaddr)
236 {
237 	return fec_mdio_read(bus->priv, phyaddr, regaddr);
238 }
239 
fec_phy_write(struct mii_dev * bus,int phyaddr,int dev_addr,int regaddr,u16 data)240 static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
241 			 int regaddr, u16 data)
242 {
243 	return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
244 }
245 
246 #ifndef CONFIG_PHYLIB
miiphy_restart_aneg(struct eth_device * dev)247 static int miiphy_restart_aneg(struct eth_device *dev)
248 {
249 	int ret = 0;
250 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
251 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
252 	struct ethernet_regs *eth = fec->bus->priv;
253 
254 	/*
255 	 * Wake up from sleep if necessary
256 	 * Reset PHY, then delay 300ns
257 	 */
258 #ifdef CONFIG_MX27
259 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
260 #endif
261 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
262 	udelay(1000);
263 
264 	/* Set the auto-negotiation advertisement register bits */
265 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
266 		       LPA_100FULL | LPA_100HALF | LPA_10FULL |
267 		       LPA_10HALF | PHY_ANLPAR_PSB_802_3);
268 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
269 		       BMCR_ANENABLE | BMCR_ANRESTART);
270 
271 	if (fec->mii_postcall)
272 		ret = fec->mii_postcall(fec->phy_id);
273 
274 #endif
275 	return ret;
276 }
277 
278 #ifndef CONFIG_FEC_FIXED_SPEED
miiphy_wait_aneg(struct eth_device * dev)279 static int miiphy_wait_aneg(struct eth_device *dev)
280 {
281 	uint32_t start;
282 	int status;
283 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
284 	struct ethernet_regs *eth = fec->bus->priv;
285 
286 	/* Wait for AN completion */
287 	start = get_timer(0);
288 	do {
289 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
290 			printf("%s: Autonegotiation timeout\n", dev->name);
291 			return -1;
292 		}
293 
294 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
295 		if (status < 0) {
296 			printf("%s: Autonegotiation failed. status: %d\n",
297 			       dev->name, status);
298 			return -1;
299 		}
300 	} while (!(status & BMSR_LSTATUS));
301 
302 	return 0;
303 }
304 #endif /* CONFIG_FEC_FIXED_SPEED */
305 #endif
306 
fec_rx_task_enable(struct fec_priv * fec)307 static int fec_rx_task_enable(struct fec_priv *fec)
308 {
309 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
310 	return 0;
311 }
312 
fec_rx_task_disable(struct fec_priv * fec)313 static int fec_rx_task_disable(struct fec_priv *fec)
314 {
315 	return 0;
316 }
317 
fec_tx_task_enable(struct fec_priv * fec)318 static int fec_tx_task_enable(struct fec_priv *fec)
319 {
320 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
321 	return 0;
322 }
323 
fec_tx_task_disable(struct fec_priv * fec)324 static int fec_tx_task_disable(struct fec_priv *fec)
325 {
326 	return 0;
327 }
328 
329 /**
330  * Initialize receive task's buffer descriptors
331  * @param[in] fec all we know about the device yet
332  * @param[in] count receive buffer count to be allocated
333  * @param[in] dsize desired size of each receive buffer
334  * @return 0 on success
335  *
336  * Init all RX descriptors to default values.
337  */
fec_rbd_init(struct fec_priv * fec,int count,int dsize)338 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
339 {
340 	uint32_t size;
341 	ulong data;
342 	int i;
343 
344 	/*
345 	 * Reload the RX descriptors with default values and wipe
346 	 * the RX buffers.
347 	 */
348 	size = roundup(dsize, ARCH_DMA_MINALIGN);
349 	for (i = 0; i < count; i++) {
350 		data = fec->rbd_base[i].data_pointer;
351 		memset((void *)data, 0, dsize);
352 		flush_dcache_range(data, data + size);
353 
354 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
355 		fec->rbd_base[i].data_length = 0;
356 	}
357 
358 	/* Mark the last RBD to close the ring. */
359 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
360 	fec->rbd_index = 0;
361 
362 	flush_dcache_range((ulong)fec->rbd_base,
363 			   (ulong)fec->rbd_base + size);
364 }
365 
366 /**
367  * Initialize transmit task's buffer descriptors
368  * @param[in] fec all we know about the device yet
369  *
370  * Transmit buffers are created externally. We only have to init the BDs here.\n
371  * Note: There is a race condition in the hardware. When only one BD is in
372  * use it must be marked with the WRAP bit to use it for every transmitt.
373  * This bit in combination with the READY bit results into double transmit
374  * of each data buffer. It seems the state machine checks READY earlier then
375  * resetting it after the first transfer.
376  * Using two BDs solves this issue.
377  */
fec_tbd_init(struct fec_priv * fec)378 static void fec_tbd_init(struct fec_priv *fec)
379 {
380 	ulong addr = (ulong)fec->tbd_base;
381 	unsigned size = roundup(2 * sizeof(struct fec_bd),
382 				ARCH_DMA_MINALIGN);
383 
384 	memset(fec->tbd_base, 0, size);
385 	fec->tbd_base[0].status = 0;
386 	fec->tbd_base[1].status = FEC_TBD_WRAP;
387 	fec->tbd_index = 0;
388 	flush_dcache_range(addr, addr + size);
389 }
390 
391 /**
392  * Mark the given read buffer descriptor as free
393  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
394  * @param[in] prbd buffer descriptor to mark free again
395  */
fec_rbd_clean(int last,struct fec_bd * prbd)396 static void fec_rbd_clean(int last, struct fec_bd *prbd)
397 {
398 	unsigned short flags = FEC_RBD_EMPTY;
399 	if (last)
400 		flags |= FEC_RBD_WRAP;
401 	writew(flags, &prbd->status);
402 	writew(0, &prbd->data_length);
403 }
404 
fec_get_hwaddr(int dev_id,unsigned char * mac)405 static int fec_get_hwaddr(int dev_id, unsigned char *mac)
406 {
407 	imx_get_mac_from_fuse(dev_id, mac);
408 	return !is_valid_ethaddr(mac);
409 }
410 
411 #ifdef CONFIG_DM_ETH
fecmxc_set_hwaddr(struct udevice * dev)412 static int fecmxc_set_hwaddr(struct udevice *dev)
413 #else
414 static int fec_set_hwaddr(struct eth_device *dev)
415 #endif
416 {
417 #ifdef CONFIG_DM_ETH
418 	struct fec_priv *fec = dev_get_priv(dev);
419 	struct eth_pdata *pdata = dev_get_plat(dev);
420 	uchar *mac = pdata->enetaddr;
421 #else
422 	uchar *mac = dev->enetaddr;
423 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
424 #endif
425 
426 	writel(0, &fec->eth->iaddr1);
427 	writel(0, &fec->eth->iaddr2);
428 	writel(0, &fec->eth->gaddr1);
429 	writel(0, &fec->eth->gaddr2);
430 
431 	/* Set physical address */
432 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
433 	       &fec->eth->paddr1);
434 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
435 
436 	return 0;
437 }
438 
439 /* Do initial configuration of the FEC registers */
fec_reg_setup(struct fec_priv * fec)440 static void fec_reg_setup(struct fec_priv *fec)
441 {
442 	uint32_t rcntrl;
443 
444 	/* Set interrupt mask register */
445 	writel(0x00000000, &fec->eth->imask);
446 
447 	/* Clear FEC-Lite interrupt event register(IEVENT) */
448 	writel(0xffffffff, &fec->eth->ievent);
449 
450 	/* Set FEC-Lite receive control register(R_CNTRL): */
451 
452 	/* Start with frame length = 1518, common for all modes. */
453 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
454 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
455 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
456 	if (fec->xcv_type == RGMII)
457 		rcntrl |= FEC_RCNTRL_RGMII;
458 	else if (fec->xcv_type == RMII)
459 		rcntrl |= FEC_RCNTRL_RMII;
460 
461 	if (fec->promisc)
462 		rcntrl |= 0x8;
463 
464 	writel(rcntrl, &fec->eth->r_cntrl);
465 }
466 
467 /**
468  * Start the FEC engine
469  * @param[in] dev Our device to handle
470  */
471 #ifdef CONFIG_DM_ETH
fec_open(struct udevice * dev)472 static int fec_open(struct udevice *dev)
473 #else
474 static int fec_open(struct eth_device *edev)
475 #endif
476 {
477 #ifdef CONFIG_DM_ETH
478 	struct fec_priv *fec = dev_get_priv(dev);
479 #else
480 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
481 #endif
482 	int speed;
483 	ulong addr, size;
484 	int i;
485 
486 	debug("fec_open: fec_open(dev)\n");
487 	/* full-duplex, heartbeat disabled */
488 	writel(1 << 2, &fec->eth->x_cntrl);
489 	fec->rbd_index = 0;
490 
491 	/* Invalidate all descriptors */
492 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
493 		fec_rbd_clean(0, &fec->rbd_base[i]);
494 	fec_rbd_clean(1, &fec->rbd_base[i]);
495 
496 	/* Flush the descriptors into RAM */
497 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
498 			ARCH_DMA_MINALIGN);
499 	addr = (ulong)fec->rbd_base;
500 	flush_dcache_range(addr, addr + size);
501 
502 #ifdef FEC_QUIRK_ENET_MAC
503 	/* Enable ENET HW endian SWAP */
504 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
505 	       &fec->eth->ecntrl);
506 	/* Enable ENET store and forward mode */
507 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
508 	       &fec->eth->x_wmrk);
509 #endif
510 	/* Enable FEC-Lite controller */
511 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
512 	       &fec->eth->ecntrl);
513 
514 #ifdef FEC_ENET_ENABLE_TXC_DELAY
515 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_TXC_DLY,
516 	       &fec->eth->ecntrl);
517 #endif
518 
519 #ifdef FEC_ENET_ENABLE_RXC_DELAY
520 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RXC_DLY,
521 	       &fec->eth->ecntrl);
522 #endif
523 
524 #if defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
525 	udelay(100);
526 
527 	/* setup the MII gasket for RMII mode */
528 	/* disable the gasket */
529 	writew(0, &fec->eth->miigsk_enr);
530 
531 	/* wait for the gasket to be disabled */
532 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
533 		udelay(2);
534 
535 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
536 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
537 
538 	/* re-enable the gasket */
539 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
540 
541 	/* wait until MII gasket is ready */
542 	int max_loops = 10;
543 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
544 		if (--max_loops <= 0) {
545 			printf("WAIT for MII Gasket ready timed out\n");
546 			break;
547 		}
548 	}
549 #endif
550 
551 #ifdef CONFIG_PHYLIB
552 	{
553 		/* Start up the PHY */
554 		int ret = phy_startup(fec->phydev);
555 
556 		if (ret) {
557 			printf("Could not initialize PHY %s\n",
558 			       fec->phydev->dev->name);
559 			return ret;
560 		}
561 		speed = fec->phydev->speed;
562 	}
563 #elif CONFIG_FEC_FIXED_SPEED
564 	speed = CONFIG_FEC_FIXED_SPEED;
565 #else
566 	miiphy_wait_aneg(edev);
567 	speed = miiphy_speed(edev->name, fec->phy_id);
568 	miiphy_duplex(edev->name, fec->phy_id);
569 #endif
570 
571 #ifdef FEC_QUIRK_ENET_MAC
572 	{
573 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
574 		u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
575 		if (speed == _1000BASET)
576 			ecr |= FEC_ECNTRL_SPEED;
577 		else if (speed != _100BASET)
578 			rcr |= FEC_RCNTRL_RMII_10T;
579 		writel(ecr, &fec->eth->ecntrl);
580 		writel(rcr, &fec->eth->r_cntrl);
581 	}
582 #endif
583 	debug("%s:Speed=%i\n", __func__, speed);
584 
585 	/* Enable SmartDMA receive task */
586 	fec_rx_task_enable(fec);
587 
588 	udelay(100000);
589 	return 0;
590 }
591 
592 #ifdef CONFIG_DM_ETH
fecmxc_init(struct udevice * dev)593 static int fecmxc_init(struct udevice *dev)
594 #else
595 static int fec_init(struct eth_device *dev, struct bd_info *bd)
596 #endif
597 {
598 #ifdef CONFIG_DM_ETH
599 	struct fec_priv *fec = dev_get_priv(dev);
600 #else
601 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
602 #endif
603 	u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop;
604 	u8 *i;
605 	ulong addr;
606 
607 	/* Initialize MAC address */
608 #ifdef CONFIG_DM_ETH
609 	fecmxc_set_hwaddr(dev);
610 #else
611 	fec_set_hwaddr(dev);
612 #endif
613 
614 	/* Setup transmit descriptors, there are two in total. */
615 	fec_tbd_init(fec);
616 
617 	/* Setup receive descriptors. */
618 	fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
619 
620 	fec_reg_setup(fec);
621 
622 	if (fec->xcv_type != SEVENWIRE)
623 		fec_mii_setspeed(fec->bus->priv);
624 
625 	/* Set Opcode/Pause Duration Register */
626 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
627 	writel(0x2, &fec->eth->x_wmrk);
628 
629 	/* Set multicast address filter */
630 	writel(0x00000000, &fec->eth->gaddr1);
631 	writel(0x00000000, &fec->eth->gaddr2);
632 
633 	/* Do not access reserved register */
634 	if (!is_mx6ul() && !is_mx6ull() && !is_imx8() && !is_imx8m() && !is_imx8ulp()) {
635 		/* clear MIB RAM */
636 		for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
637 			writel(0, i);
638 
639 		/* FIFO receive start register */
640 		writel(0x520, &fec->eth->r_fstart);
641 	}
642 
643 	/* size and address of each buffer */
644 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
645 
646 	addr = (ulong)fec->tbd_base;
647 	writel((uint32_t)addr, &fec->eth->etdsr);
648 
649 	addr = (ulong)fec->rbd_base;
650 	writel((uint32_t)addr, &fec->eth->erdsr);
651 
652 #ifndef CONFIG_PHYLIB
653 	if (fec->xcv_type != SEVENWIRE)
654 		miiphy_restart_aneg(dev);
655 #endif
656 	fec_open(dev);
657 	return 0;
658 }
659 
660 /**
661  * Halt the FEC engine
662  * @param[in] dev Our device to handle
663  */
664 #ifdef CONFIG_DM_ETH
fecmxc_halt(struct udevice * dev)665 static void fecmxc_halt(struct udevice *dev)
666 #else
667 static void fec_halt(struct eth_device *dev)
668 #endif
669 {
670 #ifdef CONFIG_DM_ETH
671 	struct fec_priv *fec = dev_get_priv(dev);
672 #else
673 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
674 #endif
675 	int counter = 0xffff;
676 
677 	/* issue graceful stop command to the FEC transmitter if necessary */
678 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
679 	       &fec->eth->x_cntrl);
680 
681 	debug("eth_halt: wait for stop regs\n");
682 	/* wait for graceful stop to register */
683 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
684 		udelay(1);
685 
686 	/* Disable SmartDMA tasks */
687 	fec_tx_task_disable(fec);
688 	fec_rx_task_disable(fec);
689 
690 	/*
691 	 * Disable the Ethernet Controller
692 	 * Note: this will also reset the BD index counter!
693 	 */
694 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
695 	       &fec->eth->ecntrl);
696 	fec->rbd_index = 0;
697 	fec->tbd_index = 0;
698 	debug("eth_halt: done\n");
699 }
700 
701 /**
702  * Transmit one frame
703  * @param[in] dev Our ethernet device to handle
704  * @param[in] packet Pointer to the data to be transmitted
705  * @param[in] length Data count in bytes
706  * @return 0 on success
707  */
708 #ifdef CONFIG_DM_ETH
fecmxc_send(struct udevice * dev,void * packet,int length)709 static int fecmxc_send(struct udevice *dev, void *packet, int length)
710 #else
711 static int fec_send(struct eth_device *dev, void *packet, int length)
712 #endif
713 {
714 	unsigned int status;
715 	u32 size;
716 	ulong addr, end;
717 	int timeout = FEC_XFER_TIMEOUT;
718 	int ret = 0;
719 
720 	/*
721 	 * This routine transmits one frame.  This routine only accepts
722 	 * 6-byte Ethernet addresses.
723 	 */
724 #ifdef CONFIG_DM_ETH
725 	struct fec_priv *fec = dev_get_priv(dev);
726 #else
727 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
728 #endif
729 
730 	/*
731 	 * Check for valid length of data.
732 	 */
733 	if ((length > 1500) || (length <= 0)) {
734 		printf("Payload (%d) too large\n", length);
735 		return -1;
736 	}
737 
738 	/*
739 	 * Setup the transmit buffer. We are always using the first buffer for
740 	 * transmission, the second will be empty and only used to stop the DMA
741 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
742 	 */
743 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
744 	swap_packet((uint32_t *)packet, length);
745 #endif
746 
747 	addr = (ulong)packet;
748 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
749 	addr &= ~(ARCH_DMA_MINALIGN - 1);
750 	flush_dcache_range(addr, end);
751 
752 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
753 	writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer);
754 
755 	/*
756 	 * update BD's status now
757 	 * This block:
758 	 * - is always the last in a chain (means no chain)
759 	 * - should transmitt the CRC
760 	 * - might be the last BD in the list, so the address counter should
761 	 *   wrap (-> keep the WRAP flag)
762 	 */
763 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
764 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
765 	writew(status, &fec->tbd_base[fec->tbd_index].status);
766 
767 	/*
768 	 * Flush data cache. This code flushes both TX descriptors to RAM.
769 	 * After this code, the descriptors will be safely in RAM and we
770 	 * can start DMA.
771 	 */
772 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
773 	addr = (ulong)fec->tbd_base;
774 	flush_dcache_range(addr, addr + size);
775 
776 	/*
777 	 * Below we read the DMA descriptor's last four bytes back from the
778 	 * DRAM. This is important in order to make sure that all WRITE
779 	 * operations on the bus that were triggered by previous cache FLUSH
780 	 * have completed.
781 	 *
782 	 * Otherwise, on MX28, it is possible to observe a corruption of the
783 	 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
784 	 * for the bus structure of MX28. The scenario is as follows:
785 	 *
786 	 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
787 	 *    to DRAM due to flush_dcache_range()
788 	 * 2) ARM core writes the FEC registers via AHB_ARB2
789 	 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
790 	 *
791 	 * Note that 2) does sometimes finish before 1) due to reordering of
792 	 * WRITE accesses on the AHB bus, therefore triggering 3) before the
793 	 * DMA descriptor is fully written into DRAM. This results in occasional
794 	 * corruption of the DMA descriptor.
795 	 */
796 	readl(addr + size - 4);
797 
798 	/* Enable SmartDMA transmit task */
799 	fec_tx_task_enable(fec);
800 
801 	/*
802 	 * Wait until frame is sent. On each turn of the wait cycle, we must
803 	 * invalidate data cache to see what's really in RAM. Also, we need
804 	 * barrier here.
805 	 */
806 	while (--timeout) {
807 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
808 			break;
809 	}
810 
811 	if (!timeout) {
812 		ret = -EINVAL;
813 		goto out;
814 	}
815 
816 	/*
817 	 * The TDAR bit is cleared when the descriptors are all out from TX
818 	 * but on mx6solox we noticed that the READY bit is still not cleared
819 	 * right after TDAR.
820 	 * These are two distinct signals, and in IC simulation, we found that
821 	 * TDAR always gets cleared prior than the READY bit of last BD becomes
822 	 * cleared.
823 	 * In mx6solox, we use a later version of FEC IP. It looks like that
824 	 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
825 	 * version.
826 	 *
827 	 * Fix this by polling the READY bit of BD after the TDAR polling,
828 	 * which covers the mx6solox case and does not harm the other SoCs.
829 	 */
830 	timeout = FEC_XFER_TIMEOUT;
831 	while (--timeout) {
832 		invalidate_dcache_range(addr, addr + size);
833 		if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
834 		    FEC_TBD_READY))
835 			break;
836 	}
837 
838 	if (!timeout)
839 		ret = -EINVAL;
840 
841 out:
842 	debug("fec_send: status 0x%x index %d ret %i\n",
843 	      readw(&fec->tbd_base[fec->tbd_index].status),
844 	      fec->tbd_index, ret);
845 	/* for next transmission use the other buffer */
846 	if (fec->tbd_index)
847 		fec->tbd_index = 0;
848 	else
849 		fec->tbd_index = 1;
850 
851 	return ret;
852 }
853 
854 /**
855  * Pull one frame from the card
856  * @param[in] dev Our ethernet device to handle
857  * @return Length of packet read
858  */
859 #ifdef CONFIG_DM_ETH
fecmxc_recv(struct udevice * dev,int flags,uchar ** packetp)860 static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
861 #else
862 static int fec_recv(struct eth_device *dev)
863 #endif
864 {
865 #ifdef CONFIG_DM_ETH
866 	struct fec_priv *fec = dev_get_priv(dev);
867 #else
868 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
869 #endif
870 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
871 	unsigned long ievent;
872 	int frame_length, len = 0;
873 	uint16_t bd_status;
874 	ulong addr, size, end;
875 	int i;
876 
877 #ifdef CONFIG_DM_ETH
878 	*packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE);
879 	if (*packetp == 0) {
880 		printf("%s: error allocating packetp\n", __func__);
881 		return -ENOMEM;
882 	}
883 #else
884 	ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
885 #endif
886 
887 	/* Check if any critical events have happened */
888 	ievent = readl(&fec->eth->ievent);
889 	writel(ievent, &fec->eth->ievent);
890 	debug("fec_recv: ievent 0x%lx\n", ievent);
891 	if (ievent & FEC_IEVENT_BABR) {
892 #ifdef CONFIG_DM_ETH
893 		fecmxc_halt(dev);
894 		fecmxc_init(dev);
895 #else
896 		fec_halt(dev);
897 		fec_init(dev, fec->bd);
898 #endif
899 		printf("some error: 0x%08lx\n", ievent);
900 		return 0;
901 	}
902 	if (ievent & FEC_IEVENT_HBERR) {
903 		/* Heartbeat error */
904 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
905 		       &fec->eth->x_cntrl);
906 	}
907 	if (ievent & FEC_IEVENT_GRA) {
908 		/* Graceful stop complete */
909 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
910 #ifdef CONFIG_DM_ETH
911 			fecmxc_halt(dev);
912 #else
913 			fec_halt(dev);
914 #endif
915 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
916 			       &fec->eth->x_cntrl);
917 #ifdef CONFIG_DM_ETH
918 			fecmxc_init(dev);
919 #else
920 			fec_init(dev, fec->bd);
921 #endif
922 		}
923 	}
924 
925 	/*
926 	 * Read the buffer status. Before the status can be read, the data cache
927 	 * must be invalidated, because the data in RAM might have been changed
928 	 * by DMA. The descriptors are properly aligned to cachelines so there's
929 	 * no need to worry they'd overlap.
930 	 *
931 	 * WARNING: By invalidating the descriptor here, we also invalidate
932 	 * the descriptors surrounding this one. Therefore we can NOT change the
933 	 * contents of this descriptor nor the surrounding ones. The problem is
934 	 * that in order to mark the descriptor as processed, we need to change
935 	 * the descriptor. The solution is to mark the whole cache line when all
936 	 * descriptors in the cache line are processed.
937 	 */
938 	addr = (ulong)rbd;
939 	addr &= ~(ARCH_DMA_MINALIGN - 1);
940 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
941 	invalidate_dcache_range(addr, addr + size);
942 
943 	bd_status = readw(&rbd->status);
944 	debug("fec_recv: status 0x%x\n", bd_status);
945 
946 	if (!(bd_status & FEC_RBD_EMPTY)) {
947 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
948 		    ((readw(&rbd->data_length) - 4) > 14)) {
949 			/* Get buffer address and size */
950 			addr = readl(&rbd->data_pointer);
951 			frame_length = readw(&rbd->data_length) - 4;
952 			/* Invalidate data cache over the buffer */
953 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
954 			addr &= ~(ARCH_DMA_MINALIGN - 1);
955 			invalidate_dcache_range(addr, end);
956 
957 			/* Fill the buffer and pass it to upper layers */
958 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
959 			swap_packet((uint32_t *)addr, frame_length);
960 #endif
961 
962 #ifdef CONFIG_DM_ETH
963 			memcpy(*packetp, (char *)addr, frame_length);
964 #else
965 			memcpy(buff, (char *)addr, frame_length);
966 			net_process_received_packet(buff, frame_length);
967 #endif
968 			len = frame_length;
969 		} else {
970 			if (bd_status & FEC_RBD_ERR)
971 				debug("error frame: 0x%08lx 0x%08x\n",
972 				      addr, bd_status);
973 		}
974 
975 		/*
976 		 * Free the current buffer, restart the engine and move forward
977 		 * to the next buffer. Here we check if the whole cacheline of
978 		 * descriptors was already processed and if so, we mark it free
979 		 * as whole.
980 		 */
981 		size = RXDESC_PER_CACHELINE - 1;
982 		if ((fec->rbd_index & size) == size) {
983 			i = fec->rbd_index - size;
984 			addr = (ulong)&fec->rbd_base[i];
985 			for (; i <= fec->rbd_index ; i++) {
986 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
987 					      &fec->rbd_base[i]);
988 			}
989 			flush_dcache_range(addr,
990 					   addr + ARCH_DMA_MINALIGN);
991 		}
992 
993 		fec_rx_task_enable(fec);
994 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
995 	}
996 	debug("fec_recv: stop\n");
997 
998 	return len;
999 }
1000 
fec_set_dev_name(char * dest,int dev_id)1001 static void fec_set_dev_name(char *dest, int dev_id)
1002 {
1003 	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
1004 }
1005 
fec_alloc_descs(struct fec_priv * fec)1006 static int fec_alloc_descs(struct fec_priv *fec)
1007 {
1008 	unsigned int size;
1009 	int i;
1010 	uint8_t *data;
1011 	ulong addr;
1012 
1013 	/* Allocate TX descriptors. */
1014 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
1015 	fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
1016 	if (!fec->tbd_base)
1017 		goto err_tx;
1018 
1019 	/* Allocate RX descriptors. */
1020 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
1021 	fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
1022 	if (!fec->rbd_base)
1023 		goto err_rx;
1024 
1025 	memset(fec->rbd_base, 0, size);
1026 
1027 	/* Allocate RX buffers. */
1028 
1029 	/* Maximum RX buffer size. */
1030 	size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
1031 	for (i = 0; i < FEC_RBD_NUM; i++) {
1032 		data = memalign(FEC_DMA_RX_MINALIGN, size);
1033 		if (!data) {
1034 			printf("%s: error allocating rxbuf %d\n", __func__, i);
1035 			goto err_ring;
1036 		}
1037 
1038 		memset(data, 0, size);
1039 
1040 		addr = (ulong)data;
1041 		fec->rbd_base[i].data_pointer = (uint32_t)addr;
1042 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
1043 		fec->rbd_base[i].data_length = 0;
1044 		/* Flush the buffer to memory. */
1045 		flush_dcache_range(addr, addr + size);
1046 	}
1047 
1048 	/* Mark the last RBD to close the ring. */
1049 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
1050 
1051 	fec->rbd_index = 0;
1052 	fec->tbd_index = 0;
1053 
1054 	return 0;
1055 
1056 err_ring:
1057 	for (; i >= 0; i--) {
1058 		addr = fec->rbd_base[i].data_pointer;
1059 		free((void *)addr);
1060 	}
1061 	free(fec->rbd_base);
1062 err_rx:
1063 	free(fec->tbd_base);
1064 err_tx:
1065 	return -ENOMEM;
1066 }
1067 
fec_free_descs(struct fec_priv * fec)1068 static void fec_free_descs(struct fec_priv *fec)
1069 {
1070 	int i;
1071 	ulong addr;
1072 
1073 	for (i = 0; i < FEC_RBD_NUM; i++) {
1074 		addr = fec->rbd_base[i].data_pointer;
1075 		free((void *)addr);
1076 	}
1077 	free(fec->rbd_base);
1078 	free(fec->tbd_base);
1079 }
1080 
fec_get_miibus(ulong base_addr,int dev_id)1081 struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id)
1082 {
1083 	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1084 	struct mii_dev *bus;
1085 	int ret;
1086 
1087 	bus = mdio_alloc();
1088 	if (!bus) {
1089 		printf("mdio_alloc failed\n");
1090 		return NULL;
1091 	}
1092 	bus->read = fec_phy_read;
1093 	bus->write = fec_phy_write;
1094 	bus->priv = eth;
1095 	fec_set_dev_name(bus->name, dev_id);
1096 
1097 	ret = mdio_register(bus);
1098 	if (ret) {
1099 		printf("mdio_register failed\n");
1100 		free(bus);
1101 		return NULL;
1102 	}
1103 	fec_mii_setspeed(eth);
1104 	return bus;
1105 }
1106 
1107 #ifndef CONFIG_DM_ETH
1108 #ifdef CONFIG_PHYLIB
fec_probe(struct bd_info * bd,int dev_id,uint32_t base_addr,struct mii_dev * bus,struct phy_device * phydev)1109 int fec_probe(struct bd_info *bd, int dev_id, uint32_t base_addr,
1110 		struct mii_dev *bus, struct phy_device *phydev)
1111 #else
1112 static int fec_probe(struct bd_info *bd, int dev_id, uint32_t base_addr,
1113 		struct mii_dev *bus, int phy_id)
1114 #endif
1115 {
1116 	struct eth_device *edev;
1117 	struct fec_priv *fec;
1118 	unsigned char ethaddr[6];
1119 	char mac[16];
1120 	uint32_t start;
1121 	int ret = 0;
1122 
1123 	/* create and fill edev struct */
1124 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
1125 	if (!edev) {
1126 		puts("fec_mxc: not enough malloc memory for eth_device\n");
1127 		ret = -ENOMEM;
1128 		goto err1;
1129 	}
1130 
1131 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
1132 	if (!fec) {
1133 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
1134 		ret = -ENOMEM;
1135 		goto err2;
1136 	}
1137 
1138 	memset(edev, 0, sizeof(*edev));
1139 	memset(fec, 0, sizeof(*fec));
1140 
1141 	ret = fec_alloc_descs(fec);
1142 	if (ret)
1143 		goto err3;
1144 
1145 	edev->priv = fec;
1146 	edev->init = fec_init;
1147 	edev->send = fec_send;
1148 	edev->recv = fec_recv;
1149 	edev->halt = fec_halt;
1150 	edev->write_hwaddr = fec_set_hwaddr;
1151 
1152 	fec->eth = (struct ethernet_regs *)(ulong)base_addr;
1153 	fec->bd = bd;
1154 
1155 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1156 
1157 	/* Reset chip. */
1158 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1159 	start = get_timer(0);
1160 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1161 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1162 			printf("FEC MXC: Timeout resetting chip\n");
1163 			goto err4;
1164 		}
1165 		udelay(10);
1166 	}
1167 
1168 	fec_reg_setup(fec);
1169 	fec_set_dev_name(edev->name, dev_id);
1170 	fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1171 	fec->bus = bus;
1172 	fec_mii_setspeed(bus->priv);
1173 #ifdef CONFIG_PHYLIB
1174 	fec->phydev = phydev;
1175 	phy_connect_dev(phydev, edev);
1176 	/* Configure phy */
1177 	phy_config(phydev);
1178 #else
1179 	fec->phy_id = phy_id;
1180 #endif
1181 	eth_register(edev);
1182 	/* only support one eth device, the index number pointed by dev_id */
1183 	edev->index = fec->dev_id;
1184 
1185 	if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) {
1186 		debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr);
1187 		memcpy(edev->enetaddr, ethaddr, 6);
1188 		if (fec->dev_id)
1189 			sprintf(mac, "eth%daddr", fec->dev_id);
1190 		else
1191 			strcpy(mac, "ethaddr");
1192 		if (!env_get(mac))
1193 			eth_env_set_enetaddr(mac, ethaddr);
1194 	}
1195 	return ret;
1196 err4:
1197 	fec_free_descs(fec);
1198 err3:
1199 	free(fec);
1200 err2:
1201 	free(edev);
1202 err1:
1203 	return ret;
1204 }
1205 
fecmxc_initialize_multi(struct bd_info * bd,int dev_id,int phy_id,uint32_t addr)1206 int fecmxc_initialize_multi(struct bd_info *bd, int dev_id, int phy_id,
1207 			    uint32_t addr)
1208 {
1209 	uint32_t base_mii;
1210 	struct mii_dev *bus = NULL;
1211 #ifdef CONFIG_PHYLIB
1212 	struct phy_device *phydev = NULL;
1213 #endif
1214 	int ret;
1215 
1216 	if (CONFIG_IS_ENABLED(IMX_MODULE_FUSE)) {
1217 		if (enet_fused((ulong)addr)) {
1218 			printf("SoC fuse indicates Ethernet@0x%x is unavailable.\n", addr);
1219 			return -ENODEV;
1220 		}
1221 	}
1222 
1223 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1224 	/*
1225 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
1226 	 * Only the first one can access the MDIO bus.
1227 	 */
1228 	base_mii = CONFIG_FEC_MXC_MDIO_BASE;
1229 #else
1230 	base_mii = addr;
1231 #endif
1232 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1233 	bus = fec_get_miibus(base_mii, dev_id);
1234 	if (!bus)
1235 		return -ENOMEM;
1236 #ifdef CONFIG_PHYLIB
1237 	phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1238 	if (!phydev) {
1239 		mdio_unregister(bus);
1240 		free(bus);
1241 		return -ENOMEM;
1242 	}
1243 	ret = fec_probe(bd, dev_id, addr, bus, phydev);
1244 #else
1245 	ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1246 #endif
1247 	if (ret) {
1248 #ifdef CONFIG_PHYLIB
1249 		free(phydev);
1250 #endif
1251 		mdio_unregister(bus);
1252 		free(bus);
1253 	}
1254 	return ret;
1255 }
1256 
1257 #ifdef CONFIG_FEC_MXC_PHYADDR
fecmxc_initialize(struct bd_info * bd)1258 int fecmxc_initialize(struct bd_info *bd)
1259 {
1260 	return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1261 			IMX_FEC_BASE);
1262 }
1263 #endif
1264 
1265 #ifndef CONFIG_PHYLIB
fecmxc_register_mii_postcall(struct eth_device * dev,int (* cb)(int))1266 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1267 {
1268 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1269 	fec->mii_postcall = cb;
1270 	return 0;
1271 }
1272 #endif
1273 
1274 #else
1275 
fecmxc_read_rom_hwaddr(struct udevice * dev)1276 static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1277 {
1278 	struct fec_priv *priv = dev_get_priv(dev);
1279 	struct eth_pdata *pdata = dev_get_plat(dev);
1280 
1281 	return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1282 }
1283 
fecmxc_set_promisc(struct udevice * dev,bool enable)1284 static int fecmxc_set_promisc(struct udevice *dev, bool enable)
1285 {
1286 	struct fec_priv *priv = dev_get_priv(dev);
1287 
1288 	priv->promisc = enable;
1289 
1290 	return 0;
1291 }
1292 
fecmxc_free_pkt(struct udevice * dev,uchar * packet,int length)1293 static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length)
1294 {
1295 	if (packet)
1296 		free(packet);
1297 
1298 	return 0;
1299 }
1300 
1301 static const struct eth_ops fecmxc_ops = {
1302 	.start			= fecmxc_init,
1303 	.send			= fecmxc_send,
1304 	.recv			= fecmxc_recv,
1305 	.free_pkt		= fecmxc_free_pkt,
1306 	.stop			= fecmxc_halt,
1307 	.write_hwaddr		= fecmxc_set_hwaddr,
1308 	.read_rom_hwaddr	= fecmxc_read_rom_hwaddr,
1309 	.set_promisc		= fecmxc_set_promisc,
1310 };
1311 
device_get_phy_addr(struct fec_priv * priv,struct udevice * dev)1312 static int device_get_phy_addr(struct fec_priv *priv, struct udevice *dev)
1313 {
1314 	struct ofnode_phandle_args phandle_args;
1315 	int reg, ret;
1316 
1317 	ret = dev_read_phandle_with_args(dev, "phy-handle", NULL, 0, 0,
1318 					 &phandle_args);
1319 	if (ret) {
1320 		priv->phy_of_node = ofnode_find_subnode(dev_ofnode(dev),
1321 							"fixed-link");
1322 		if (ofnode_valid(priv->phy_of_node))
1323 			return 0;
1324 		debug("Failed to find phy-handle (err = %d)\n", ret);
1325 		return ret;
1326 	}
1327 
1328 	if (!ofnode_is_available(phandle_args.node))
1329 		return -ENOENT;
1330 
1331 	priv->phy_of_node = phandle_args.node;
1332 	reg = ofnode_read_u32_default(phandle_args.node, "reg", 0);
1333 
1334 	return reg;
1335 }
1336 
fec_phy_init(struct fec_priv * priv,struct udevice * dev)1337 static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1338 {
1339 	struct phy_device *phydev;
1340 	int addr;
1341 
1342 	addr = device_get_phy_addr(priv, dev);
1343 #ifdef CONFIG_FEC_MXC_PHYADDR
1344 	addr = CONFIG_FEC_MXC_PHYADDR;
1345 #endif
1346 
1347 	phydev = phy_connect(priv->bus, addr, dev, priv->interface);
1348 	if (!phydev)
1349 		return -ENODEV;
1350 
1351 	priv->phydev = phydev;
1352 	priv->phydev->node = priv->phy_of_node;
1353 	phy_config(phydev);
1354 
1355 	return 0;
1356 }
1357 
1358 #if CONFIG_IS_ENABLED(DM_GPIO)
1359 /* FEC GPIO reset */
fec_gpio_reset(struct fec_priv * priv)1360 static void fec_gpio_reset(struct fec_priv *priv)
1361 {
1362 	debug("fec_gpio_reset: fec_gpio_reset(dev)\n");
1363 	if (dm_gpio_is_valid(&priv->phy_reset_gpio)) {
1364 		dm_gpio_set_value(&priv->phy_reset_gpio, 1);
1365 		mdelay(priv->reset_delay);
1366 		dm_gpio_set_value(&priv->phy_reset_gpio, 0);
1367 		if (priv->reset_post_delay)
1368 			mdelay(priv->reset_post_delay);
1369 	}
1370 }
1371 #endif
1372 
fecmxc_probe(struct udevice * dev)1373 static int fecmxc_probe(struct udevice *dev)
1374 {
1375 	bool dm_mii_bus = true;
1376 	struct eth_pdata *pdata = dev_get_plat(dev);
1377 	struct fec_priv *priv = dev_get_priv(dev);
1378 	struct mii_dev *bus = NULL;
1379 	uint32_t start;
1380 	int ret;
1381 
1382 	if (CONFIG_IS_ENABLED(IMX_MODULE_FUSE)) {
1383 		if (enet_fused((ulong)priv->eth)) {
1384 			printf("SoC fuse indicates Ethernet@0x%lx is unavailable.\n", (ulong)priv->eth);
1385 			return -ENODEV;
1386 		}
1387 	}
1388 
1389 	if (IS_ENABLED(CONFIG_IMX8)) {
1390 		ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1391 		if (ret < 0) {
1392 			debug("Can't get FEC ipg clk: %d\n", ret);
1393 			return ret;
1394 		}
1395 		ret = clk_enable(&priv->ipg_clk);
1396 		if (ret < 0) {
1397 			debug("Can't enable FEC ipg clk: %d\n", ret);
1398 			return ret;
1399 		}
1400 
1401 		priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1402 	} else if (CONFIG_IS_ENABLED(CLK_CCF)) {
1403 		ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1404 		if (ret < 0) {
1405 			debug("Can't get FEC ipg clk: %d\n", ret);
1406 			return ret;
1407 		}
1408 		ret = clk_enable(&priv->ipg_clk);
1409 		if(ret)
1410 			return ret;
1411 
1412 		ret = clk_get_by_name(dev, "ahb", &priv->ahb_clk);
1413 		if (ret < 0) {
1414 			debug("Can't get FEC ahb clk: %d\n", ret);
1415 			return ret;
1416 		}
1417 		ret = clk_enable(&priv->ahb_clk);
1418 		if (ret)
1419 			return ret;
1420 
1421 		ret = clk_get_by_name(dev, "enet_out", &priv->clk_enet_out);
1422 		if (!ret) {
1423 			ret = clk_enable(&priv->clk_enet_out);
1424 			if (ret)
1425 				return ret;
1426 		}
1427 
1428 		ret = clk_get_by_name(dev, "enet_clk_ref", &priv->clk_ref);
1429 		if (!ret) {
1430 			ret = clk_enable(&priv->clk_ref);
1431 			if (ret)
1432 				return ret;
1433 		}
1434 
1435 		ret = clk_get_by_name(dev, "ptp", &priv->clk_ptp);
1436 		if (!ret) {
1437 			ret = clk_enable(&priv->clk_ptp);
1438 			if (ret)
1439 				return ret;
1440 		}
1441 
1442 		priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1443 	}
1444 
1445 	ret = fec_alloc_descs(priv);
1446 	if (ret)
1447 		return ret;
1448 
1449 #ifdef CONFIG_DM_REGULATOR
1450 	if (priv->phy_supply) {
1451 		ret = regulator_set_enable(priv->phy_supply, true);
1452 		if (ret) {
1453 			printf("%s: Error enabling phy supply\n", dev->name);
1454 			return ret;
1455 		}
1456 	}
1457 #endif
1458 
1459 #if CONFIG_IS_ENABLED(DM_GPIO)
1460 	fec_gpio_reset(priv);
1461 #endif
1462 	/* Reset chip. */
1463 	writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1464 	       &priv->eth->ecntrl);
1465 	start = get_timer(0);
1466 	while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1467 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1468 			printf("FEC MXC: Timeout reseting chip\n");
1469 			goto err_timeout;
1470 		}
1471 		udelay(10);
1472 	}
1473 
1474 	fec_reg_setup(priv);
1475 
1476 	priv->dev_id = dev_seq(dev);
1477 
1478 #ifdef CONFIG_DM_ETH_PHY
1479 	bus = eth_phy_get_mdio_bus(dev);
1480 #endif
1481 
1482 	if (!bus) {
1483 		dm_mii_bus = false;
1484 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1485 		bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE,
1486 				     dev_seq(dev));
1487 #else
1488 		bus = fec_get_miibus((ulong)priv->eth, dev_seq(dev));
1489 #endif
1490 	}
1491 	if (!bus) {
1492 		ret = -ENOMEM;
1493 		goto err_mii;
1494 	}
1495 
1496 #ifdef CONFIG_DM_ETH_PHY
1497 	eth_phy_set_mdio_bus(dev, bus);
1498 #endif
1499 
1500 	priv->bus = bus;
1501 	priv->interface = pdata->phy_interface;
1502 	switch (priv->interface) {
1503 	case PHY_INTERFACE_MODE_MII:
1504 		priv->xcv_type = MII100;
1505 		break;
1506 	case PHY_INTERFACE_MODE_RMII:
1507 		priv->xcv_type = RMII;
1508 		break;
1509 	case PHY_INTERFACE_MODE_RGMII:
1510 	case PHY_INTERFACE_MODE_RGMII_ID:
1511 	case PHY_INTERFACE_MODE_RGMII_RXID:
1512 	case PHY_INTERFACE_MODE_RGMII_TXID:
1513 		priv->xcv_type = RGMII;
1514 		break;
1515 	default:
1516 		priv->xcv_type = CONFIG_FEC_XCV_TYPE;
1517 		printf("Unsupported interface type %d defaulting to %d\n",
1518 		       priv->interface, priv->xcv_type);
1519 		break;
1520 	}
1521 
1522 	ret = fec_phy_init(priv, dev);
1523 	if (ret)
1524 		goto err_phy;
1525 
1526 	return 0;
1527 
1528 err_phy:
1529 	if (!dm_mii_bus) {
1530 		mdio_unregister(bus);
1531 		free(bus);
1532 	}
1533 err_mii:
1534 err_timeout:
1535 	fec_free_descs(priv);
1536 	return ret;
1537 }
1538 
fecmxc_remove(struct udevice * dev)1539 static int fecmxc_remove(struct udevice *dev)
1540 {
1541 	struct fec_priv *priv = dev_get_priv(dev);
1542 
1543 	free(priv->phydev);
1544 	fec_free_descs(priv);
1545 	mdio_unregister(priv->bus);
1546 	mdio_free(priv->bus);
1547 
1548 #ifdef CONFIG_DM_REGULATOR
1549 	if (priv->phy_supply)
1550 		regulator_set_enable(priv->phy_supply, false);
1551 #endif
1552 
1553 	return 0;
1554 }
1555 
fecmxc_of_to_plat(struct udevice * dev)1556 static int fecmxc_of_to_plat(struct udevice *dev)
1557 {
1558 	int ret = 0;
1559 	struct eth_pdata *pdata = dev_get_plat(dev);
1560 	struct fec_priv *priv = dev_get_priv(dev);
1561 	const char *phy_mode;
1562 
1563 	pdata->iobase = dev_read_addr(dev);
1564 	priv->eth = (struct ethernet_regs *)pdata->iobase;
1565 
1566 	pdata->phy_interface = -1;
1567 	phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1568 			       NULL);
1569 	if (phy_mode)
1570 		pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1571 	if (pdata->phy_interface == -1) {
1572 		debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1573 		return -EINVAL;
1574 	}
1575 
1576 #ifdef CONFIG_DM_REGULATOR
1577 	device_get_supply_regulator(dev, "phy-supply", &priv->phy_supply);
1578 #endif
1579 
1580 #if CONFIG_IS_ENABLED(DM_GPIO)
1581 	ret = gpio_request_by_name(dev, "phy-reset-gpios", 0,
1582 				   &priv->phy_reset_gpio, GPIOD_IS_OUT);
1583 	if (ret < 0)
1584 		return 0; /* property is optional, don't return error! */
1585 
1586 	priv->reset_delay = dev_read_u32_default(dev, "phy-reset-duration", 1);
1587 	if (priv->reset_delay > 1000) {
1588 		printf("FEC MXC: phy reset duration should be <= 1000ms\n");
1589 		/* property value wrong, use default value */
1590 		priv->reset_delay = 1;
1591 	}
1592 
1593 	priv->reset_post_delay = dev_read_u32_default(dev,
1594 						      "phy-reset-post-delay",
1595 						      0);
1596 	if (priv->reset_post_delay > 1000) {
1597 		printf("FEC MXC: phy reset post delay should be <= 1000ms\n");
1598 		/* property value wrong, use default value */
1599 		priv->reset_post_delay = 0;
1600 	}
1601 #endif
1602 
1603 	return 0;
1604 }
1605 
1606 static const struct udevice_id fecmxc_ids[] = {
1607 	{ .compatible = "fsl,imx28-fec" },
1608 	{ .compatible = "fsl,imx6q-fec" },
1609 	{ .compatible = "fsl,imx6sl-fec" },
1610 	{ .compatible = "fsl,imx6sx-fec" },
1611 	{ .compatible = "fsl,imx6ul-fec" },
1612 	{ .compatible = "fsl,imx53-fec" },
1613 	{ .compatible = "fsl,imx7d-fec" },
1614 	{ .compatible = "fsl,mvf600-fec" },
1615 	{ }
1616 };
1617 
1618 U_BOOT_DRIVER(fecmxc_gem) = {
1619 	.name	= "fecmxc",
1620 	.id	= UCLASS_ETH,
1621 	.of_match = fecmxc_ids,
1622 	.of_to_plat = fecmxc_of_to_plat,
1623 	.probe	= fecmxc_probe,
1624 	.remove	= fecmxc_remove,
1625 	.ops	= &fecmxc_ops,
1626 	.priv_auto	= sizeof(struct fec_priv),
1627 	.plat_auto	= sizeof(struct eth_pdata),
1628 };
1629 #endif
1630