1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Filesystem-level keyring for fscrypt
4 *
5 * Copyright 2019 Google LLC
6 */
7
8 /*
9 * This file implements management of fscrypt master keys in the
10 * filesystem-level keyring, including the ioctls:
11 *
12 * - FS_IOC_ADD_ENCRYPTION_KEY
13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16 *
17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18 * information about these ioctls.
19 */
20
21 #include <asm/unaligned.h>
22 #include <crypto/skcipher.h>
23 #include <linux/key-type.h>
24 #include <linux/random.h>
25 #include <linux/seq_file.h>
26
27 #include "fscrypt_private.h"
28
29 /* The master encryption keys for a filesystem (->s_master_keys) */
30 struct fscrypt_keyring {
31 /*
32 * Lock that protects ->key_hashtable. It does *not* protect the
33 * fscrypt_master_key structs themselves.
34 */
35 spinlock_t lock;
36
37 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
38 struct hlist_head key_hashtable[128];
39 };
40
wipe_master_key_secret(struct fscrypt_master_key_secret * secret)41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
42 {
43 fscrypt_destroy_hkdf(&secret->hkdf);
44 memzero_explicit(secret, sizeof(*secret));
45 }
46
move_master_key_secret(struct fscrypt_master_key_secret * dst,struct fscrypt_master_key_secret * src)47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
48 struct fscrypt_master_key_secret *src)
49 {
50 memcpy(dst, src, sizeof(*dst));
51 memzero_explicit(src, sizeof(*src));
52 }
53
fscrypt_free_master_key(struct rcu_head * head)54 static void fscrypt_free_master_key(struct rcu_head *head)
55 {
56 struct fscrypt_master_key *mk =
57 container_of(head, struct fscrypt_master_key, mk_rcu_head);
58 /*
59 * The master key secret and any embedded subkeys should have already
60 * been wiped when the last active reference to the fscrypt_master_key
61 * struct was dropped; doing it here would be unnecessarily late.
62 * Nevertheless, use kfree_sensitive() in case anything was missed.
63 */
64 kfree_sensitive(mk);
65 }
66
fscrypt_put_master_key(struct fscrypt_master_key * mk)67 void fscrypt_put_master_key(struct fscrypt_master_key *mk)
68 {
69 if (!refcount_dec_and_test(&mk->mk_struct_refs))
70 return;
71 /*
72 * No structural references left, so free ->mk_users, and also free the
73 * fscrypt_master_key struct itself after an RCU grace period ensures
74 * that concurrent keyring lookups can no longer find it.
75 */
76 WARN_ON(refcount_read(&mk->mk_active_refs) != 0);
77 key_put(mk->mk_users);
78 mk->mk_users = NULL;
79 call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
80 }
81
fscrypt_put_master_key_activeref(struct super_block * sb,struct fscrypt_master_key * mk)82 void fscrypt_put_master_key_activeref(struct super_block *sb,
83 struct fscrypt_master_key *mk)
84 {
85 size_t i;
86
87 if (!refcount_dec_and_test(&mk->mk_active_refs))
88 return;
89 /*
90 * No active references left, so complete the full removal of this
91 * fscrypt_master_key struct by removing it from the keyring and
92 * destroying any subkeys embedded in it.
93 */
94
95 spin_lock(&sb->s_master_keys->lock);
96 hlist_del_rcu(&mk->mk_node);
97 spin_unlock(&sb->s_master_keys->lock);
98
99 /*
100 * ->mk_active_refs == 0 implies that ->mk_secret is not present and
101 * that ->mk_decrypted_inodes is empty.
102 */
103 WARN_ON(is_master_key_secret_present(&mk->mk_secret));
104 WARN_ON(!list_empty(&mk->mk_decrypted_inodes));
105
106 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
107 fscrypt_destroy_prepared_key(
108 sb, &mk->mk_direct_keys[i]);
109 fscrypt_destroy_prepared_key(
110 sb, &mk->mk_iv_ino_lblk_64_keys[i]);
111 fscrypt_destroy_prepared_key(
112 sb, &mk->mk_iv_ino_lblk_32_keys[i]);
113 }
114 memzero_explicit(&mk->mk_ino_hash_key,
115 sizeof(mk->mk_ino_hash_key));
116 mk->mk_ino_hash_key_initialized = false;
117
118 /* Drop the structural ref associated with the active refs. */
119 fscrypt_put_master_key(mk);
120 }
121
valid_key_spec(const struct fscrypt_key_specifier * spec)122 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
123 {
124 if (spec->__reserved)
125 return false;
126 return master_key_spec_len(spec) != 0;
127 }
128
fscrypt_user_key_instantiate(struct key * key,struct key_preparsed_payload * prep)129 static int fscrypt_user_key_instantiate(struct key *key,
130 struct key_preparsed_payload *prep)
131 {
132 /*
133 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
134 * each key, regardless of the exact key size. The amount of memory
135 * actually used is greater than the size of the raw key anyway.
136 */
137 return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
138 }
139
fscrypt_user_key_describe(const struct key * key,struct seq_file * m)140 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
141 {
142 seq_puts(m, key->description);
143 }
144
145 /*
146 * Type of key in ->mk_users. Each key of this type represents a particular
147 * user who has added a particular master key.
148 *
149 * Note that the name of this key type really should be something like
150 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen
151 * mainly for simplicity of presentation in /proc/keys when read by a non-root
152 * user. And it is expected to be rare that a key is actually added by multiple
153 * users, since users should keep their encryption keys confidential.
154 */
155 static struct key_type key_type_fscrypt_user = {
156 .name = ".fscrypt",
157 .instantiate = fscrypt_user_key_instantiate,
158 .describe = fscrypt_user_key_describe,
159 };
160
161 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \
162 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
163 CONST_STRLEN("-users") + 1)
164
165 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \
166 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
167
format_mk_users_keyring_description(char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])168 static void format_mk_users_keyring_description(
169 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
170 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
171 {
172 sprintf(description, "fscrypt-%*phN-users",
173 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
174 }
175
format_mk_user_description(char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])176 static void format_mk_user_description(
177 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
178 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
179 {
180
181 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
182 mk_identifier, __kuid_val(current_fsuid()));
183 }
184
185 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */
allocate_filesystem_keyring(struct super_block * sb)186 static int allocate_filesystem_keyring(struct super_block *sb)
187 {
188 struct fscrypt_keyring *keyring;
189
190 if (sb->s_master_keys)
191 return 0;
192
193 keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
194 if (!keyring)
195 return -ENOMEM;
196 spin_lock_init(&keyring->lock);
197 /*
198 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
199 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
200 * concurrent tasks can ACQUIRE it.
201 */
202 smp_store_release(&sb->s_master_keys, keyring);
203 return 0;
204 }
205
206 /*
207 * Release all encryption keys that have been added to the filesystem, along
208 * with the keyring that contains them.
209 *
210 * This is called at unmount time. The filesystem's underlying block device(s)
211 * are still available at this time; this is important because after user file
212 * accesses have been allowed, this function may need to evict keys from the
213 * keyslots of an inline crypto engine, which requires the block device(s).
214 */
fscrypt_destroy_keyring(struct super_block * sb)215 void fscrypt_destroy_keyring(struct super_block *sb)
216 {
217 struct fscrypt_keyring *keyring = sb->s_master_keys;
218 size_t i;
219
220 if (!keyring)
221 return;
222
223 for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
224 struct hlist_head *bucket = &keyring->key_hashtable[i];
225 struct fscrypt_master_key *mk;
226 struct hlist_node *tmp;
227
228 hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
229 /*
230 * Since all inodes were already evicted, every key
231 * remaining in the keyring should have an empty inode
232 * list, and should only still be in the keyring due to
233 * the single active ref associated with ->mk_secret.
234 * There should be no structural refs beyond the one
235 * associated with the active ref.
236 */
237 WARN_ON(refcount_read(&mk->mk_active_refs) != 1);
238 WARN_ON(refcount_read(&mk->mk_struct_refs) != 1);
239 WARN_ON(!is_master_key_secret_present(&mk->mk_secret));
240 wipe_master_key_secret(&mk->mk_secret);
241 fscrypt_put_master_key_activeref(sb, mk);
242 }
243 }
244 kfree_sensitive(keyring);
245 sb->s_master_keys = NULL;
246 }
247
248 static struct hlist_head *
fscrypt_mk_hash_bucket(struct fscrypt_keyring * keyring,const struct fscrypt_key_specifier * mk_spec)249 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
250 const struct fscrypt_key_specifier *mk_spec)
251 {
252 /*
253 * Since key specifiers should be "random" values, it is sufficient to
254 * use a trivial hash function that just takes the first several bits of
255 * the key specifier.
256 */
257 unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
258
259 return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
260 }
261
262 /*
263 * Find the specified master key struct in ->s_master_keys and take a structural
264 * ref to it. The structural ref guarantees that the key struct continues to
265 * exist, but it does *not* guarantee that ->s_master_keys continues to contain
266 * the key struct. The structural ref needs to be dropped by
267 * fscrypt_put_master_key(). Returns NULL if the key struct is not found.
268 */
269 struct fscrypt_master_key *
fscrypt_find_master_key(struct super_block * sb,const struct fscrypt_key_specifier * mk_spec)270 fscrypt_find_master_key(struct super_block *sb,
271 const struct fscrypt_key_specifier *mk_spec)
272 {
273 struct fscrypt_keyring *keyring;
274 struct hlist_head *bucket;
275 struct fscrypt_master_key *mk;
276
277 /*
278 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
279 * I.e., another task can publish ->s_master_keys concurrently,
280 * executing a RELEASE barrier. We need to use smp_load_acquire() here
281 * to safely ACQUIRE the memory the other task published.
282 */
283 keyring = smp_load_acquire(&sb->s_master_keys);
284 if (keyring == NULL)
285 return NULL; /* No keyring yet, so no keys yet. */
286
287 bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
288 rcu_read_lock();
289 switch (mk_spec->type) {
290 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
291 hlist_for_each_entry_rcu(mk, bucket, mk_node) {
292 if (mk->mk_spec.type ==
293 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
294 memcmp(mk->mk_spec.u.descriptor,
295 mk_spec->u.descriptor,
296 FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
297 refcount_inc_not_zero(&mk->mk_struct_refs))
298 goto out;
299 }
300 break;
301 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
302 hlist_for_each_entry_rcu(mk, bucket, mk_node) {
303 if (mk->mk_spec.type ==
304 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
305 memcmp(mk->mk_spec.u.identifier,
306 mk_spec->u.identifier,
307 FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
308 refcount_inc_not_zero(&mk->mk_struct_refs))
309 goto out;
310 }
311 break;
312 }
313 mk = NULL;
314 out:
315 rcu_read_unlock();
316 return mk;
317 }
318
allocate_master_key_users_keyring(struct fscrypt_master_key * mk)319 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
320 {
321 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
322 struct key *keyring;
323
324 format_mk_users_keyring_description(description,
325 mk->mk_spec.u.identifier);
326 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
327 current_cred(), KEY_POS_SEARCH |
328 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
329 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
330 if (IS_ERR(keyring))
331 return PTR_ERR(keyring);
332
333 mk->mk_users = keyring;
334 return 0;
335 }
336
337 /*
338 * Find the current user's "key" in the master key's ->mk_users.
339 * Returns ERR_PTR(-ENOKEY) if not found.
340 */
find_master_key_user(struct fscrypt_master_key * mk)341 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
342 {
343 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
344 key_ref_t keyref;
345
346 format_mk_user_description(description, mk->mk_spec.u.identifier);
347
348 /*
349 * We need to mark the keyring reference as "possessed" so that we
350 * acquire permission to search it, via the KEY_POS_SEARCH permission.
351 */
352 keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
353 &key_type_fscrypt_user, description, false);
354 if (IS_ERR(keyref)) {
355 if (PTR_ERR(keyref) == -EAGAIN || /* not found */
356 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
357 keyref = ERR_PTR(-ENOKEY);
358 return ERR_CAST(keyref);
359 }
360 return key_ref_to_ptr(keyref);
361 }
362
363 /*
364 * Give the current user a "key" in ->mk_users. This charges the user's quota
365 * and marks the master key as added by the current user, so that it cannot be
366 * removed by another user with the key. Either ->mk_sem must be held for
367 * write, or the master key must be still undergoing initialization.
368 */
add_master_key_user(struct fscrypt_master_key * mk)369 static int add_master_key_user(struct fscrypt_master_key *mk)
370 {
371 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
372 struct key *mk_user;
373 int err;
374
375 format_mk_user_description(description, mk->mk_spec.u.identifier);
376 mk_user = key_alloc(&key_type_fscrypt_user, description,
377 current_fsuid(), current_gid(), current_cred(),
378 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
379 if (IS_ERR(mk_user))
380 return PTR_ERR(mk_user);
381
382 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
383 key_put(mk_user);
384 return err;
385 }
386
387 /*
388 * Remove the current user's "key" from ->mk_users.
389 * ->mk_sem must be held for write.
390 *
391 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
392 */
remove_master_key_user(struct fscrypt_master_key * mk)393 static int remove_master_key_user(struct fscrypt_master_key *mk)
394 {
395 struct key *mk_user;
396 int err;
397
398 mk_user = find_master_key_user(mk);
399 if (IS_ERR(mk_user))
400 return PTR_ERR(mk_user);
401 err = key_unlink(mk->mk_users, mk_user);
402 key_put(mk_user);
403 return err;
404 }
405
406 /*
407 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
408 * insert it into sb->s_master_keys.
409 */
add_new_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)410 static int add_new_master_key(struct super_block *sb,
411 struct fscrypt_master_key_secret *secret,
412 const struct fscrypt_key_specifier *mk_spec)
413 {
414 struct fscrypt_keyring *keyring = sb->s_master_keys;
415 struct fscrypt_master_key *mk;
416 int err;
417
418 mk = kzalloc(sizeof(*mk), GFP_KERNEL);
419 if (!mk)
420 return -ENOMEM;
421
422 init_rwsem(&mk->mk_sem);
423 refcount_set(&mk->mk_struct_refs, 1);
424 mk->mk_spec = *mk_spec;
425
426 INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
427 spin_lock_init(&mk->mk_decrypted_inodes_lock);
428
429 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
430 err = allocate_master_key_users_keyring(mk);
431 if (err)
432 goto out_put;
433 err = add_master_key_user(mk);
434 if (err)
435 goto out_put;
436 }
437
438 move_master_key_secret(&mk->mk_secret, secret);
439 refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */
440
441 spin_lock(&keyring->lock);
442 hlist_add_head_rcu(&mk->mk_node,
443 fscrypt_mk_hash_bucket(keyring, mk_spec));
444 spin_unlock(&keyring->lock);
445 return 0;
446
447 out_put:
448 fscrypt_put_master_key(mk);
449 return err;
450 }
451
452 #define KEY_DEAD 1
453
add_existing_master_key(struct fscrypt_master_key * mk,struct fscrypt_master_key_secret * secret)454 static int add_existing_master_key(struct fscrypt_master_key *mk,
455 struct fscrypt_master_key_secret *secret)
456 {
457 int err;
458
459 /*
460 * If the current user is already in ->mk_users, then there's nothing to
461 * do. Otherwise, we need to add the user to ->mk_users. (Neither is
462 * applicable for v1 policy keys, which have NULL ->mk_users.)
463 */
464 if (mk->mk_users) {
465 struct key *mk_user = find_master_key_user(mk);
466
467 if (mk_user != ERR_PTR(-ENOKEY)) {
468 if (IS_ERR(mk_user))
469 return PTR_ERR(mk_user);
470 key_put(mk_user);
471 return 0;
472 }
473 err = add_master_key_user(mk);
474 if (err)
475 return err;
476 }
477
478 /* Re-add the secret if needed. */
479 if (!is_master_key_secret_present(&mk->mk_secret)) {
480 if (!refcount_inc_not_zero(&mk->mk_active_refs))
481 return KEY_DEAD;
482 move_master_key_secret(&mk->mk_secret, secret);
483 }
484
485 return 0;
486 }
487
do_add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)488 static int do_add_master_key(struct super_block *sb,
489 struct fscrypt_master_key_secret *secret,
490 const struct fscrypt_key_specifier *mk_spec)
491 {
492 static DEFINE_MUTEX(fscrypt_add_key_mutex);
493 struct fscrypt_master_key *mk;
494 int err;
495
496 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
497
498 mk = fscrypt_find_master_key(sb, mk_spec);
499 if (!mk) {
500 /* Didn't find the key in ->s_master_keys. Add it. */
501 err = allocate_filesystem_keyring(sb);
502 if (!err)
503 err = add_new_master_key(sb, secret, mk_spec);
504 } else {
505 /*
506 * Found the key in ->s_master_keys. Re-add the secret if
507 * needed, and add the user to ->mk_users if needed.
508 */
509 down_write(&mk->mk_sem);
510 err = add_existing_master_key(mk, secret);
511 up_write(&mk->mk_sem);
512 if (err == KEY_DEAD) {
513 /*
514 * We found a key struct, but it's already been fully
515 * removed. Ignore the old struct and add a new one.
516 * fscrypt_add_key_mutex means we don't need to worry
517 * about concurrent adds.
518 */
519 err = add_new_master_key(sb, secret, mk_spec);
520 }
521 fscrypt_put_master_key(mk);
522 }
523 mutex_unlock(&fscrypt_add_key_mutex);
524 return err;
525 }
526
add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,struct fscrypt_key_specifier * key_spec)527 static int add_master_key(struct super_block *sb,
528 struct fscrypt_master_key_secret *secret,
529 struct fscrypt_key_specifier *key_spec)
530 {
531 int err;
532
533 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
534 err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
535 secret->size);
536 if (err)
537 return err;
538
539 /*
540 * Now that the HKDF context is initialized, the raw key is no
541 * longer needed.
542 */
543 memzero_explicit(secret->raw, secret->size);
544
545 /* Calculate the key identifier */
546 err = fscrypt_hkdf_expand(&secret->hkdf,
547 HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
548 key_spec->u.identifier,
549 FSCRYPT_KEY_IDENTIFIER_SIZE);
550 if (err)
551 return err;
552 }
553 return do_add_master_key(sb, secret, key_spec);
554 }
555
fscrypt_provisioning_key_preparse(struct key_preparsed_payload * prep)556 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
557 {
558 const struct fscrypt_provisioning_key_payload *payload = prep->data;
559
560 if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
561 prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
562 return -EINVAL;
563
564 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
565 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
566 return -EINVAL;
567
568 if (payload->__reserved)
569 return -EINVAL;
570
571 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
572 if (!prep->payload.data[0])
573 return -ENOMEM;
574
575 prep->quotalen = prep->datalen;
576 return 0;
577 }
578
fscrypt_provisioning_key_free_preparse(struct key_preparsed_payload * prep)579 static void fscrypt_provisioning_key_free_preparse(
580 struct key_preparsed_payload *prep)
581 {
582 kfree_sensitive(prep->payload.data[0]);
583 }
584
fscrypt_provisioning_key_describe(const struct key * key,struct seq_file * m)585 static void fscrypt_provisioning_key_describe(const struct key *key,
586 struct seq_file *m)
587 {
588 seq_puts(m, key->description);
589 if (key_is_positive(key)) {
590 const struct fscrypt_provisioning_key_payload *payload =
591 key->payload.data[0];
592
593 seq_printf(m, ": %u [%u]", key->datalen, payload->type);
594 }
595 }
596
fscrypt_provisioning_key_destroy(struct key * key)597 static void fscrypt_provisioning_key_destroy(struct key *key)
598 {
599 kfree_sensitive(key->payload.data[0]);
600 }
601
602 static struct key_type key_type_fscrypt_provisioning = {
603 .name = "fscrypt-provisioning",
604 .preparse = fscrypt_provisioning_key_preparse,
605 .free_preparse = fscrypt_provisioning_key_free_preparse,
606 .instantiate = generic_key_instantiate,
607 .describe = fscrypt_provisioning_key_describe,
608 .destroy = fscrypt_provisioning_key_destroy,
609 };
610
611 /*
612 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
613 * store it into 'secret'.
614 *
615 * The key must be of type "fscrypt-provisioning" and must have the field
616 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
617 * only usable with fscrypt with the particular KDF version identified by
618 * 'type'. We don't use the "logon" key type because there's no way to
619 * completely restrict the use of such keys; they can be used by any kernel API
620 * that accepts "logon" keys and doesn't require a specific service prefix.
621 *
622 * The ability to specify the key via Linux keyring key is intended for cases
623 * where userspace needs to re-add keys after the filesystem is unmounted and
624 * re-mounted. Most users should just provide the raw key directly instead.
625 */
get_keyring_key(u32 key_id,u32 type,struct fscrypt_master_key_secret * secret)626 static int get_keyring_key(u32 key_id, u32 type,
627 struct fscrypt_master_key_secret *secret)
628 {
629 key_ref_t ref;
630 struct key *key;
631 const struct fscrypt_provisioning_key_payload *payload;
632 int err;
633
634 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
635 if (IS_ERR(ref))
636 return PTR_ERR(ref);
637 key = key_ref_to_ptr(ref);
638
639 if (key->type != &key_type_fscrypt_provisioning)
640 goto bad_key;
641 payload = key->payload.data[0];
642
643 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
644 if (payload->type != type)
645 goto bad_key;
646
647 secret->size = key->datalen - sizeof(*payload);
648 memcpy(secret->raw, payload->raw, secret->size);
649 err = 0;
650 goto out_put;
651
652 bad_key:
653 err = -EKEYREJECTED;
654 out_put:
655 key_ref_put(ref);
656 return err;
657 }
658
659 /*
660 * Add a master encryption key to the filesystem, causing all files which were
661 * encrypted with it to appear "unlocked" (decrypted) when accessed.
662 *
663 * When adding a key for use by v1 encryption policies, this ioctl is
664 * privileged, and userspace must provide the 'key_descriptor'.
665 *
666 * When adding a key for use by v2+ encryption policies, this ioctl is
667 * unprivileged. This is needed, in general, to allow non-root users to use
668 * encryption without encountering the visibility problems of process-subscribed
669 * keyrings and the inability to properly remove keys. This works by having
670 * each key identified by its cryptographically secure hash --- the
671 * 'key_identifier'. The cryptographic hash ensures that a malicious user
672 * cannot add the wrong key for a given identifier. Furthermore, each added key
673 * is charged to the appropriate user's quota for the keyrings service, which
674 * prevents a malicious user from adding too many keys. Finally, we forbid a
675 * user from removing a key while other users have added it too, which prevents
676 * a user who knows another user's key from causing a denial-of-service by
677 * removing it at an inopportune time. (We tolerate that a user who knows a key
678 * can prevent other users from removing it.)
679 *
680 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
681 * Documentation/filesystems/fscrypt.rst.
682 */
fscrypt_ioctl_add_key(struct file * filp,void __user * _uarg)683 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
684 {
685 struct super_block *sb = file_inode(filp)->i_sb;
686 struct fscrypt_add_key_arg __user *uarg = _uarg;
687 struct fscrypt_add_key_arg arg;
688 struct fscrypt_master_key_secret secret;
689 int err;
690
691 if (copy_from_user(&arg, uarg, sizeof(arg)))
692 return -EFAULT;
693
694 if (!valid_key_spec(&arg.key_spec))
695 return -EINVAL;
696
697 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
698 return -EINVAL;
699
700 /*
701 * Only root can add keys that are identified by an arbitrary descriptor
702 * rather than by a cryptographic hash --- since otherwise a malicious
703 * user could add the wrong key.
704 */
705 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
706 !capable(CAP_SYS_ADMIN))
707 return -EACCES;
708
709 memset(&secret, 0, sizeof(secret));
710 if (arg.key_id) {
711 if (arg.raw_size != 0)
712 return -EINVAL;
713 err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
714 if (err)
715 goto out_wipe_secret;
716 } else {
717 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
718 arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
719 return -EINVAL;
720 secret.size = arg.raw_size;
721 err = -EFAULT;
722 if (copy_from_user(secret.raw, uarg->raw, secret.size))
723 goto out_wipe_secret;
724 }
725
726 err = add_master_key(sb, &secret, &arg.key_spec);
727 if (err)
728 goto out_wipe_secret;
729
730 /* Return the key identifier to userspace, if applicable */
731 err = -EFAULT;
732 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
733 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
734 FSCRYPT_KEY_IDENTIFIER_SIZE))
735 goto out_wipe_secret;
736 err = 0;
737 out_wipe_secret:
738 wipe_master_key_secret(&secret);
739 return err;
740 }
741 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
742
743 static void
fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret * secret)744 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
745 {
746 static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
747
748 get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
749
750 memset(secret, 0, sizeof(*secret));
751 secret->size = FSCRYPT_MAX_KEY_SIZE;
752 memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE);
753 }
754
fscrypt_get_test_dummy_key_identifier(u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])755 int fscrypt_get_test_dummy_key_identifier(
756 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
757 {
758 struct fscrypt_master_key_secret secret;
759 int err;
760
761 fscrypt_get_test_dummy_secret(&secret);
762
763 err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
764 if (err)
765 goto out;
766 err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
767 NULL, 0, key_identifier,
768 FSCRYPT_KEY_IDENTIFIER_SIZE);
769 out:
770 wipe_master_key_secret(&secret);
771 return err;
772 }
773
774 /**
775 * fscrypt_add_test_dummy_key() - add the test dummy encryption key
776 * @sb: the filesystem instance to add the key to
777 * @key_spec: the key specifier of the test dummy encryption key
778 *
779 * Add the key for the test_dummy_encryption mount option to the filesystem. To
780 * prevent misuse of this mount option, a per-boot random key is used instead of
781 * a hardcoded one. This makes it so that any encrypted files created using
782 * this option won't be accessible after a reboot.
783 *
784 * Return: 0 on success, -errno on failure
785 */
fscrypt_add_test_dummy_key(struct super_block * sb,struct fscrypt_key_specifier * key_spec)786 int fscrypt_add_test_dummy_key(struct super_block *sb,
787 struct fscrypt_key_specifier *key_spec)
788 {
789 struct fscrypt_master_key_secret secret;
790 int err;
791
792 fscrypt_get_test_dummy_secret(&secret);
793 err = add_master_key(sb, &secret, key_spec);
794 wipe_master_key_secret(&secret);
795 return err;
796 }
797
798 /*
799 * Verify that the current user has added a master key with the given identifier
800 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting
801 * their files using some other user's key which they don't actually know.
802 * Cryptographically this isn't much of a problem, but the semantics of this
803 * would be a bit weird, so it's best to just forbid it.
804 *
805 * The system administrator (CAP_FOWNER) can override this, which should be
806 * enough for any use cases where encryption policies are being set using keys
807 * that were chosen ahead of time but aren't available at the moment.
808 *
809 * Note that the key may have already removed by the time this returns, but
810 * that's okay; we just care whether the key was there at some point.
811 *
812 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
813 */
fscrypt_verify_key_added(struct super_block * sb,const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])814 int fscrypt_verify_key_added(struct super_block *sb,
815 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
816 {
817 struct fscrypt_key_specifier mk_spec;
818 struct fscrypt_master_key *mk;
819 struct key *mk_user;
820 int err;
821
822 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
823 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
824
825 mk = fscrypt_find_master_key(sb, &mk_spec);
826 if (!mk) {
827 err = -ENOKEY;
828 goto out;
829 }
830 down_read(&mk->mk_sem);
831 mk_user = find_master_key_user(mk);
832 if (IS_ERR(mk_user)) {
833 err = PTR_ERR(mk_user);
834 } else {
835 key_put(mk_user);
836 err = 0;
837 }
838 up_read(&mk->mk_sem);
839 fscrypt_put_master_key(mk);
840 out:
841 if (err == -ENOKEY && capable(CAP_FOWNER))
842 err = 0;
843 return err;
844 }
845
846 /*
847 * Try to evict the inode's dentries from the dentry cache. If the inode is a
848 * directory, then it can have at most one dentry; however, that dentry may be
849 * pinned by child dentries, so first try to evict the children too.
850 */
shrink_dcache_inode(struct inode * inode)851 static void shrink_dcache_inode(struct inode *inode)
852 {
853 struct dentry *dentry;
854
855 if (S_ISDIR(inode->i_mode)) {
856 dentry = d_find_any_alias(inode);
857 if (dentry) {
858 shrink_dcache_parent(dentry);
859 dput(dentry);
860 }
861 }
862 d_prune_aliases(inode);
863 }
864
evict_dentries_for_decrypted_inodes(struct fscrypt_master_key * mk)865 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
866 {
867 struct fscrypt_info *ci;
868 struct inode *inode;
869 struct inode *toput_inode = NULL;
870
871 spin_lock(&mk->mk_decrypted_inodes_lock);
872
873 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
874 inode = ci->ci_inode;
875 spin_lock(&inode->i_lock);
876 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
877 spin_unlock(&inode->i_lock);
878 continue;
879 }
880 __iget(inode);
881 spin_unlock(&inode->i_lock);
882 spin_unlock(&mk->mk_decrypted_inodes_lock);
883
884 shrink_dcache_inode(inode);
885 iput(toput_inode);
886 toput_inode = inode;
887
888 spin_lock(&mk->mk_decrypted_inodes_lock);
889 }
890
891 spin_unlock(&mk->mk_decrypted_inodes_lock);
892 iput(toput_inode);
893 }
894
check_for_busy_inodes(struct super_block * sb,struct fscrypt_master_key * mk)895 static int check_for_busy_inodes(struct super_block *sb,
896 struct fscrypt_master_key *mk)
897 {
898 struct list_head *pos;
899 size_t busy_count = 0;
900 unsigned long ino;
901 char ino_str[50] = "";
902
903 spin_lock(&mk->mk_decrypted_inodes_lock);
904
905 list_for_each(pos, &mk->mk_decrypted_inodes)
906 busy_count++;
907
908 if (busy_count == 0) {
909 spin_unlock(&mk->mk_decrypted_inodes_lock);
910 return 0;
911 }
912
913 {
914 /* select an example file to show for debugging purposes */
915 struct inode *inode =
916 list_first_entry(&mk->mk_decrypted_inodes,
917 struct fscrypt_info,
918 ci_master_key_link)->ci_inode;
919 ino = inode->i_ino;
920 }
921 spin_unlock(&mk->mk_decrypted_inodes_lock);
922
923 /* If the inode is currently being created, ino may still be 0. */
924 if (ino)
925 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
926
927 fscrypt_warn(NULL,
928 "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
929 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
930 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
931 ino_str);
932 return -EBUSY;
933 }
934
try_to_lock_encrypted_files(struct super_block * sb,struct fscrypt_master_key * mk)935 static int try_to_lock_encrypted_files(struct super_block *sb,
936 struct fscrypt_master_key *mk)
937 {
938 int err1;
939 int err2;
940
941 /*
942 * An inode can't be evicted while it is dirty or has dirty pages.
943 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
944 *
945 * Just do it the easy way: call sync_filesystem(). It's overkill, but
946 * it works, and it's more important to minimize the amount of caches we
947 * drop than the amount of data we sync. Also, unprivileged users can
948 * already call sync_filesystem() via sys_syncfs() or sys_sync().
949 */
950 down_read(&sb->s_umount);
951 err1 = sync_filesystem(sb);
952 up_read(&sb->s_umount);
953 /* If a sync error occurs, still try to evict as much as possible. */
954
955 /*
956 * Inodes are pinned by their dentries, so we have to evict their
957 * dentries. shrink_dcache_sb() would suffice, but would be overkill
958 * and inappropriate for use by unprivileged users. So instead go
959 * through the inodes' alias lists and try to evict each dentry.
960 */
961 evict_dentries_for_decrypted_inodes(mk);
962
963 /*
964 * evict_dentries_for_decrypted_inodes() already iput() each inode in
965 * the list; any inodes for which that dropped the last reference will
966 * have been evicted due to fscrypt_drop_inode() detecting the key
967 * removal and telling the VFS to evict the inode. So to finish, we
968 * just need to check whether any inodes couldn't be evicted.
969 */
970 err2 = check_for_busy_inodes(sb, mk);
971
972 return err1 ?: err2;
973 }
974
975 /*
976 * Try to remove an fscrypt master encryption key.
977 *
978 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
979 * claim to the key, then removes the key itself if no other users have claims.
980 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
981 * key itself.
982 *
983 * To "remove the key itself", first we wipe the actual master key secret, so
984 * that no more inodes can be unlocked with it. Then we try to evict all cached
985 * inodes that had been unlocked with the key.
986 *
987 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
988 * keyring. Otherwise it remains in the keyring in the "incompletely removed"
989 * state (without the actual secret key) where it tracks the list of remaining
990 * inodes. Userspace can execute the ioctl again later to retry eviction, or
991 * alternatively can re-add the secret key again.
992 *
993 * For more details, see the "Removing keys" section of
994 * Documentation/filesystems/fscrypt.rst.
995 */
do_remove_key(struct file * filp,void __user * _uarg,bool all_users)996 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
997 {
998 struct super_block *sb = file_inode(filp)->i_sb;
999 struct fscrypt_remove_key_arg __user *uarg = _uarg;
1000 struct fscrypt_remove_key_arg arg;
1001 struct fscrypt_master_key *mk;
1002 u32 status_flags = 0;
1003 int err;
1004 bool inodes_remain;
1005
1006 if (copy_from_user(&arg, uarg, sizeof(arg)))
1007 return -EFAULT;
1008
1009 if (!valid_key_spec(&arg.key_spec))
1010 return -EINVAL;
1011
1012 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1013 return -EINVAL;
1014
1015 /*
1016 * Only root can add and remove keys that are identified by an arbitrary
1017 * descriptor rather than by a cryptographic hash.
1018 */
1019 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1020 !capable(CAP_SYS_ADMIN))
1021 return -EACCES;
1022
1023 /* Find the key being removed. */
1024 mk = fscrypt_find_master_key(sb, &arg.key_spec);
1025 if (!mk)
1026 return -ENOKEY;
1027 down_write(&mk->mk_sem);
1028
1029 /* If relevant, remove current user's (or all users) claim to the key */
1030 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1031 if (all_users)
1032 err = keyring_clear(mk->mk_users);
1033 else
1034 err = remove_master_key_user(mk);
1035 if (err) {
1036 up_write(&mk->mk_sem);
1037 goto out_put_key;
1038 }
1039 if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1040 /*
1041 * Other users have still added the key too. We removed
1042 * the current user's claim to the key, but we still
1043 * can't remove the key itself.
1044 */
1045 status_flags |=
1046 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1047 err = 0;
1048 up_write(&mk->mk_sem);
1049 goto out_put_key;
1050 }
1051 }
1052
1053 /* No user claims remaining. Go ahead and wipe the secret. */
1054 err = -ENOKEY;
1055 if (is_master_key_secret_present(&mk->mk_secret)) {
1056 wipe_master_key_secret(&mk->mk_secret);
1057 fscrypt_put_master_key_activeref(sb, mk);
1058 err = 0;
1059 }
1060 inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1061 up_write(&mk->mk_sem);
1062
1063 if (inodes_remain) {
1064 /* Some inodes still reference this key; try to evict them. */
1065 err = try_to_lock_encrypted_files(sb, mk);
1066 if (err == -EBUSY) {
1067 status_flags |=
1068 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1069 err = 0;
1070 }
1071 }
1072 /*
1073 * We return 0 if we successfully did something: removed a claim to the
1074 * key, wiped the secret, or tried locking the files again. Users need
1075 * to check the informational status flags if they care whether the key
1076 * has been fully removed including all files locked.
1077 */
1078 out_put_key:
1079 fscrypt_put_master_key(mk);
1080 if (err == 0)
1081 err = put_user(status_flags, &uarg->removal_status_flags);
1082 return err;
1083 }
1084
fscrypt_ioctl_remove_key(struct file * filp,void __user * uarg)1085 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1086 {
1087 return do_remove_key(filp, uarg, false);
1088 }
1089 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1090
fscrypt_ioctl_remove_key_all_users(struct file * filp,void __user * uarg)1091 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1092 {
1093 if (!capable(CAP_SYS_ADMIN))
1094 return -EACCES;
1095 return do_remove_key(filp, uarg, true);
1096 }
1097 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1098
1099 /*
1100 * Retrieve the status of an fscrypt master encryption key.
1101 *
1102 * We set ->status to indicate whether the key is absent, present, or
1103 * incompletely removed. "Incompletely removed" means that the master key
1104 * secret has been removed, but some files which had been unlocked with it are
1105 * still in use. This field allows applications to easily determine the state
1106 * of an encrypted directory without using a hack such as trying to open a
1107 * regular file in it (which can confuse the "incompletely removed" state with
1108 * absent or present).
1109 *
1110 * In addition, for v2 policy keys we allow applications to determine, via
1111 * ->status_flags and ->user_count, whether the key has been added by the
1112 * current user, by other users, or by both. Most applications should not need
1113 * this, since ordinarily only one user should know a given key. However, if a
1114 * secret key is shared by multiple users, applications may wish to add an
1115 * already-present key to prevent other users from removing it. This ioctl can
1116 * be used to check whether that really is the case before the work is done to
1117 * add the key --- which might e.g. require prompting the user for a passphrase.
1118 *
1119 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1120 * Documentation/filesystems/fscrypt.rst.
1121 */
fscrypt_ioctl_get_key_status(struct file * filp,void __user * uarg)1122 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1123 {
1124 struct super_block *sb = file_inode(filp)->i_sb;
1125 struct fscrypt_get_key_status_arg arg;
1126 struct fscrypt_master_key *mk;
1127 int err;
1128
1129 if (copy_from_user(&arg, uarg, sizeof(arg)))
1130 return -EFAULT;
1131
1132 if (!valid_key_spec(&arg.key_spec))
1133 return -EINVAL;
1134
1135 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1136 return -EINVAL;
1137
1138 arg.status_flags = 0;
1139 arg.user_count = 0;
1140 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1141
1142 mk = fscrypt_find_master_key(sb, &arg.key_spec);
1143 if (!mk) {
1144 arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1145 err = 0;
1146 goto out;
1147 }
1148 down_read(&mk->mk_sem);
1149
1150 if (!is_master_key_secret_present(&mk->mk_secret)) {
1151 arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1152 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1153 FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1154 err = 0;
1155 goto out_release_key;
1156 }
1157
1158 arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1159 if (mk->mk_users) {
1160 struct key *mk_user;
1161
1162 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1163 mk_user = find_master_key_user(mk);
1164 if (!IS_ERR(mk_user)) {
1165 arg.status_flags |=
1166 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1167 key_put(mk_user);
1168 } else if (mk_user != ERR_PTR(-ENOKEY)) {
1169 err = PTR_ERR(mk_user);
1170 goto out_release_key;
1171 }
1172 }
1173 err = 0;
1174 out_release_key:
1175 up_read(&mk->mk_sem);
1176 fscrypt_put_master_key(mk);
1177 out:
1178 if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1179 err = -EFAULT;
1180 return err;
1181 }
1182 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1183
fscrypt_init_keyring(void)1184 int __init fscrypt_init_keyring(void)
1185 {
1186 int err;
1187
1188 err = register_key_type(&key_type_fscrypt_user);
1189 if (err)
1190 return err;
1191
1192 err = register_key_type(&key_type_fscrypt_provisioning);
1193 if (err)
1194 goto err_unregister_fscrypt_user;
1195
1196 return 0;
1197
1198 err_unregister_fscrypt_user:
1199 unregister_key_type(&key_type_fscrypt_user);
1200 return err;
1201 }
1202