1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014-2018 Intel Corporation
4 */
5
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_mcr.h"
14 #include "intel_gt_regs.h"
15 #include "intel_ring.h"
16 #include "intel_workarounds.h"
17
18 /**
19 * DOC: Hardware workarounds
20 *
21 * Hardware workarounds are register programming documented to be executed in
22 * the driver that fall outside of the normal programming sequences for a
23 * platform. There are some basic categories of workarounds, depending on
24 * how/when they are applied:
25 *
26 * - Context workarounds: workarounds that touch registers that are
27 * saved/restored to/from the HW context image. The list is emitted (via Load
28 * Register Immediate commands) once when initializing the device and saved in
29 * the default context. That default context is then used on every context
30 * creation to have a "primed golden context", i.e. a context image that
31 * already contains the changes needed to all the registers.
32 *
33 * Context workarounds should be implemented in the \*_ctx_workarounds_init()
34 * variants respective to the targeted platforms.
35 *
36 * - Engine workarounds: the list of these WAs is applied whenever the specific
37 * engine is reset. It's also possible that a set of engine classes share a
38 * common power domain and they are reset together. This happens on some
39 * platforms with render and compute engines. In this case (at least) one of
40 * them need to keeep the workaround programming: the approach taken in the
41 * driver is to tie those workarounds to the first compute/render engine that
42 * is registered. When executing with GuC submission, engine resets are
43 * outside of kernel driver control, hence the list of registers involved in
44 * written once, on engine initialization, and then passed to GuC, that
45 * saves/restores their values before/after the reset takes place. See
46 * ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
47 *
48 * Workarounds for registers specific to RCS and CCS should be implemented in
49 * rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
50 * registers belonging to BCS, VCS or VECS should be implemented in
51 * xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
52 * engine's MMIO range but that are part of of the common RCS/CCS reset domain
53 * should be implemented in general_render_compute_wa_init().
54 *
55 * - GT workarounds: the list of these WAs is applied whenever these registers
56 * revert to their default values: on GPU reset, suspend/resume [1]_, etc.
57 *
58 * GT workarounds should be implemented in the \*_gt_workarounds_init()
59 * variants respective to the targeted platforms.
60 *
61 * - Register whitelist: some workarounds need to be implemented in userspace,
62 * but need to touch privileged registers. The whitelist in the kernel
63 * instructs the hardware to allow the access to happen. From the kernel side,
64 * this is just a special case of a MMIO workaround (as we write the list of
65 * these to/be-whitelisted registers to some special HW registers).
66 *
67 * Register whitelisting should be done in the \*_whitelist_build() variants
68 * respective to the targeted platforms.
69 *
70 * - Workaround batchbuffers: buffers that get executed automatically by the
71 * hardware on every HW context restore. These buffers are created and
72 * programmed in the default context so the hardware always go through those
73 * programming sequences when switching contexts. The support for workaround
74 * batchbuffers is enabled these hardware mechanisms:
75 *
76 * #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
77 * context, pointing the hardware to jump to that location when that offset
78 * is reached in the context restore. Workaround batchbuffer in the driver
79 * currently uses this mechanism for all platforms.
80 *
81 * #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
82 * pointing the hardware to a buffer to continue executing after the
83 * engine registers are restored in a context restore sequence. This is
84 * currently not used in the driver.
85 *
86 * - Other: There are WAs that, due to their nature, cannot be applied from a
87 * central place. Those are peppered around the rest of the code, as needed.
88 * Workarounds related to the display IP are the main example.
89 *
90 * .. [1] Technically, some registers are powercontext saved & restored, so they
91 * survive a suspend/resume. In practice, writing them again is not too
92 * costly and simplifies things, so it's the approach taken in the driver.
93 */
94
wa_init_start(struct i915_wa_list * wal,struct intel_gt * gt,const char * name,const char * engine_name)95 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
96 const char *name, const char *engine_name)
97 {
98 wal->gt = gt;
99 wal->name = name;
100 wal->engine_name = engine_name;
101 }
102
103 #define WA_LIST_CHUNK (1 << 4)
104
wa_init_finish(struct i915_wa_list * wal)105 static void wa_init_finish(struct i915_wa_list *wal)
106 {
107 /* Trim unused entries. */
108 if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
109 struct i915_wa *list = kmemdup(wal->list,
110 wal->count * sizeof(*list),
111 GFP_KERNEL);
112
113 if (list) {
114 kfree(wal->list);
115 wal->list = list;
116 }
117 }
118
119 if (!wal->count)
120 return;
121
122 drm_dbg(&wal->gt->i915->drm, "Initialized %u %s workarounds on %s\n",
123 wal->wa_count, wal->name, wal->engine_name);
124 }
125
_wa_add(struct i915_wa_list * wal,const struct i915_wa * wa)126 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
127 {
128 unsigned int addr = i915_mmio_reg_offset(wa->reg);
129 struct drm_i915_private *i915 = wal->gt->i915;
130 unsigned int start = 0, end = wal->count;
131 const unsigned int grow = WA_LIST_CHUNK;
132 struct i915_wa *wa_;
133
134 GEM_BUG_ON(!is_power_of_2(grow));
135
136 if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
137 struct i915_wa *list;
138
139 list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
140 GFP_KERNEL);
141 if (!list) {
142 drm_err(&i915->drm, "No space for workaround init!\n");
143 return;
144 }
145
146 if (wal->list) {
147 memcpy(list, wal->list, sizeof(*wa) * wal->count);
148 kfree(wal->list);
149 }
150
151 wal->list = list;
152 }
153
154 while (start < end) {
155 unsigned int mid = start + (end - start) / 2;
156
157 if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
158 start = mid + 1;
159 } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
160 end = mid;
161 } else {
162 wa_ = &wal->list[mid];
163
164 if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
165 drm_err(&i915->drm,
166 "Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
167 i915_mmio_reg_offset(wa_->reg),
168 wa_->clr, wa_->set);
169
170 wa_->set &= ~wa->clr;
171 }
172
173 wal->wa_count++;
174 wa_->set |= wa->set;
175 wa_->clr |= wa->clr;
176 wa_->read |= wa->read;
177 return;
178 }
179 }
180
181 wal->wa_count++;
182 wa_ = &wal->list[wal->count++];
183 *wa_ = *wa;
184
185 while (wa_-- > wal->list) {
186 GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
187 i915_mmio_reg_offset(wa_[1].reg));
188 if (i915_mmio_reg_offset(wa_[1].reg) >
189 i915_mmio_reg_offset(wa_[0].reg))
190 break;
191
192 swap(wa_[1], wa_[0]);
193 }
194 }
195
wa_add(struct i915_wa_list * wal,i915_reg_t reg,u32 clear,u32 set,u32 read_mask,bool masked_reg)196 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
197 u32 clear, u32 set, u32 read_mask, bool masked_reg)
198 {
199 struct i915_wa wa = {
200 .reg = reg,
201 .clr = clear,
202 .set = set,
203 .read = read_mask,
204 .masked_reg = masked_reg,
205 };
206
207 _wa_add(wal, &wa);
208 }
209
wa_mcr_add(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 clear,u32 set,u32 read_mask,bool masked_reg)210 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
211 u32 clear, u32 set, u32 read_mask, bool masked_reg)
212 {
213 struct i915_wa wa = {
214 .mcr_reg = reg,
215 .clr = clear,
216 .set = set,
217 .read = read_mask,
218 .masked_reg = masked_reg,
219 .is_mcr = 1,
220 };
221
222 _wa_add(wal, &wa);
223 }
224
225 static void
wa_write_clr_set(struct i915_wa_list * wal,i915_reg_t reg,u32 clear,u32 set)226 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
227 {
228 wa_add(wal, reg, clear, set, clear, false);
229 }
230
231 static void
wa_mcr_write_clr_set(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 clear,u32 set)232 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
233 {
234 wa_mcr_add(wal, reg, clear, set, clear, false);
235 }
236
237 static void
wa_write(struct i915_wa_list * wal,i915_reg_t reg,u32 set)238 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
239 {
240 wa_write_clr_set(wal, reg, ~0, set);
241 }
242
243 static void
wa_mcr_write(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 set)244 wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
245 {
246 wa_mcr_write_clr_set(wal, reg, ~0, set);
247 }
248
249 static void
wa_write_or(struct i915_wa_list * wal,i915_reg_t reg,u32 set)250 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
251 {
252 wa_write_clr_set(wal, reg, set, set);
253 }
254
255 static void
wa_mcr_write_or(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 set)256 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
257 {
258 wa_mcr_write_clr_set(wal, reg, set, set);
259 }
260
261 static void
wa_write_clr(struct i915_wa_list * wal,i915_reg_t reg,u32 clr)262 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
263 {
264 wa_write_clr_set(wal, reg, clr, 0);
265 }
266
267 static void
wa_mcr_write_clr(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 clr)268 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
269 {
270 wa_mcr_write_clr_set(wal, reg, clr, 0);
271 }
272
273 /*
274 * WA operations on "masked register". A masked register has the upper 16 bits
275 * documented as "masked" in b-spec. Its purpose is to allow writing to just a
276 * portion of the register without a rmw: you simply write in the upper 16 bits
277 * the mask of bits you are going to modify.
278 *
279 * The wa_masked_* family of functions already does the necessary operations to
280 * calculate the mask based on the parameters passed, so user only has to
281 * provide the lower 16 bits of that register.
282 */
283
284 static void
wa_masked_en(struct i915_wa_list * wal,i915_reg_t reg,u32 val)285 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
286 {
287 wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
288 }
289
290 static void
wa_mcr_masked_en(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 val)291 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
292 {
293 wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
294 }
295
296 static void
wa_masked_dis(struct i915_wa_list * wal,i915_reg_t reg,u32 val)297 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
298 {
299 wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
300 }
301
302 static void
wa_mcr_masked_dis(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 val)303 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
304 {
305 wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
306 }
307
308 static void
wa_masked_field_set(struct i915_wa_list * wal,i915_reg_t reg,u32 mask,u32 val)309 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
310 u32 mask, u32 val)
311 {
312 wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
313 }
314
315 static void
wa_mcr_masked_field_set(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 mask,u32 val)316 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
317 u32 mask, u32 val)
318 {
319 wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
320 }
321
gen6_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)322 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
323 struct i915_wa_list *wal)
324 {
325 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
326 }
327
gen7_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)328 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
329 struct i915_wa_list *wal)
330 {
331 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
332 }
333
gen8_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)334 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
335 struct i915_wa_list *wal)
336 {
337 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
338
339 /* WaDisableAsyncFlipPerfMode:bdw,chv */
340 wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
341
342 /* WaDisablePartialInstShootdown:bdw,chv */
343 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
344 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
345
346 /* Use Force Non-Coherent whenever executing a 3D context. This is a
347 * workaround for a possible hang in the unlikely event a TLB
348 * invalidation occurs during a PSD flush.
349 */
350 /* WaForceEnableNonCoherent:bdw,chv */
351 /* WaHdcDisableFetchWhenMasked:bdw,chv */
352 wa_masked_en(wal, HDC_CHICKEN0,
353 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
354 HDC_FORCE_NON_COHERENT);
355
356 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
357 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
358 * polygons in the same 8x4 pixel/sample area to be processed without
359 * stalling waiting for the earlier ones to write to Hierarchical Z
360 * buffer."
361 *
362 * This optimization is off by default for BDW and CHV; turn it on.
363 */
364 wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
365
366 /* Wa4x4STCOptimizationDisable:bdw,chv */
367 wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
368
369 /*
370 * BSpec recommends 8x4 when MSAA is used,
371 * however in practice 16x4 seems fastest.
372 *
373 * Note that PS/WM thread counts depend on the WIZ hashing
374 * disable bit, which we don't touch here, but it's good
375 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
376 */
377 wa_masked_field_set(wal, GEN7_GT_MODE,
378 GEN6_WIZ_HASHING_MASK,
379 GEN6_WIZ_HASHING_16x4);
380 }
381
bdw_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)382 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
383 struct i915_wa_list *wal)
384 {
385 struct drm_i915_private *i915 = engine->i915;
386
387 gen8_ctx_workarounds_init(engine, wal);
388
389 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
390 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
391
392 /* WaDisableDopClockGating:bdw
393 *
394 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
395 * to disable EUTC clock gating.
396 */
397 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
398 DOP_CLOCK_GATING_DISABLE);
399
400 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
401 GEN8_SAMPLER_POWER_BYPASS_DIS);
402
403 wa_masked_en(wal, HDC_CHICKEN0,
404 /* WaForceContextSaveRestoreNonCoherent:bdw */
405 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
406 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
407 (IS_BDW_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
408 }
409
chv_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)410 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
411 struct i915_wa_list *wal)
412 {
413 gen8_ctx_workarounds_init(engine, wal);
414
415 /* WaDisableThreadStallDopClockGating:chv */
416 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
417
418 /* Improve HiZ throughput on CHV. */
419 wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
420 }
421
gen9_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)422 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
423 struct i915_wa_list *wal)
424 {
425 struct drm_i915_private *i915 = engine->i915;
426
427 if (HAS_LLC(i915)) {
428 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
429 *
430 * Must match Display Engine. See
431 * WaCompressedResourceDisplayNewHashMode.
432 */
433 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
434 GEN9_PBE_COMPRESSED_HASH_SELECTION);
435 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
436 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
437 }
438
439 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
440 /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
441 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
442 FLOW_CONTROL_ENABLE |
443 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
444
445 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
446 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
447 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
448 GEN9_ENABLE_YV12_BUGFIX |
449 GEN9_ENABLE_GPGPU_PREEMPTION);
450
451 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
452 /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
453 wa_masked_en(wal, CACHE_MODE_1,
454 GEN8_4x4_STC_OPTIMIZATION_DISABLE |
455 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
456
457 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
458 wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
459 GEN9_CCS_TLB_PREFETCH_ENABLE);
460
461 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
462 wa_masked_en(wal, HDC_CHICKEN0,
463 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
464 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
465
466 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
467 * both tied to WaForceContextSaveRestoreNonCoherent
468 * in some hsds for skl. We keep the tie for all gen9. The
469 * documentation is a bit hazy and so we want to get common behaviour,
470 * even though there is no clear evidence we would need both on kbl/bxt.
471 * This area has been source of system hangs so we play it safe
472 * and mimic the skl regardless of what bspec says.
473 *
474 * Use Force Non-Coherent whenever executing a 3D context. This
475 * is a workaround for a possible hang in the unlikely event
476 * a TLB invalidation occurs during a PSD flush.
477 */
478
479 /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
480 wa_masked_en(wal, HDC_CHICKEN0,
481 HDC_FORCE_NON_COHERENT);
482
483 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
484 if (IS_SKYLAKE(i915) ||
485 IS_KABYLAKE(i915) ||
486 IS_COFFEELAKE(i915) ||
487 IS_COMETLAKE(i915))
488 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
489 GEN8_SAMPLER_POWER_BYPASS_DIS);
490
491 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
492 wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
493
494 /*
495 * Supporting preemption with fine-granularity requires changes in the
496 * batch buffer programming. Since we can't break old userspace, we
497 * need to set our default preemption level to safe value. Userspace is
498 * still able to use more fine-grained preemption levels, since in
499 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
500 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
501 * not real HW workarounds, but merely a way to start using preemption
502 * while maintaining old contract with userspace.
503 */
504
505 /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
506 wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
507
508 /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
509 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
510 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
511 GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
512
513 /* WaClearHIZ_WM_CHICKEN3:bxt,glk */
514 if (IS_GEN9_LP(i915))
515 wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
516 }
517
skl_tune_iz_hashing(struct intel_engine_cs * engine,struct i915_wa_list * wal)518 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
519 struct i915_wa_list *wal)
520 {
521 struct intel_gt *gt = engine->gt;
522 u8 vals[3] = { 0, 0, 0 };
523 unsigned int i;
524
525 for (i = 0; i < 3; i++) {
526 u8 ss;
527
528 /*
529 * Only consider slices where one, and only one, subslice has 7
530 * EUs
531 */
532 if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
533 continue;
534
535 /*
536 * subslice_7eu[i] != 0 (because of the check above) and
537 * ss_max == 4 (maximum number of subslices possible per slice)
538 *
539 * -> 0 <= ss <= 3;
540 */
541 ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
542 vals[i] = 3 - ss;
543 }
544
545 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
546 return;
547
548 /* Tune IZ hashing. See intel_device_info_runtime_init() */
549 wa_masked_field_set(wal, GEN7_GT_MODE,
550 GEN9_IZ_HASHING_MASK(2) |
551 GEN9_IZ_HASHING_MASK(1) |
552 GEN9_IZ_HASHING_MASK(0),
553 GEN9_IZ_HASHING(2, vals[2]) |
554 GEN9_IZ_HASHING(1, vals[1]) |
555 GEN9_IZ_HASHING(0, vals[0]));
556 }
557
skl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)558 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
559 struct i915_wa_list *wal)
560 {
561 gen9_ctx_workarounds_init(engine, wal);
562 skl_tune_iz_hashing(engine, wal);
563 }
564
bxt_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)565 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
566 struct i915_wa_list *wal)
567 {
568 gen9_ctx_workarounds_init(engine, wal);
569
570 /* WaDisableThreadStallDopClockGating:bxt */
571 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
572 STALL_DOP_GATING_DISABLE);
573
574 /* WaToEnableHwFixForPushConstHWBug:bxt */
575 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
576 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
577 }
578
kbl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)579 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
580 struct i915_wa_list *wal)
581 {
582 struct drm_i915_private *i915 = engine->i915;
583
584 gen9_ctx_workarounds_init(engine, wal);
585
586 /* WaToEnableHwFixForPushConstHWBug:kbl */
587 if (IS_KBL_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
588 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
589 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
590
591 /* WaDisableSbeCacheDispatchPortSharing:kbl */
592 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
593 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
594 }
595
glk_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)596 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
597 struct i915_wa_list *wal)
598 {
599 gen9_ctx_workarounds_init(engine, wal);
600
601 /* WaToEnableHwFixForPushConstHWBug:glk */
602 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
603 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
604 }
605
cfl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)606 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
607 struct i915_wa_list *wal)
608 {
609 gen9_ctx_workarounds_init(engine, wal);
610
611 /* WaToEnableHwFixForPushConstHWBug:cfl */
612 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
613 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
614
615 /* WaDisableSbeCacheDispatchPortSharing:cfl */
616 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
617 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
618 }
619
icl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)620 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
621 struct i915_wa_list *wal)
622 {
623 /* Wa_1406697149 (WaDisableBankHangMode:icl) */
624 wa_write(wal,
625 GEN8_L3CNTLREG,
626 intel_uncore_read(engine->uncore, GEN8_L3CNTLREG) |
627 GEN8_ERRDETBCTRL);
628
629 /* WaForceEnableNonCoherent:icl
630 * This is not the same workaround as in early Gen9 platforms, where
631 * lacking this could cause system hangs, but coherency performance
632 * overhead is high and only a few compute workloads really need it
633 * (the register is whitelisted in hardware now, so UMDs can opt in
634 * for coherency if they have a good reason).
635 */
636 wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
637
638 /* WaEnableFloatBlendOptimization:icl */
639 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
640 _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
641 0 /* write-only, so skip validation */,
642 true);
643
644 /* WaDisableGPGPUMidThreadPreemption:icl */
645 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
646 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
647 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
648
649 /* allow headerless messages for preemptible GPGPU context */
650 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
651 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
652
653 /* Wa_1604278689:icl,ehl */
654 wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
655 wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
656 0, /* write-only register; skip validation */
657 0xFFFFFFFF);
658
659 /* Wa_1406306137:icl,ehl */
660 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
661 }
662
663 /*
664 * These settings aren't actually workarounds, but general tuning settings that
665 * need to be programmed on dg2 platform.
666 */
dg2_ctx_gt_tuning_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)667 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
668 struct i915_wa_list *wal)
669 {
670 wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
671 wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
672 REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
673 wa_mcr_add(wal,
674 XEHP_FF_MODE2,
675 FF_MODE2_TDS_TIMER_MASK,
676 FF_MODE2_TDS_TIMER_128,
677 0, false);
678 }
679
680 /*
681 * These settings aren't actually workarounds, but general tuning settings that
682 * need to be programmed on several platforms.
683 */
gen12_ctx_gt_tuning_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)684 static void gen12_ctx_gt_tuning_init(struct intel_engine_cs *engine,
685 struct i915_wa_list *wal)
686 {
687 /*
688 * Although some platforms refer to it as Wa_1604555607, we need to
689 * program it even on those that don't explicitly list that
690 * workaround.
691 *
692 * Note that the programming of this register is further modified
693 * according to the FF_MODE2 guidance given by Wa_1608008084:gen12.
694 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
695 * value when read. The default value for this register is zero for all
696 * fields and there are no bit masks. So instead of doing a RMW we
697 * should just write TDS timer value. For the same reason read
698 * verification is ignored.
699 */
700 wa_add(wal,
701 GEN12_FF_MODE2,
702 FF_MODE2_TDS_TIMER_MASK,
703 FF_MODE2_TDS_TIMER_128,
704 0, false);
705 }
706
gen12_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)707 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
708 struct i915_wa_list *wal)
709 {
710 struct drm_i915_private *i915 = engine->i915;
711
712 gen12_ctx_gt_tuning_init(engine, wal);
713
714 /*
715 * Wa_1409142259:tgl,dg1,adl-p
716 * Wa_1409347922:tgl,dg1,adl-p
717 * Wa_1409252684:tgl,dg1,adl-p
718 * Wa_1409217633:tgl,dg1,adl-p
719 * Wa_1409207793:tgl,dg1,adl-p
720 * Wa_1409178076:tgl,dg1,adl-p
721 * Wa_1408979724:tgl,dg1,adl-p
722 * Wa_14010443199:tgl,rkl,dg1,adl-p
723 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
724 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
725 */
726 wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
727 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
728
729 /* WaDisableGPGPUMidThreadPreemption:gen12 */
730 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
731 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
732 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
733
734 /*
735 * Wa_16011163337
736 *
737 * Like in gen12_ctx_gt_tuning_init(), read verification is ignored due
738 * to Wa_1608008084.
739 */
740 wa_add(wal,
741 GEN12_FF_MODE2,
742 FF_MODE2_GS_TIMER_MASK,
743 FF_MODE2_GS_TIMER_224,
744 0, false);
745
746 if (!IS_DG1(i915))
747 /* Wa_1806527549 */
748 wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
749 }
750
dg1_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)751 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
752 struct i915_wa_list *wal)
753 {
754 gen12_ctx_workarounds_init(engine, wal);
755
756 /* Wa_1409044764 */
757 wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
758 DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
759
760 /* Wa_22010493298 */
761 wa_masked_en(wal, HIZ_CHICKEN,
762 DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
763 }
764
dg2_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)765 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
766 struct i915_wa_list *wal)
767 {
768 dg2_ctx_gt_tuning_init(engine, wal);
769
770 /* Wa_16011186671:dg2_g11 */
771 if (IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) {
772 wa_mcr_masked_dis(wal, VFLSKPD, DIS_MULT_MISS_RD_SQUASH);
773 wa_mcr_masked_en(wal, VFLSKPD, DIS_OVER_FETCH_CACHE);
774 }
775
776 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) {
777 /* Wa_14010469329:dg2_g10 */
778 wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3,
779 XEHP_DUAL_SIMD8_SEQ_MERGE_DISABLE);
780
781 /*
782 * Wa_22010465075:dg2_g10
783 * Wa_22010613112:dg2_g10
784 * Wa_14010698770:dg2_g10
785 */
786 wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3,
787 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
788 }
789
790 /* Wa_16013271637:dg2 */
791 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
792 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
793
794 /* Wa_14014947963:dg2 */
795 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_B0, STEP_FOREVER) ||
796 IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915))
797 wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
798
799 /* Wa_18018764978:dg2 */
800 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_C0, STEP_FOREVER) ||
801 IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915))
802 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
803
804 /* Wa_15010599737:dg2 */
805 wa_mcr_masked_en(wal, CHICKEN_RASTER_1, DIS_SF_ROUND_NEAREST_EVEN);
806
807 /* Wa_18019271663:dg2 */
808 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
809 }
810
mtl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)811 static void mtl_ctx_workarounds_init(struct intel_engine_cs *engine,
812 struct i915_wa_list *wal)
813 {
814 struct drm_i915_private *i915 = engine->i915;
815
816 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
817 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) {
818 /* Wa_14014947963 */
819 wa_masked_field_set(wal, VF_PREEMPTION,
820 PREEMPTION_VERTEX_COUNT, 0x4000);
821
822 /* Wa_16013271637 */
823 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
824 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
825
826 /* Wa_18019627453 */
827 wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
828
829 /* Wa_18018764978 */
830 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
831 }
832
833 /* Wa_18019271663 */
834 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
835 }
836
fakewa_disable_nestedbb_mode(struct intel_engine_cs * engine,struct i915_wa_list * wal)837 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
838 struct i915_wa_list *wal)
839 {
840 /*
841 * This is a "fake" workaround defined by software to ensure we
842 * maintain reliable, backward-compatible behavior for userspace with
843 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
844 *
845 * The per-context setting of MI_MODE[12] determines whether the bits
846 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
847 * in the traditional manner or whether they should instead use a new
848 * tgl+ meaning that breaks backward compatibility, but allows nesting
849 * into 3rd-level batchbuffers. When this new capability was first
850 * added in TGL, it remained off by default unless a context
851 * intentionally opted in to the new behavior. However Xe_HPG now
852 * flips this on by default and requires that we explicitly opt out if
853 * we don't want the new behavior.
854 *
855 * From a SW perspective, we want to maintain the backward-compatible
856 * behavior for userspace, so we'll apply a fake workaround to set it
857 * back to the legacy behavior on platforms where the hardware default
858 * is to break compatibility. At the moment there is no Linux
859 * userspace that utilizes third-level batchbuffers, so this will avoid
860 * userspace from needing to make any changes. using the legacy
861 * meaning is the correct thing to do. If/when we have userspace
862 * consumers that want to utilize third-level batch nesting, we can
863 * provide a context parameter to allow them to opt-in.
864 */
865 wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
866 }
867
gen12_ctx_gt_mocs_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)868 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
869 struct i915_wa_list *wal)
870 {
871 u8 mocs;
872
873 /*
874 * Some blitter commands do not have a field for MOCS, those
875 * commands will use MOCS index pointed by BLIT_CCTL.
876 * BLIT_CCTL registers are needed to be programmed to un-cached.
877 */
878 if (engine->class == COPY_ENGINE_CLASS) {
879 mocs = engine->gt->mocs.uc_index;
880 wa_write_clr_set(wal,
881 BLIT_CCTL(engine->mmio_base),
882 BLIT_CCTL_MASK,
883 BLIT_CCTL_MOCS(mocs, mocs));
884 }
885 }
886
887 /*
888 * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
889 * defined by the hardware team, but it programming general context registers.
890 * Adding those context register programming in context workaround
891 * allow us to use the wa framework for proper application and validation.
892 */
893 static void
gen12_ctx_gt_fake_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)894 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
895 struct i915_wa_list *wal)
896 {
897 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
898 fakewa_disable_nestedbb_mode(engine, wal);
899
900 gen12_ctx_gt_mocs_init(engine, wal);
901 }
902
903 static void
__intel_engine_init_ctx_wa(struct intel_engine_cs * engine,struct i915_wa_list * wal,const char * name)904 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
905 struct i915_wa_list *wal,
906 const char *name)
907 {
908 struct drm_i915_private *i915 = engine->i915;
909
910 wa_init_start(wal, engine->gt, name, engine->name);
911
912 /* Applies to all engines */
913 /*
914 * Fake workarounds are not the actual workaround but
915 * programming of context registers using workaround framework.
916 */
917 if (GRAPHICS_VER(i915) >= 12)
918 gen12_ctx_gt_fake_wa_init(engine, wal);
919
920 if (engine->class != RENDER_CLASS)
921 goto done;
922
923 if (IS_METEORLAKE(i915))
924 mtl_ctx_workarounds_init(engine, wal);
925 else if (IS_PONTEVECCHIO(i915))
926 ; /* noop; none at this time */
927 else if (IS_DG2(i915))
928 dg2_ctx_workarounds_init(engine, wal);
929 else if (IS_XEHPSDV(i915))
930 ; /* noop; none at this time */
931 else if (IS_DG1(i915))
932 dg1_ctx_workarounds_init(engine, wal);
933 else if (GRAPHICS_VER(i915) == 12)
934 gen12_ctx_workarounds_init(engine, wal);
935 else if (GRAPHICS_VER(i915) == 11)
936 icl_ctx_workarounds_init(engine, wal);
937 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
938 cfl_ctx_workarounds_init(engine, wal);
939 else if (IS_GEMINILAKE(i915))
940 glk_ctx_workarounds_init(engine, wal);
941 else if (IS_KABYLAKE(i915))
942 kbl_ctx_workarounds_init(engine, wal);
943 else if (IS_BROXTON(i915))
944 bxt_ctx_workarounds_init(engine, wal);
945 else if (IS_SKYLAKE(i915))
946 skl_ctx_workarounds_init(engine, wal);
947 else if (IS_CHERRYVIEW(i915))
948 chv_ctx_workarounds_init(engine, wal);
949 else if (IS_BROADWELL(i915))
950 bdw_ctx_workarounds_init(engine, wal);
951 else if (GRAPHICS_VER(i915) == 7)
952 gen7_ctx_workarounds_init(engine, wal);
953 else if (GRAPHICS_VER(i915) == 6)
954 gen6_ctx_workarounds_init(engine, wal);
955 else if (GRAPHICS_VER(i915) < 8)
956 ;
957 else
958 MISSING_CASE(GRAPHICS_VER(i915));
959
960 done:
961 wa_init_finish(wal);
962 }
963
intel_engine_init_ctx_wa(struct intel_engine_cs * engine)964 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
965 {
966 __intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
967 }
968
intel_engine_emit_ctx_wa(struct i915_request * rq)969 int intel_engine_emit_ctx_wa(struct i915_request *rq)
970 {
971 struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
972 struct i915_wa *wa;
973 unsigned int i;
974 u32 *cs;
975 int ret;
976
977 if (wal->count == 0)
978 return 0;
979
980 ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
981 if (ret)
982 return ret;
983
984 cs = intel_ring_begin(rq, (wal->count * 2 + 2));
985 if (IS_ERR(cs))
986 return PTR_ERR(cs);
987
988 *cs++ = MI_LOAD_REGISTER_IMM(wal->count);
989 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
990 *cs++ = i915_mmio_reg_offset(wa->reg);
991 *cs++ = wa->set;
992 }
993 *cs++ = MI_NOOP;
994
995 intel_ring_advance(rq, cs);
996
997 ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
998 if (ret)
999 return ret;
1000
1001 return 0;
1002 }
1003
1004 static void
gen4_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1005 gen4_gt_workarounds_init(struct intel_gt *gt,
1006 struct i915_wa_list *wal)
1007 {
1008 /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1009 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1010 }
1011
1012 static void
g4x_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1013 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1014 {
1015 gen4_gt_workarounds_init(gt, wal);
1016
1017 /* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1018 wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1019 }
1020
1021 static void
ilk_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1022 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1023 {
1024 g4x_gt_workarounds_init(gt, wal);
1025
1026 wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1027 }
1028
1029 static void
snb_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1030 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1031 {
1032 }
1033
1034 static void
ivb_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1035 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1036 {
1037 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1038 wa_masked_dis(wal,
1039 GEN7_COMMON_SLICE_CHICKEN1,
1040 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1041
1042 /* WaApplyL3ControlAndL3ChickenMode:ivb */
1043 wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1044 wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1045
1046 /* WaForceL3Serialization:ivb */
1047 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1048 }
1049
1050 static void
vlv_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1051 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1052 {
1053 /* WaForceL3Serialization:vlv */
1054 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1055
1056 /*
1057 * WaIncreaseL3CreditsForVLVB0:vlv
1058 * This is the hardware default actually.
1059 */
1060 wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1061 }
1062
1063 static void
hsw_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1064 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1065 {
1066 /* L3 caching of data atomics doesn't work -- disable it. */
1067 wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1068
1069 wa_add(wal,
1070 HSW_ROW_CHICKEN3, 0,
1071 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1072 0 /* XXX does this reg exist? */, true);
1073
1074 /* WaVSRefCountFullforceMissDisable:hsw */
1075 wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1076 }
1077
1078 static void
gen9_wa_init_mcr(struct drm_i915_private * i915,struct i915_wa_list * wal)1079 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1080 {
1081 const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1082 unsigned int slice, subslice;
1083 u32 mcr, mcr_mask;
1084
1085 GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1086
1087 /*
1088 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1089 * Before any MMIO read into slice/subslice specific registers, MCR
1090 * packet control register needs to be programmed to point to any
1091 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1092 * This means each subsequent MMIO read will be forwarded to an
1093 * specific s/ss combination, but this is OK since these registers
1094 * are consistent across s/ss in almost all cases. In the rare
1095 * occasions, such as INSTDONE, where this value is dependent
1096 * on s/ss combo, the read should be done with read_subslice_reg.
1097 */
1098 slice = ffs(sseu->slice_mask) - 1;
1099 GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1100 subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1101 GEM_BUG_ON(!subslice);
1102 subslice--;
1103
1104 /*
1105 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1106 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1107 */
1108 mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1109 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1110
1111 drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1112
1113 wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1114 }
1115
1116 static void
gen9_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1117 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1118 {
1119 struct drm_i915_private *i915 = gt->i915;
1120
1121 /* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1122 gen9_wa_init_mcr(i915, wal);
1123
1124 /* WaDisableKillLogic:bxt,skl,kbl */
1125 if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1126 wa_write_or(wal,
1127 GAM_ECOCHK,
1128 ECOCHK_DIS_TLB);
1129
1130 if (HAS_LLC(i915)) {
1131 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1132 *
1133 * Must match Display Engine. See
1134 * WaCompressedResourceDisplayNewHashMode.
1135 */
1136 wa_write_or(wal,
1137 MMCD_MISC_CTRL,
1138 MMCD_PCLA | MMCD_HOTSPOT_EN);
1139 }
1140
1141 /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1142 wa_write_or(wal,
1143 GAM_ECOCHK,
1144 BDW_DISABLE_HDC_INVALIDATION);
1145 }
1146
1147 static void
skl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1148 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1149 {
1150 gen9_gt_workarounds_init(gt, wal);
1151
1152 /* WaDisableGafsUnitClkGating:skl */
1153 wa_write_or(wal,
1154 GEN7_UCGCTL4,
1155 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1156
1157 /* WaInPlaceDecompressionHang:skl */
1158 if (IS_SKL_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1159 wa_write_or(wal,
1160 GEN9_GAMT_ECO_REG_RW_IA,
1161 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1162 }
1163
1164 static void
kbl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1165 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1166 {
1167 gen9_gt_workarounds_init(gt, wal);
1168
1169 /* WaDisableDynamicCreditSharing:kbl */
1170 if (IS_KBL_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1171 wa_write_or(wal,
1172 GAMT_CHKN_BIT_REG,
1173 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1174
1175 /* WaDisableGafsUnitClkGating:kbl */
1176 wa_write_or(wal,
1177 GEN7_UCGCTL4,
1178 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1179
1180 /* WaInPlaceDecompressionHang:kbl */
1181 wa_write_or(wal,
1182 GEN9_GAMT_ECO_REG_RW_IA,
1183 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1184 }
1185
1186 static void
glk_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1187 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1188 {
1189 gen9_gt_workarounds_init(gt, wal);
1190 }
1191
1192 static void
cfl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1193 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1194 {
1195 gen9_gt_workarounds_init(gt, wal);
1196
1197 /* WaDisableGafsUnitClkGating:cfl */
1198 wa_write_or(wal,
1199 GEN7_UCGCTL4,
1200 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1201
1202 /* WaInPlaceDecompressionHang:cfl */
1203 wa_write_or(wal,
1204 GEN9_GAMT_ECO_REG_RW_IA,
1205 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1206 }
1207
__set_mcr_steering(struct i915_wa_list * wal,i915_reg_t steering_reg,unsigned int slice,unsigned int subslice)1208 static void __set_mcr_steering(struct i915_wa_list *wal,
1209 i915_reg_t steering_reg,
1210 unsigned int slice, unsigned int subslice)
1211 {
1212 u32 mcr, mcr_mask;
1213
1214 mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1215 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1216
1217 wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1218 }
1219
debug_dump_steering(struct intel_gt * gt)1220 static void debug_dump_steering(struct intel_gt *gt)
1221 {
1222 struct drm_printer p = drm_debug_printer("MCR Steering:");
1223
1224 if (drm_debug_enabled(DRM_UT_DRIVER))
1225 intel_gt_mcr_report_steering(&p, gt, false);
1226 }
1227
__add_mcr_wa(struct intel_gt * gt,struct i915_wa_list * wal,unsigned int slice,unsigned int subslice)1228 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1229 unsigned int slice, unsigned int subslice)
1230 {
1231 __set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1232
1233 gt->default_steering.groupid = slice;
1234 gt->default_steering.instanceid = subslice;
1235
1236 debug_dump_steering(gt);
1237 }
1238
1239 static void
icl_wa_init_mcr(struct intel_gt * gt,struct i915_wa_list * wal)1240 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1241 {
1242 const struct sseu_dev_info *sseu = >->info.sseu;
1243 unsigned int subslice;
1244
1245 GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1246 GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1247
1248 /*
1249 * Although a platform may have subslices, we need to always steer
1250 * reads to the lowest instance that isn't fused off. When Render
1251 * Power Gating is enabled, grabbing forcewake will only power up a
1252 * single subslice (the "minconfig") if there isn't a real workload
1253 * that needs to be run; this means that if we steer register reads to
1254 * one of the higher subslices, we run the risk of reading back 0's or
1255 * random garbage.
1256 */
1257 subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1258
1259 /*
1260 * If the subslice we picked above also steers us to a valid L3 bank,
1261 * then we can just rely on the default steering and won't need to
1262 * worry about explicitly re-steering L3BANK reads later.
1263 */
1264 if (gt->info.l3bank_mask & BIT(subslice))
1265 gt->steering_table[L3BANK] = NULL;
1266
1267 __add_mcr_wa(gt, wal, 0, subslice);
1268 }
1269
1270 static void
xehp_init_mcr(struct intel_gt * gt,struct i915_wa_list * wal)1271 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1272 {
1273 const struct sseu_dev_info *sseu = >->info.sseu;
1274 unsigned long slice, subslice = 0, slice_mask = 0;
1275 u32 lncf_mask = 0;
1276 int i;
1277
1278 /*
1279 * On Xe_HP the steering increases in complexity. There are now several
1280 * more units that require steering and we're not guaranteed to be able
1281 * to find a common setting for all of them. These are:
1282 * - GSLICE (fusable)
1283 * - DSS (sub-unit within gslice; fusable)
1284 * - L3 Bank (fusable)
1285 * - MSLICE (fusable)
1286 * - LNCF (sub-unit within mslice; always present if mslice is present)
1287 *
1288 * We'll do our default/implicit steering based on GSLICE (in the
1289 * sliceid field) and DSS (in the subsliceid field). If we can
1290 * find overlap between the valid MSLICE and/or LNCF values with
1291 * a suitable GSLICE, then we can just re-use the default value and
1292 * skip and explicit steering at runtime.
1293 *
1294 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1295 * a valid sliceid value. DSS steering is the only type of steering
1296 * that utilizes the 'subsliceid' bits.
1297 *
1298 * Also note that, even though the steering domain is called "GSlice"
1299 * and it is encoded in the register using the gslice format, the spec
1300 * says that the combined (geometry | compute) fuse should be used to
1301 * select the steering.
1302 */
1303
1304 /* Find the potential gslice candidates */
1305 slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1306 GEN_DSS_PER_GSLICE);
1307
1308 /*
1309 * Find the potential LNCF candidates. Either LNCF within a valid
1310 * mslice is fine.
1311 */
1312 for_each_set_bit(i, >->info.mslice_mask, GEN12_MAX_MSLICES)
1313 lncf_mask |= (0x3 << (i * 2));
1314
1315 /*
1316 * Are there any sliceid values that work for both GSLICE and LNCF
1317 * steering?
1318 */
1319 if (slice_mask & lncf_mask) {
1320 slice_mask &= lncf_mask;
1321 gt->steering_table[LNCF] = NULL;
1322 }
1323
1324 /* How about sliceid values that also work for MSLICE steering? */
1325 if (slice_mask & gt->info.mslice_mask) {
1326 slice_mask &= gt->info.mslice_mask;
1327 gt->steering_table[MSLICE] = NULL;
1328 }
1329
1330 if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0))
1331 gt->steering_table[GAM] = NULL;
1332
1333 slice = __ffs(slice_mask);
1334 subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1335 GEN_DSS_PER_GSLICE;
1336
1337 __add_mcr_wa(gt, wal, slice, subslice);
1338
1339 /*
1340 * SQIDI ranges are special because they use different steering
1341 * registers than everything else we work with. On XeHP SDV and
1342 * DG2-G10, any value in the steering registers will work fine since
1343 * all instances are present, but DG2-G11 only has SQIDI instances at
1344 * ID's 2 and 3, so we need to steer to one of those. For simplicity
1345 * we'll just steer to a hardcoded "2" since that value will work
1346 * everywhere.
1347 */
1348 __set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1349 __set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1350
1351 /*
1352 * On DG2, GAM registers have a dedicated steering control register
1353 * and must always be programmed to a hardcoded groupid of "1."
1354 */
1355 if (IS_DG2(gt->i915))
1356 __set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1357 }
1358
1359 static void
pvc_init_mcr(struct intel_gt * gt,struct i915_wa_list * wal)1360 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1361 {
1362 unsigned int dss;
1363
1364 /*
1365 * Setup implicit steering for COMPUTE and DSS ranges to the first
1366 * non-fused-off DSS. All other types of MCR registers will be
1367 * explicitly steered.
1368 */
1369 dss = intel_sseu_find_first_xehp_dss(>->info.sseu, 0, 0);
1370 __add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE);
1371 }
1372
1373 static void
icl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1374 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1375 {
1376 struct drm_i915_private *i915 = gt->i915;
1377
1378 icl_wa_init_mcr(gt, wal);
1379
1380 /* WaModifyGamTlbPartitioning:icl */
1381 wa_write_clr_set(wal,
1382 GEN11_GACB_PERF_CTRL,
1383 GEN11_HASH_CTRL_MASK,
1384 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1385
1386 /* Wa_1405766107:icl
1387 * Formerly known as WaCL2SFHalfMaxAlloc
1388 */
1389 wa_write_or(wal,
1390 GEN11_LSN_UNSLCVC,
1391 GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1392 GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1393
1394 /* Wa_220166154:icl
1395 * Formerly known as WaDisCtxReload
1396 */
1397 wa_write_or(wal,
1398 GEN8_GAMW_ECO_DEV_RW_IA,
1399 GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1400
1401 /* Wa_1406463099:icl
1402 * Formerly known as WaGamTlbPendError
1403 */
1404 wa_write_or(wal,
1405 GAMT_CHKN_BIT_REG,
1406 GAMT_CHKN_DISABLE_L3_COH_PIPE);
1407
1408 /*
1409 * Wa_1408615072:icl,ehl (vsunit)
1410 * Wa_1407596294:icl,ehl (hsunit)
1411 */
1412 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1413 VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1414
1415 /* Wa_1407352427:icl,ehl */
1416 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1417 PSDUNIT_CLKGATE_DIS);
1418
1419 /* Wa_1406680159:icl,ehl */
1420 wa_mcr_write_or(wal,
1421 GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1422 GWUNIT_CLKGATE_DIS);
1423
1424 /* Wa_1607087056:icl,ehl,jsl */
1425 if (IS_ICELAKE(i915) ||
1426 IS_JSL_EHL_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1427 wa_write_or(wal,
1428 GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1429 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1430
1431 /*
1432 * This is not a documented workaround, but rather an optimization
1433 * to reduce sampler power.
1434 */
1435 wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1436 }
1437
1438 /*
1439 * Though there are per-engine instances of these registers,
1440 * they retain their value through engine resets and should
1441 * only be provided on the GT workaround list rather than
1442 * the engine-specific workaround list.
1443 */
1444 static void
wa_14011060649(struct intel_gt * gt,struct i915_wa_list * wal)1445 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1446 {
1447 struct intel_engine_cs *engine;
1448 int id;
1449
1450 for_each_engine(engine, gt, id) {
1451 if (engine->class != VIDEO_DECODE_CLASS ||
1452 (engine->instance % 2))
1453 continue;
1454
1455 wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1456 IECPUNIT_CLKGATE_DIS);
1457 }
1458 }
1459
1460 static void
gen12_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1461 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1462 {
1463 icl_wa_init_mcr(gt, wal);
1464
1465 /* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1466 wa_14011060649(gt, wal);
1467
1468 /* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1469 wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1470 }
1471
1472 static void
tgl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1473 tgl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1474 {
1475 struct drm_i915_private *i915 = gt->i915;
1476
1477 gen12_gt_workarounds_init(gt, wal);
1478
1479 /* Wa_1409420604:tgl */
1480 if (IS_TGL_UY_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1481 wa_mcr_write_or(wal,
1482 SUBSLICE_UNIT_LEVEL_CLKGATE2,
1483 CPSSUNIT_CLKGATE_DIS);
1484
1485 /* Wa_1607087056:tgl also know as BUG:1409180338 */
1486 if (IS_TGL_UY_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1487 wa_write_or(wal,
1488 GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1489 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1490
1491 /* Wa_1408615072:tgl[a0] */
1492 if (IS_TGL_UY_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1493 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1494 VSUNIT_CLKGATE_DIS_TGL);
1495 }
1496
1497 static void
dg1_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1498 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1499 {
1500 struct drm_i915_private *i915 = gt->i915;
1501
1502 gen12_gt_workarounds_init(gt, wal);
1503
1504 /* Wa_1607087056:dg1 */
1505 if (IS_DG1_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1506 wa_write_or(wal,
1507 GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1508 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1509
1510 /* Wa_1409420604:dg1 */
1511 if (IS_DG1(i915))
1512 wa_mcr_write_or(wal,
1513 SUBSLICE_UNIT_LEVEL_CLKGATE2,
1514 CPSSUNIT_CLKGATE_DIS);
1515
1516 /* Wa_1408615072:dg1 */
1517 /* Empirical testing shows this register is unaffected by engine reset. */
1518 if (IS_DG1(i915))
1519 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1520 VSUNIT_CLKGATE_DIS_TGL);
1521 }
1522
1523 static void
xehpsdv_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1524 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1525 {
1526 struct drm_i915_private *i915 = gt->i915;
1527
1528 xehp_init_mcr(gt, wal);
1529
1530 /* Wa_1409757795:xehpsdv */
1531 wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB);
1532
1533 /* Wa_16011155590:xehpsdv */
1534 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1535 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1536 TSGUNIT_CLKGATE_DIS);
1537
1538 /* Wa_14011780169:xehpsdv */
1539 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) {
1540 wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1541 GAMTLBVDBOX7_CLKGATE_DIS |
1542 GAMTLBVDBOX6_CLKGATE_DIS |
1543 GAMTLBVDBOX5_CLKGATE_DIS |
1544 GAMTLBVDBOX4_CLKGATE_DIS |
1545 GAMTLBVDBOX3_CLKGATE_DIS |
1546 GAMTLBVDBOX2_CLKGATE_DIS |
1547 GAMTLBVDBOX1_CLKGATE_DIS |
1548 GAMTLBVDBOX0_CLKGATE_DIS |
1549 GAMTLBKCR_CLKGATE_DIS |
1550 GAMTLBGUC_CLKGATE_DIS |
1551 GAMTLBBLT_CLKGATE_DIS);
1552 wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1553 GAMTLBGFXA1_CLKGATE_DIS |
1554 GAMTLBCOMPA0_CLKGATE_DIS |
1555 GAMTLBCOMPA1_CLKGATE_DIS |
1556 GAMTLBCOMPB0_CLKGATE_DIS |
1557 GAMTLBCOMPB1_CLKGATE_DIS |
1558 GAMTLBCOMPC0_CLKGATE_DIS |
1559 GAMTLBCOMPC1_CLKGATE_DIS |
1560 GAMTLBCOMPD0_CLKGATE_DIS |
1561 GAMTLBCOMPD1_CLKGATE_DIS |
1562 GAMTLBMERT_CLKGATE_DIS |
1563 GAMTLBVEBOX3_CLKGATE_DIS |
1564 GAMTLBVEBOX2_CLKGATE_DIS |
1565 GAMTLBVEBOX1_CLKGATE_DIS |
1566 GAMTLBVEBOX0_CLKGATE_DIS);
1567 }
1568
1569 /* Wa_16012725990:xehpsdv */
1570 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER))
1571 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS);
1572
1573 /* Wa_14011060649:xehpsdv */
1574 wa_14011060649(gt, wal);
1575
1576 /* Wa_14012362059:xehpsdv */
1577 wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1578
1579 /* Wa_14014368820:xehpsdv */
1580 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1581 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1582 }
1583
1584 static void
dg2_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1585 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1586 {
1587 struct intel_engine_cs *engine;
1588 int id;
1589
1590 xehp_init_mcr(gt, wal);
1591
1592 /* Wa_14011060649:dg2 */
1593 wa_14011060649(gt, wal);
1594
1595 /*
1596 * Although there are per-engine instances of these registers,
1597 * they technically exist outside the engine itself and are not
1598 * impacted by engine resets. Furthermore, they're part of the
1599 * GuC blacklist so trying to treat them as engine workarounds
1600 * will result in GuC initialization failure and a wedged GPU.
1601 */
1602 for_each_engine(engine, gt, id) {
1603 if (engine->class != VIDEO_DECODE_CLASS)
1604 continue;
1605
1606 /* Wa_16010515920:dg2_g10 */
1607 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
1608 wa_write_or(wal, VDBOX_CGCTL3F18(engine->mmio_base),
1609 ALNUNIT_CLKGATE_DIS);
1610 }
1611
1612 if (IS_DG2_G10(gt->i915)) {
1613 /* Wa_22010523718:dg2 */
1614 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1615 CG3DDISCFEG_CLKGATE_DIS);
1616
1617 /* Wa_14011006942:dg2 */
1618 wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1619 DSS_ROUTER_CLKGATE_DIS);
1620 }
1621
1622 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0) ||
1623 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) {
1624 /* Wa_14012362059:dg2 */
1625 wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1626 }
1627
1628 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) {
1629 /* Wa_14010948348:dg2_g10 */
1630 wa_write_or(wal, UNSLCGCTL9430, MSQDUNIT_CLKGATE_DIS);
1631
1632 /* Wa_14011037102:dg2_g10 */
1633 wa_write_or(wal, UNSLCGCTL9444, LTCDD_CLKGATE_DIS);
1634
1635 /* Wa_14011371254:dg2_g10 */
1636 wa_mcr_write_or(wal, XEHP_SLICE_UNIT_LEVEL_CLKGATE, NODEDSS_CLKGATE_DIS);
1637
1638 /* Wa_14011431319:dg2_g10 */
1639 wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1640 GAMTLBVDBOX7_CLKGATE_DIS |
1641 GAMTLBVDBOX6_CLKGATE_DIS |
1642 GAMTLBVDBOX5_CLKGATE_DIS |
1643 GAMTLBVDBOX4_CLKGATE_DIS |
1644 GAMTLBVDBOX3_CLKGATE_DIS |
1645 GAMTLBVDBOX2_CLKGATE_DIS |
1646 GAMTLBVDBOX1_CLKGATE_DIS |
1647 GAMTLBVDBOX0_CLKGATE_DIS |
1648 GAMTLBKCR_CLKGATE_DIS |
1649 GAMTLBGUC_CLKGATE_DIS |
1650 GAMTLBBLT_CLKGATE_DIS);
1651 wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1652 GAMTLBGFXA1_CLKGATE_DIS |
1653 GAMTLBCOMPA0_CLKGATE_DIS |
1654 GAMTLBCOMPA1_CLKGATE_DIS |
1655 GAMTLBCOMPB0_CLKGATE_DIS |
1656 GAMTLBCOMPB1_CLKGATE_DIS |
1657 GAMTLBCOMPC0_CLKGATE_DIS |
1658 GAMTLBCOMPC1_CLKGATE_DIS |
1659 GAMTLBCOMPD0_CLKGATE_DIS |
1660 GAMTLBCOMPD1_CLKGATE_DIS |
1661 GAMTLBMERT_CLKGATE_DIS |
1662 GAMTLBVEBOX3_CLKGATE_DIS |
1663 GAMTLBVEBOX2_CLKGATE_DIS |
1664 GAMTLBVEBOX1_CLKGATE_DIS |
1665 GAMTLBVEBOX0_CLKGATE_DIS);
1666
1667 /* Wa_14010569222:dg2_g10 */
1668 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1669 GAMEDIA_CLKGATE_DIS);
1670
1671 /* Wa_14011028019:dg2_g10 */
1672 wa_mcr_write_or(wal, SSMCGCTL9530, RTFUNIT_CLKGATE_DIS);
1673
1674 /* Wa_14010680813:dg2_g10 */
1675 wa_mcr_write_or(wal, XEHP_GAMSTLB_CTRL,
1676 CONTROL_BLOCK_CLKGATE_DIS |
1677 EGRESS_BLOCK_CLKGATE_DIS |
1678 TAG_BLOCK_CLKGATE_DIS);
1679 }
1680
1681 /* Wa_14014830051:dg2 */
1682 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1683
1684 /*
1685 * The following are not actually "workarounds" but rather
1686 * recommended tuning settings documented in the bspec's
1687 * performance guide section.
1688 */
1689 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1690
1691 /* Wa_14015795083 */
1692 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1693
1694 /* Wa_18018781329 */
1695 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1696 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1697 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1698 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1699
1700 /* Wa_1509235366:dg2 */
1701 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1702 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1703 }
1704
1705 static void
pvc_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1706 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1707 {
1708 pvc_init_mcr(gt, wal);
1709
1710 /* Wa_14015795083 */
1711 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1712
1713 /* Wa_18018781329 */
1714 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1715 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1716 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1717 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1718 }
1719
1720 static void
xelpg_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1721 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1722 {
1723 if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) ||
1724 IS_MTL_GRAPHICS_STEP(gt->i915, P, STEP_A0, STEP_B0)) {
1725 /* Wa_14014830051 */
1726 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1727
1728 /* Wa_18018781329 */
1729 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1730 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1731 }
1732
1733 /*
1734 * Unlike older platforms, we no longer setup implicit steering here;
1735 * all MCR accesses are explicitly steered.
1736 */
1737 debug_dump_steering(gt);
1738 }
1739
1740 static void
xelpmp_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1741 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1742 {
1743 if (IS_MTL_MEDIA_STEP(gt->i915, STEP_A0, STEP_B0)) {
1744 /*
1745 * Wa_18018781329
1746 *
1747 * Note that although these registers are MCR on the primary
1748 * GT, the media GT's versions are regular singleton registers.
1749 */
1750 wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1751 wa_write_or(wal, XELPMP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1752 wa_write_or(wal, XELPMP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1753 }
1754
1755 debug_dump_steering(gt);
1756 }
1757
1758 static void
gt_init_workarounds(struct intel_gt * gt,struct i915_wa_list * wal)1759 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1760 {
1761 struct drm_i915_private *i915 = gt->i915;
1762
1763 if (gt->type == GT_MEDIA) {
1764 if (MEDIA_VER(i915) >= 13)
1765 xelpmp_gt_workarounds_init(gt, wal);
1766 else
1767 MISSING_CASE(MEDIA_VER(i915));
1768
1769 return;
1770 }
1771
1772 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1773 xelpg_gt_workarounds_init(gt, wal);
1774 else if (IS_PONTEVECCHIO(i915))
1775 pvc_gt_workarounds_init(gt, wal);
1776 else if (IS_DG2(i915))
1777 dg2_gt_workarounds_init(gt, wal);
1778 else if (IS_XEHPSDV(i915))
1779 xehpsdv_gt_workarounds_init(gt, wal);
1780 else if (IS_DG1(i915))
1781 dg1_gt_workarounds_init(gt, wal);
1782 else if (IS_TIGERLAKE(i915))
1783 tgl_gt_workarounds_init(gt, wal);
1784 else if (GRAPHICS_VER(i915) == 12)
1785 gen12_gt_workarounds_init(gt, wal);
1786 else if (GRAPHICS_VER(i915) == 11)
1787 icl_gt_workarounds_init(gt, wal);
1788 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1789 cfl_gt_workarounds_init(gt, wal);
1790 else if (IS_GEMINILAKE(i915))
1791 glk_gt_workarounds_init(gt, wal);
1792 else if (IS_KABYLAKE(i915))
1793 kbl_gt_workarounds_init(gt, wal);
1794 else if (IS_BROXTON(i915))
1795 gen9_gt_workarounds_init(gt, wal);
1796 else if (IS_SKYLAKE(i915))
1797 skl_gt_workarounds_init(gt, wal);
1798 else if (IS_HASWELL(i915))
1799 hsw_gt_workarounds_init(gt, wal);
1800 else if (IS_VALLEYVIEW(i915))
1801 vlv_gt_workarounds_init(gt, wal);
1802 else if (IS_IVYBRIDGE(i915))
1803 ivb_gt_workarounds_init(gt, wal);
1804 else if (GRAPHICS_VER(i915) == 6)
1805 snb_gt_workarounds_init(gt, wal);
1806 else if (GRAPHICS_VER(i915) == 5)
1807 ilk_gt_workarounds_init(gt, wal);
1808 else if (IS_G4X(i915))
1809 g4x_gt_workarounds_init(gt, wal);
1810 else if (GRAPHICS_VER(i915) == 4)
1811 gen4_gt_workarounds_init(gt, wal);
1812 else if (GRAPHICS_VER(i915) <= 8)
1813 ;
1814 else
1815 MISSING_CASE(GRAPHICS_VER(i915));
1816 }
1817
intel_gt_init_workarounds(struct intel_gt * gt)1818 void intel_gt_init_workarounds(struct intel_gt *gt)
1819 {
1820 struct i915_wa_list *wal = >->wa_list;
1821
1822 wa_init_start(wal, gt, "GT", "global");
1823 gt_init_workarounds(gt, wal);
1824 wa_init_finish(wal);
1825 }
1826
1827 static enum forcewake_domains
wal_get_fw_for_rmw(struct intel_uncore * uncore,const struct i915_wa_list * wal)1828 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
1829 {
1830 enum forcewake_domains fw = 0;
1831 struct i915_wa *wa;
1832 unsigned int i;
1833
1834 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1835 fw |= intel_uncore_forcewake_for_reg(uncore,
1836 wa->reg,
1837 FW_REG_READ |
1838 FW_REG_WRITE);
1839
1840 return fw;
1841 }
1842
1843 static bool
wa_verify(struct intel_gt * gt,const struct i915_wa * wa,u32 cur,const char * name,const char * from)1844 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1845 const char *name, const char *from)
1846 {
1847 if ((cur ^ wa->set) & wa->read) {
1848 drm_err(>->i915->drm,
1849 "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1850 name, from, i915_mmio_reg_offset(wa->reg),
1851 cur, cur & wa->read, wa->set & wa->read);
1852
1853 return false;
1854 }
1855
1856 return true;
1857 }
1858
wa_list_apply(const struct i915_wa_list * wal)1859 static void wa_list_apply(const struct i915_wa_list *wal)
1860 {
1861 struct intel_gt *gt = wal->gt;
1862 struct intel_uncore *uncore = gt->uncore;
1863 enum forcewake_domains fw;
1864 unsigned long flags;
1865 struct i915_wa *wa;
1866 unsigned int i;
1867
1868 if (!wal->count)
1869 return;
1870
1871 fw = wal_get_fw_for_rmw(uncore, wal);
1872
1873 intel_gt_mcr_lock(gt, &flags);
1874 spin_lock(&uncore->lock);
1875 intel_uncore_forcewake_get__locked(uncore, fw);
1876
1877 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1878 u32 val, old = 0;
1879
1880 /* open-coded rmw due to steering */
1881 if (wa->clr)
1882 old = wa->is_mcr ?
1883 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1884 intel_uncore_read_fw(uncore, wa->reg);
1885 val = (old & ~wa->clr) | wa->set;
1886 if (val != old || !wa->clr) {
1887 if (wa->is_mcr)
1888 intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1889 else
1890 intel_uncore_write_fw(uncore, wa->reg, val);
1891 }
1892
1893 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1894 u32 val = wa->is_mcr ?
1895 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1896 intel_uncore_read_fw(uncore, wa->reg);
1897
1898 wa_verify(gt, wa, val, wal->name, "application");
1899 }
1900 }
1901
1902 intel_uncore_forcewake_put__locked(uncore, fw);
1903 spin_unlock(&uncore->lock);
1904 intel_gt_mcr_unlock(gt, flags);
1905 }
1906
intel_gt_apply_workarounds(struct intel_gt * gt)1907 void intel_gt_apply_workarounds(struct intel_gt *gt)
1908 {
1909 wa_list_apply(>->wa_list);
1910 }
1911
wa_list_verify(struct intel_gt * gt,const struct i915_wa_list * wal,const char * from)1912 static bool wa_list_verify(struct intel_gt *gt,
1913 const struct i915_wa_list *wal,
1914 const char *from)
1915 {
1916 struct intel_uncore *uncore = gt->uncore;
1917 struct i915_wa *wa;
1918 enum forcewake_domains fw;
1919 unsigned long flags;
1920 unsigned int i;
1921 bool ok = true;
1922
1923 fw = wal_get_fw_for_rmw(uncore, wal);
1924
1925 intel_gt_mcr_lock(gt, &flags);
1926 spin_lock(&uncore->lock);
1927 intel_uncore_forcewake_get__locked(uncore, fw);
1928
1929 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1930 ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1931 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1932 intel_uncore_read_fw(uncore, wa->reg),
1933 wal->name, from);
1934
1935 intel_uncore_forcewake_put__locked(uncore, fw);
1936 spin_unlock(&uncore->lock);
1937 intel_gt_mcr_unlock(gt, flags);
1938
1939 return ok;
1940 }
1941
intel_gt_verify_workarounds(struct intel_gt * gt,const char * from)1942 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1943 {
1944 return wa_list_verify(gt, >->wa_list, from);
1945 }
1946
1947 __maybe_unused
is_nonpriv_flags_valid(u32 flags)1948 static bool is_nonpriv_flags_valid(u32 flags)
1949 {
1950 /* Check only valid flag bits are set */
1951 if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1952 return false;
1953
1954 /* NB: Only 3 out of 4 enum values are valid for access field */
1955 if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1956 RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1957 return false;
1958
1959 return true;
1960 }
1961
1962 static void
whitelist_reg_ext(struct i915_wa_list * wal,i915_reg_t reg,u32 flags)1963 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1964 {
1965 struct i915_wa wa = {
1966 .reg = reg
1967 };
1968
1969 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1970 return;
1971
1972 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1973 return;
1974
1975 wa.reg.reg |= flags;
1976 _wa_add(wal, &wa);
1977 }
1978
1979 static void
whitelist_mcr_reg_ext(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 flags)1980 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1981 {
1982 struct i915_wa wa = {
1983 .mcr_reg = reg,
1984 .is_mcr = 1,
1985 };
1986
1987 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1988 return;
1989
1990 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1991 return;
1992
1993 wa.mcr_reg.reg |= flags;
1994 _wa_add(wal, &wa);
1995 }
1996
1997 static void
whitelist_reg(struct i915_wa_list * wal,i915_reg_t reg)1998 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1999 {
2000 whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
2001 }
2002
2003 static void
whitelist_mcr_reg(struct i915_wa_list * wal,i915_mcr_reg_t reg)2004 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
2005 {
2006 whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
2007 }
2008
gen9_whitelist_build(struct i915_wa_list * w)2009 static void gen9_whitelist_build(struct i915_wa_list *w)
2010 {
2011 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
2012 whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
2013
2014 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
2015 whitelist_reg(w, GEN8_CS_CHICKEN1);
2016
2017 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
2018 whitelist_reg(w, GEN8_HDC_CHICKEN1);
2019
2020 /* WaSendPushConstantsFromMMIO:skl,bxt */
2021 whitelist_reg(w, COMMON_SLICE_CHICKEN2);
2022 }
2023
skl_whitelist_build(struct intel_engine_cs * engine)2024 static void skl_whitelist_build(struct intel_engine_cs *engine)
2025 {
2026 struct i915_wa_list *w = &engine->whitelist;
2027
2028 if (engine->class != RENDER_CLASS)
2029 return;
2030
2031 gen9_whitelist_build(w);
2032
2033 /* WaDisableLSQCROPERFforOCL:skl */
2034 whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2035 }
2036
bxt_whitelist_build(struct intel_engine_cs * engine)2037 static void bxt_whitelist_build(struct intel_engine_cs *engine)
2038 {
2039 if (engine->class != RENDER_CLASS)
2040 return;
2041
2042 gen9_whitelist_build(&engine->whitelist);
2043 }
2044
kbl_whitelist_build(struct intel_engine_cs * engine)2045 static void kbl_whitelist_build(struct intel_engine_cs *engine)
2046 {
2047 struct i915_wa_list *w = &engine->whitelist;
2048
2049 if (engine->class != RENDER_CLASS)
2050 return;
2051
2052 gen9_whitelist_build(w);
2053
2054 /* WaDisableLSQCROPERFforOCL:kbl */
2055 whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2056 }
2057
glk_whitelist_build(struct intel_engine_cs * engine)2058 static void glk_whitelist_build(struct intel_engine_cs *engine)
2059 {
2060 struct i915_wa_list *w = &engine->whitelist;
2061
2062 if (engine->class != RENDER_CLASS)
2063 return;
2064
2065 gen9_whitelist_build(w);
2066
2067 /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
2068 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2069 }
2070
cfl_whitelist_build(struct intel_engine_cs * engine)2071 static void cfl_whitelist_build(struct intel_engine_cs *engine)
2072 {
2073 struct i915_wa_list *w = &engine->whitelist;
2074
2075 if (engine->class != RENDER_CLASS)
2076 return;
2077
2078 gen9_whitelist_build(w);
2079
2080 /*
2081 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
2082 *
2083 * This covers 4 register which are next to one another :
2084 * - PS_INVOCATION_COUNT
2085 * - PS_INVOCATION_COUNT_UDW
2086 * - PS_DEPTH_COUNT
2087 * - PS_DEPTH_COUNT_UDW
2088 */
2089 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2090 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2091 RING_FORCE_TO_NONPRIV_RANGE_4);
2092 }
2093
allow_read_ctx_timestamp(struct intel_engine_cs * engine)2094 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
2095 {
2096 struct i915_wa_list *w = &engine->whitelist;
2097
2098 if (engine->class != RENDER_CLASS)
2099 whitelist_reg_ext(w,
2100 RING_CTX_TIMESTAMP(engine->mmio_base),
2101 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2102 }
2103
cml_whitelist_build(struct intel_engine_cs * engine)2104 static void cml_whitelist_build(struct intel_engine_cs *engine)
2105 {
2106 allow_read_ctx_timestamp(engine);
2107
2108 cfl_whitelist_build(engine);
2109 }
2110
icl_whitelist_build(struct intel_engine_cs * engine)2111 static void icl_whitelist_build(struct intel_engine_cs *engine)
2112 {
2113 struct i915_wa_list *w = &engine->whitelist;
2114
2115 allow_read_ctx_timestamp(engine);
2116
2117 switch (engine->class) {
2118 case RENDER_CLASS:
2119 /* WaAllowUMDToModifyHalfSliceChicken7:icl */
2120 whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2121
2122 /* WaAllowUMDToModifySamplerMode:icl */
2123 whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2124
2125 /* WaEnableStateCacheRedirectToCS:icl */
2126 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2127
2128 /*
2129 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2130 *
2131 * This covers 4 register which are next to one another :
2132 * - PS_INVOCATION_COUNT
2133 * - PS_INVOCATION_COUNT_UDW
2134 * - PS_DEPTH_COUNT
2135 * - PS_DEPTH_COUNT_UDW
2136 */
2137 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2138 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2139 RING_FORCE_TO_NONPRIV_RANGE_4);
2140 break;
2141
2142 case VIDEO_DECODE_CLASS:
2143 /* hucStatusRegOffset */
2144 whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2145 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2146 /* hucUKernelHdrInfoRegOffset */
2147 whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2148 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2149 /* hucStatus2RegOffset */
2150 whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2151 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2152 break;
2153
2154 default:
2155 break;
2156 }
2157 }
2158
tgl_whitelist_build(struct intel_engine_cs * engine)2159 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2160 {
2161 struct i915_wa_list *w = &engine->whitelist;
2162
2163 allow_read_ctx_timestamp(engine);
2164
2165 switch (engine->class) {
2166 case RENDER_CLASS:
2167 /*
2168 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2169 * Wa_1408556865:tgl
2170 *
2171 * This covers 4 registers which are next to one another :
2172 * - PS_INVOCATION_COUNT
2173 * - PS_INVOCATION_COUNT_UDW
2174 * - PS_DEPTH_COUNT
2175 * - PS_DEPTH_COUNT_UDW
2176 */
2177 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2178 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2179 RING_FORCE_TO_NONPRIV_RANGE_4);
2180
2181 /*
2182 * Wa_1808121037:tgl
2183 * Wa_14012131227:dg1
2184 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2185 */
2186 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2187
2188 /* Wa_1806527549:tgl */
2189 whitelist_reg(w, HIZ_CHICKEN);
2190 break;
2191 default:
2192 break;
2193 }
2194 }
2195
dg1_whitelist_build(struct intel_engine_cs * engine)2196 static void dg1_whitelist_build(struct intel_engine_cs *engine)
2197 {
2198 struct i915_wa_list *w = &engine->whitelist;
2199
2200 tgl_whitelist_build(engine);
2201
2202 /* GEN:BUG:1409280441:dg1 */
2203 if (IS_DG1_GRAPHICS_STEP(engine->i915, STEP_A0, STEP_B0) &&
2204 (engine->class == RENDER_CLASS ||
2205 engine->class == COPY_ENGINE_CLASS))
2206 whitelist_reg_ext(w, RING_ID(engine->mmio_base),
2207 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2208 }
2209
xehpsdv_whitelist_build(struct intel_engine_cs * engine)2210 static void xehpsdv_whitelist_build(struct intel_engine_cs *engine)
2211 {
2212 allow_read_ctx_timestamp(engine);
2213 }
2214
dg2_whitelist_build(struct intel_engine_cs * engine)2215 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2216 {
2217 struct i915_wa_list *w = &engine->whitelist;
2218
2219 allow_read_ctx_timestamp(engine);
2220
2221 switch (engine->class) {
2222 case RENDER_CLASS:
2223 /*
2224 * Wa_1507100340:dg2_g10
2225 *
2226 * This covers 4 registers which are next to one another :
2227 * - PS_INVOCATION_COUNT
2228 * - PS_INVOCATION_COUNT_UDW
2229 * - PS_DEPTH_COUNT
2230 * - PS_DEPTH_COUNT_UDW
2231 */
2232 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0))
2233 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2234 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2235 RING_FORCE_TO_NONPRIV_RANGE_4);
2236
2237 break;
2238 case COMPUTE_CLASS:
2239 /* Wa_16011157294:dg2_g10 */
2240 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0))
2241 whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
2242 break;
2243 default:
2244 break;
2245 }
2246 }
2247
blacklist_trtt(struct intel_engine_cs * engine)2248 static void blacklist_trtt(struct intel_engine_cs *engine)
2249 {
2250 struct i915_wa_list *w = &engine->whitelist;
2251
2252 /*
2253 * Prevent read/write access to [0x4400, 0x4600) which covers
2254 * the TRTT range across all engines. Note that normally userspace
2255 * cannot access the other engines' trtt control, but for simplicity
2256 * we cover the entire range on each engine.
2257 */
2258 whitelist_reg_ext(w, _MMIO(0x4400),
2259 RING_FORCE_TO_NONPRIV_DENY |
2260 RING_FORCE_TO_NONPRIV_RANGE_64);
2261 whitelist_reg_ext(w, _MMIO(0x4500),
2262 RING_FORCE_TO_NONPRIV_DENY |
2263 RING_FORCE_TO_NONPRIV_RANGE_64);
2264 }
2265
pvc_whitelist_build(struct intel_engine_cs * engine)2266 static void pvc_whitelist_build(struct intel_engine_cs *engine)
2267 {
2268 allow_read_ctx_timestamp(engine);
2269
2270 /* Wa_16014440446:pvc */
2271 blacklist_trtt(engine);
2272 }
2273
intel_engine_init_whitelist(struct intel_engine_cs * engine)2274 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2275 {
2276 struct drm_i915_private *i915 = engine->i915;
2277 struct i915_wa_list *w = &engine->whitelist;
2278
2279 wa_init_start(w, engine->gt, "whitelist", engine->name);
2280
2281 if (IS_METEORLAKE(i915))
2282 ; /* noop; none at this time */
2283 else if (IS_PONTEVECCHIO(i915))
2284 pvc_whitelist_build(engine);
2285 else if (IS_DG2(i915))
2286 dg2_whitelist_build(engine);
2287 else if (IS_XEHPSDV(i915))
2288 xehpsdv_whitelist_build(engine);
2289 else if (IS_DG1(i915))
2290 dg1_whitelist_build(engine);
2291 else if (GRAPHICS_VER(i915) == 12)
2292 tgl_whitelist_build(engine);
2293 else if (GRAPHICS_VER(i915) == 11)
2294 icl_whitelist_build(engine);
2295 else if (IS_COMETLAKE(i915))
2296 cml_whitelist_build(engine);
2297 else if (IS_COFFEELAKE(i915))
2298 cfl_whitelist_build(engine);
2299 else if (IS_GEMINILAKE(i915))
2300 glk_whitelist_build(engine);
2301 else if (IS_KABYLAKE(i915))
2302 kbl_whitelist_build(engine);
2303 else if (IS_BROXTON(i915))
2304 bxt_whitelist_build(engine);
2305 else if (IS_SKYLAKE(i915))
2306 skl_whitelist_build(engine);
2307 else if (GRAPHICS_VER(i915) <= 8)
2308 ;
2309 else
2310 MISSING_CASE(GRAPHICS_VER(i915));
2311
2312 wa_init_finish(w);
2313 }
2314
intel_engine_apply_whitelist(struct intel_engine_cs * engine)2315 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2316 {
2317 const struct i915_wa_list *wal = &engine->whitelist;
2318 struct intel_uncore *uncore = engine->uncore;
2319 const u32 base = engine->mmio_base;
2320 struct i915_wa *wa;
2321 unsigned int i;
2322
2323 if (!wal->count)
2324 return;
2325
2326 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2327 intel_uncore_write(uncore,
2328 RING_FORCE_TO_NONPRIV(base, i),
2329 i915_mmio_reg_offset(wa->reg));
2330
2331 /* And clear the rest just in case of garbage */
2332 for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2333 intel_uncore_write(uncore,
2334 RING_FORCE_TO_NONPRIV(base, i),
2335 i915_mmio_reg_offset(RING_NOPID(base)));
2336 }
2337
2338 /*
2339 * engine_fake_wa_init(), a place holder to program the registers
2340 * which are not part of an official workaround defined by the
2341 * hardware team.
2342 * Adding programming of those register inside workaround will
2343 * allow utilizing wa framework to proper application and verification.
2344 */
2345 static void
engine_fake_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2346 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2347 {
2348 u8 mocs_w, mocs_r;
2349
2350 /*
2351 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2352 * by the command streamer when executing commands that don't have
2353 * a way to explicitly specify a MOCS setting. The default should
2354 * usually reference whichever MOCS entry corresponds to uncached
2355 * behavior, although use of a WB cached entry is recommended by the
2356 * spec in certain circumstances on specific platforms.
2357 */
2358 if (GRAPHICS_VER(engine->i915) >= 12) {
2359 mocs_r = engine->gt->mocs.uc_index;
2360 mocs_w = engine->gt->mocs.uc_index;
2361
2362 if (HAS_L3_CCS_READ(engine->i915) &&
2363 engine->class == COMPUTE_CLASS) {
2364 mocs_r = engine->gt->mocs.wb_index;
2365
2366 /*
2367 * Even on the few platforms where MOCS 0 is a
2368 * legitimate table entry, it's never the correct
2369 * setting to use here; we can assume the MOCS init
2370 * just forgot to initialize wb_index.
2371 */
2372 drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2373 }
2374
2375 wa_masked_field_set(wal,
2376 RING_CMD_CCTL(engine->mmio_base),
2377 CMD_CCTL_MOCS_MASK,
2378 CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2379 }
2380 }
2381
needs_wa_1308578152(struct intel_engine_cs * engine)2382 static bool needs_wa_1308578152(struct intel_engine_cs *engine)
2383 {
2384 return intel_sseu_find_first_xehp_dss(&engine->gt->info.sseu, 0, 0) >=
2385 GEN_DSS_PER_GSLICE;
2386 }
2387
2388 static void
rcs_engine_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2389 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2390 {
2391 struct drm_i915_private *i915 = engine->i915;
2392
2393 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2394 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) {
2395 /* Wa_22014600077 */
2396 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2397 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2398 }
2399
2400 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2401 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
2402 IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2403 IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
2404 /* Wa_1509727124 */
2405 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2406 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2407 }
2408
2409 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2410 IS_DG2_G11(i915) || IS_DG2_G12(i915) ||
2411 IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0)) {
2412 /* Wa_22012856258 */
2413 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2414 GEN12_DISABLE_READ_SUPPRESSION);
2415 }
2416
2417 if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) {
2418 /* Wa_14013392000:dg2_g11 */
2419 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_ENABLE_LARGE_GRF_MODE);
2420 }
2421
2422 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0) ||
2423 IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) {
2424 /* Wa_14012419201:dg2 */
2425 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4,
2426 GEN12_DISABLE_HDR_PAST_PAYLOAD_HOLD_FIX);
2427 }
2428
2429 /* Wa_1308578152:dg2_g10 when first gslice is fused off */
2430 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) &&
2431 needs_wa_1308578152(engine)) {
2432 wa_masked_dis(wal, GEN12_CS_DEBUG_MODE1_CCCSUNIT_BE_COMMON,
2433 GEN12_REPLAY_MODE_GRANULARITY);
2434 }
2435
2436 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2437 IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
2438 /*
2439 * Wa_22010960976:dg2
2440 * Wa_14013347512:dg2
2441 */
2442 wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2443 LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2444 }
2445
2446 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) {
2447 /*
2448 * Wa_1608949956:dg2_g10
2449 * Wa_14010198302:dg2_g10
2450 */
2451 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
2452 MDQ_ARBITRATION_MODE | UGM_BACKUP_MODE);
2453 }
2454
2455 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) {
2456 /* Wa_22010430635:dg2 */
2457 wa_mcr_masked_en(wal,
2458 GEN9_ROW_CHICKEN4,
2459 GEN12_DISABLE_GRF_CLEAR);
2460
2461 /* Wa_14010648519:dg2 */
2462 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
2463 }
2464
2465 /* Wa_14013202645:dg2 */
2466 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) ||
2467 IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0))
2468 wa_mcr_write_or(wal, RT_CTRL, DIS_NULL_QUERY);
2469
2470 /* Wa_22012532006:dg2 */
2471 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_C0) ||
2472 IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0))
2473 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
2474 DG2_DISABLE_ROUND_ENABLE_ALLOW_FOR_SSLA);
2475
2476 if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_B0, STEP_FOREVER) ||
2477 IS_DG2_G10(i915)) {
2478 /* Wa_22014600077:dg2 */
2479 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2480 _MASKED_BIT_ENABLE(ENABLE_EU_COUNT_FOR_TDL_FLUSH),
2481 0 /* Wa_14012342262 write-only reg, so skip verification */,
2482 true);
2483 }
2484
2485 if (IS_DG1_GRAPHICS_STEP(i915, STEP_A0, STEP_B0) ||
2486 IS_TGL_UY_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) {
2487 /*
2488 * Wa_1607138336:tgl[a0],dg1[a0]
2489 * Wa_1607063988:tgl[a0],dg1[a0]
2490 */
2491 wa_write_or(wal,
2492 GEN9_CTX_PREEMPT_REG,
2493 GEN12_DISABLE_POSH_BUSY_FF_DOP_CG);
2494 }
2495
2496 if (IS_TGL_UY_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) {
2497 /*
2498 * Wa_1606679103:tgl
2499 * (see also Wa_1606682166:icl)
2500 */
2501 wa_write_or(wal,
2502 GEN7_SARCHKMD,
2503 GEN7_DISABLE_SAMPLER_PREFETCH);
2504 }
2505
2506 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2507 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2508 /* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2509 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2510
2511 /*
2512 * Wa_1407928979:tgl A*
2513 * Wa_18011464164:tgl[B0+],dg1[B0+]
2514 * Wa_22010931296:tgl[B0+],dg1[B0+]
2515 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2516 */
2517 wa_write_or(wal, GEN7_FF_THREAD_MODE,
2518 GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2519 }
2520
2521 if (IS_ALDERLAKE_P(i915) || IS_DG2(i915) || IS_ALDERLAKE_S(i915) ||
2522 IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2523 /*
2524 * Wa_1606700617:tgl,dg1,adl-p
2525 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2526 * Wa_14010826681:tgl,dg1,rkl,adl-p
2527 * Wa_18019627453:dg2
2528 */
2529 wa_masked_en(wal,
2530 GEN9_CS_DEBUG_MODE1,
2531 FF_DOP_CLOCK_GATE_DISABLE);
2532 }
2533
2534 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2535 IS_DG1_GRAPHICS_STEP(i915, STEP_A0, STEP_B0) ||
2536 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2537 /* Wa_1409804808:tgl,rkl,dg1[a0],adl-s,adl-p */
2538 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2539 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2540
2541 /*
2542 * Wa_1409085225:tgl
2543 * Wa_14010229206:tgl,rkl,dg1[a0],adl-s,adl-p
2544 */
2545 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2546 }
2547
2548 if (IS_DG1_GRAPHICS_STEP(i915, STEP_A0, STEP_B0) ||
2549 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2550 /*
2551 * Wa_1607030317:tgl
2552 * Wa_1607186500:tgl
2553 * Wa_1607297627:tgl,rkl,dg1[a0],adlp
2554 *
2555 * On TGL and RKL there are multiple entries for this WA in the
2556 * BSpec; some indicate this is an A0-only WA, others indicate
2557 * it applies to all steppings so we trust the "all steppings."
2558 * For DG1 this only applies to A0.
2559 */
2560 wa_masked_en(wal,
2561 RING_PSMI_CTL(RENDER_RING_BASE),
2562 GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2563 GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2564 }
2565
2566 if (IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) ||
2567 IS_ALDERLAKE_S(i915) || IS_ALDERLAKE_P(i915)) {
2568 /* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2569 wa_mcr_masked_en(wal,
2570 GEN10_SAMPLER_MODE,
2571 ENABLE_SMALLPL);
2572 }
2573
2574 if (GRAPHICS_VER(i915) == 11) {
2575 /* This is not an Wa. Enable for better image quality */
2576 wa_masked_en(wal,
2577 _3D_CHICKEN3,
2578 _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2579
2580 /*
2581 * Wa_1405543622:icl
2582 * Formerly known as WaGAPZPriorityScheme
2583 */
2584 wa_write_or(wal,
2585 GEN8_GARBCNTL,
2586 GEN11_ARBITRATION_PRIO_ORDER_MASK);
2587
2588 /*
2589 * Wa_1604223664:icl
2590 * Formerly known as WaL3BankAddressHashing
2591 */
2592 wa_write_clr_set(wal,
2593 GEN8_GARBCNTL,
2594 GEN11_HASH_CTRL_EXCL_MASK,
2595 GEN11_HASH_CTRL_EXCL_BIT0);
2596 wa_write_clr_set(wal,
2597 GEN11_GLBLINVL,
2598 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2599 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2600
2601 /*
2602 * Wa_1405733216:icl
2603 * Formerly known as WaDisableCleanEvicts
2604 */
2605 wa_mcr_write_or(wal,
2606 GEN8_L3SQCREG4,
2607 GEN11_LQSC_CLEAN_EVICT_DISABLE);
2608
2609 /* Wa_1606682166:icl */
2610 wa_write_or(wal,
2611 GEN7_SARCHKMD,
2612 GEN7_DISABLE_SAMPLER_PREFETCH);
2613
2614 /* Wa_1409178092:icl */
2615 wa_mcr_write_clr_set(wal,
2616 GEN11_SCRATCH2,
2617 GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2618 0);
2619
2620 /* WaEnable32PlaneMode:icl */
2621 wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2622 GEN11_ENABLE_32_PLANE_MODE);
2623
2624 /*
2625 * Wa_1408767742:icl[a2..forever],ehl[all]
2626 * Wa_1605460711:icl[a0..c0]
2627 */
2628 wa_write_or(wal,
2629 GEN7_FF_THREAD_MODE,
2630 GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2631
2632 /* Wa_22010271021 */
2633 wa_masked_en(wal,
2634 GEN9_CS_DEBUG_MODE1,
2635 FF_DOP_CLOCK_GATE_DISABLE);
2636 }
2637
2638 /*
2639 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2640 * beyond) allow the kernel-mode driver to choose between two different
2641 * options for controlling preemption granularity and behavior.
2642 *
2643 * Option 1 (hardware default):
2644 * Preemption settings are controlled in a global manner via
2645 * kernel-only register CS_DEBUG_MODE1 (0x20EC). Any granularity
2646 * and settings chosen by the kernel-mode driver will apply to all
2647 * userspace clients.
2648 *
2649 * Option 2:
2650 * Preemption settings are controlled on a per-context basis via
2651 * register CS_CHICKEN1 (0x2580). CS_CHICKEN1 is saved/restored on
2652 * context switch and is writable by userspace (e.g., via
2653 * MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2654 * which allows different userspace drivers/clients to select
2655 * different settings, or to change those settings on the fly in
2656 * response to runtime needs. This option was known by name
2657 * "FtrPerCtxtPreemptionGranularityControl" at one time, although
2658 * that name is somewhat misleading as other non-granularity
2659 * preemption settings are also impacted by this decision.
2660 *
2661 * On Linux, our policy has always been to let userspace drivers
2662 * control preemption granularity/settings (Option 2). This was
2663 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2664 * userspace developed before object-level preemption was enabled would
2665 * not behave well if i915 were to go with Option 1 and enable that
2666 * preemption in a global manner). On gen9 each context would have
2667 * object-level preemption disabled by default (see
2668 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2669 * userspace drivers could opt-in to object-level preemption as they
2670 * saw fit. For post-gen9 platforms, we continue to utilize Option 2;
2671 * even though it is no longer necessary for ABI compatibility when
2672 * enabling a new platform, it does ensure that userspace will be able
2673 * to implement any workarounds that show up requiring temporary
2674 * adjustments to preemption behavior at runtime.
2675 *
2676 * Notes/Workarounds:
2677 * - Wa_14015141709: On DG2 and early steppings of MTL,
2678 * CS_CHICKEN1[0] does not disable object-level preemption as
2679 * it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2680 * using Option 1). Effectively this means userspace is unable
2681 * to disable object-level preemption on these platforms/steppings
2682 * despite the setting here.
2683 *
2684 * - Wa_16013994831: May require that userspace program
2685 * CS_CHICKEN1[10] when certain runtime conditions are true.
2686 * Userspace requires Option 2 to be in effect for their update of
2687 * CS_CHICKEN1[10] to be effective.
2688 *
2689 * Other workarounds may appear in the future that will also require
2690 * Option 2 behavior to allow proper userspace implementation.
2691 */
2692 if (GRAPHICS_VER(i915) >= 9)
2693 wa_masked_en(wal,
2694 GEN7_FF_SLICE_CS_CHICKEN1,
2695 GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2696
2697 if (IS_SKYLAKE(i915) ||
2698 IS_KABYLAKE(i915) ||
2699 IS_COFFEELAKE(i915) ||
2700 IS_COMETLAKE(i915)) {
2701 /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2702 wa_write_or(wal,
2703 GEN8_GARBCNTL,
2704 GEN9_GAPS_TSV_CREDIT_DISABLE);
2705 }
2706
2707 if (IS_BROXTON(i915)) {
2708 /* WaDisablePooledEuLoadBalancingFix:bxt */
2709 wa_masked_en(wal,
2710 FF_SLICE_CS_CHICKEN2,
2711 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2712 }
2713
2714 if (GRAPHICS_VER(i915) == 9) {
2715 /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2716 wa_masked_en(wal,
2717 GEN9_CSFE_CHICKEN1_RCS,
2718 GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2719
2720 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2721 wa_mcr_write_or(wal,
2722 BDW_SCRATCH1,
2723 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2724
2725 /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2726 if (IS_GEN9_LP(i915))
2727 wa_mcr_write_clr_set(wal,
2728 GEN8_L3SQCREG1,
2729 L3_PRIO_CREDITS_MASK,
2730 L3_GENERAL_PRIO_CREDITS(62) |
2731 L3_HIGH_PRIO_CREDITS(2));
2732
2733 /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2734 wa_mcr_write_or(wal,
2735 GEN8_L3SQCREG4,
2736 GEN8_LQSC_FLUSH_COHERENT_LINES);
2737
2738 /* Disable atomics in L3 to prevent unrecoverable hangs */
2739 wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2740 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2741 wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2742 GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2743 wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2744 EVICTION_PERF_FIX_ENABLE, 0);
2745 }
2746
2747 if (IS_HASWELL(i915)) {
2748 /* WaSampleCChickenBitEnable:hsw */
2749 wa_masked_en(wal,
2750 HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2751
2752 wa_masked_dis(wal,
2753 CACHE_MODE_0_GEN7,
2754 /* enable HiZ Raw Stall Optimization */
2755 HIZ_RAW_STALL_OPT_DISABLE);
2756 }
2757
2758 if (IS_VALLEYVIEW(i915)) {
2759 /* WaDisableEarlyCull:vlv */
2760 wa_masked_en(wal,
2761 _3D_CHICKEN3,
2762 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2763
2764 /*
2765 * WaVSThreadDispatchOverride:ivb,vlv
2766 *
2767 * This actually overrides the dispatch
2768 * mode for all thread types.
2769 */
2770 wa_write_clr_set(wal,
2771 GEN7_FF_THREAD_MODE,
2772 GEN7_FF_SCHED_MASK,
2773 GEN7_FF_TS_SCHED_HW |
2774 GEN7_FF_VS_SCHED_HW |
2775 GEN7_FF_DS_SCHED_HW);
2776
2777 /* WaPsdDispatchEnable:vlv */
2778 /* WaDisablePSDDualDispatchEnable:vlv */
2779 wa_masked_en(wal,
2780 GEN7_HALF_SLICE_CHICKEN1,
2781 GEN7_MAX_PS_THREAD_DEP |
2782 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2783 }
2784
2785 if (IS_IVYBRIDGE(i915)) {
2786 /* WaDisableEarlyCull:ivb */
2787 wa_masked_en(wal,
2788 _3D_CHICKEN3,
2789 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2790
2791 if (0) { /* causes HiZ corruption on ivb:gt1 */
2792 /* enable HiZ Raw Stall Optimization */
2793 wa_masked_dis(wal,
2794 CACHE_MODE_0_GEN7,
2795 HIZ_RAW_STALL_OPT_DISABLE);
2796 }
2797
2798 /*
2799 * WaVSThreadDispatchOverride:ivb,vlv
2800 *
2801 * This actually overrides the dispatch
2802 * mode for all thread types.
2803 */
2804 wa_write_clr_set(wal,
2805 GEN7_FF_THREAD_MODE,
2806 GEN7_FF_SCHED_MASK,
2807 GEN7_FF_TS_SCHED_HW |
2808 GEN7_FF_VS_SCHED_HW |
2809 GEN7_FF_DS_SCHED_HW);
2810
2811 /* WaDisablePSDDualDispatchEnable:ivb */
2812 if (IS_IVB_GT1(i915))
2813 wa_masked_en(wal,
2814 GEN7_HALF_SLICE_CHICKEN1,
2815 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2816 }
2817
2818 if (GRAPHICS_VER(i915) == 7) {
2819 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2820 wa_masked_en(wal,
2821 RING_MODE_GEN7(RENDER_RING_BASE),
2822 GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2823
2824 /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2825 wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2826
2827 /*
2828 * BSpec says this must be set, even though
2829 * WaDisable4x2SubspanOptimization:ivb,hsw
2830 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2831 */
2832 wa_masked_en(wal,
2833 CACHE_MODE_1,
2834 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2835
2836 /*
2837 * BSpec recommends 8x4 when MSAA is used,
2838 * however in practice 16x4 seems fastest.
2839 *
2840 * Note that PS/WM thread counts depend on the WIZ hashing
2841 * disable bit, which we don't touch here, but it's good
2842 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2843 */
2844 wa_masked_field_set(wal,
2845 GEN7_GT_MODE,
2846 GEN6_WIZ_HASHING_MASK,
2847 GEN6_WIZ_HASHING_16x4);
2848 }
2849
2850 if (IS_GRAPHICS_VER(i915, 6, 7))
2851 /*
2852 * We need to disable the AsyncFlip performance optimisations in
2853 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2854 * already be programmed to '1' on all products.
2855 *
2856 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2857 */
2858 wa_masked_en(wal,
2859 RING_MI_MODE(RENDER_RING_BASE),
2860 ASYNC_FLIP_PERF_DISABLE);
2861
2862 if (GRAPHICS_VER(i915) == 6) {
2863 /*
2864 * Required for the hardware to program scanline values for
2865 * waiting
2866 * WaEnableFlushTlbInvalidationMode:snb
2867 */
2868 wa_masked_en(wal,
2869 GFX_MODE,
2870 GFX_TLB_INVALIDATE_EXPLICIT);
2871
2872 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2873 wa_masked_en(wal,
2874 _3D_CHICKEN,
2875 _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2876
2877 wa_masked_en(wal,
2878 _3D_CHICKEN3,
2879 /* WaStripsFansDisableFastClipPerformanceFix:snb */
2880 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2881 /*
2882 * Bspec says:
2883 * "This bit must be set if 3DSTATE_CLIP clip mode is set
2884 * to normal and 3DSTATE_SF number of SF output attributes
2885 * is more than 16."
2886 */
2887 _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2888
2889 /*
2890 * BSpec recommends 8x4 when MSAA is used,
2891 * however in practice 16x4 seems fastest.
2892 *
2893 * Note that PS/WM thread counts depend on the WIZ hashing
2894 * disable bit, which we don't touch here, but it's good
2895 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2896 */
2897 wa_masked_field_set(wal,
2898 GEN6_GT_MODE,
2899 GEN6_WIZ_HASHING_MASK,
2900 GEN6_WIZ_HASHING_16x4);
2901
2902 /* WaDisable_RenderCache_OperationalFlush:snb */
2903 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2904
2905 /*
2906 * From the Sandybridge PRM, volume 1 part 3, page 24:
2907 * "If this bit is set, STCunit will have LRA as replacement
2908 * policy. [...] This bit must be reset. LRA replacement
2909 * policy is not supported."
2910 */
2911 wa_masked_dis(wal,
2912 CACHE_MODE_0,
2913 CM0_STC_EVICT_DISABLE_LRA_SNB);
2914 }
2915
2916 if (IS_GRAPHICS_VER(i915, 4, 6))
2917 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2918 wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2919 0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2920 /* XXX bit doesn't stick on Broadwater */
2921 IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2922
2923 if (GRAPHICS_VER(i915) == 4)
2924 /*
2925 * Disable CONSTANT_BUFFER before it is loaded from the context
2926 * image. For as it is loaded, it is executed and the stored
2927 * address may no longer be valid, leading to a GPU hang.
2928 *
2929 * This imposes the requirement that userspace reload their
2930 * CONSTANT_BUFFER on every batch, fortunately a requirement
2931 * they are already accustomed to from before contexts were
2932 * enabled.
2933 */
2934 wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2935 0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2936 0 /* XXX bit doesn't stick on Broadwater */,
2937 true);
2938 }
2939
2940 static void
xcs_engine_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2941 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2942 {
2943 struct drm_i915_private *i915 = engine->i915;
2944
2945 /* WaKBLVECSSemaphoreWaitPoll:kbl */
2946 if (IS_KBL_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2947 wa_write(wal,
2948 RING_SEMA_WAIT_POLL(engine->mmio_base),
2949 1);
2950 }
2951 }
2952
2953 static void
ccs_engine_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2954 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2955 {
2956 if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) {
2957 /* Wa_14014999345:pvc */
2958 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC);
2959 }
2960 }
2961
2962 /*
2963 * The bspec performance guide has recommended MMIO tuning settings. These
2964 * aren't truly "workarounds" but we want to program them with the same
2965 * workaround infrastructure to ensure that they're automatically added to
2966 * the GuC save/restore lists, re-applied at the right times, and checked for
2967 * any conflicting programming requested by real workarounds.
2968 *
2969 * Programming settings should be added here only if their registers are not
2970 * part of an engine's register state context. If a register is part of a
2971 * context, then any tuning settings should be programmed in an appropriate
2972 * function invoked by __intel_engine_init_ctx_wa().
2973 */
2974 static void
add_render_compute_tuning_settings(struct drm_i915_private * i915,struct i915_wa_list * wal)2975 add_render_compute_tuning_settings(struct drm_i915_private *i915,
2976 struct i915_wa_list *wal)
2977 {
2978 if (IS_PONTEVECCHIO(i915)) {
2979 wa_mcr_write(wal, XEHPC_L3SCRUB,
2980 SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK);
2981 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN);
2982 }
2983
2984 if (IS_DG2(i915)) {
2985 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
2986 wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2987 }
2988
2989 /*
2990 * This tuning setting proves beneficial only on ATS-M designs; the
2991 * default "age based" setting is optimal on regular DG2 and other
2992 * platforms.
2993 */
2994 if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2995 wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2996 THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2997
2998 if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
2999 wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
3000 }
3001
3002 /*
3003 * The workarounds in this function apply to shared registers in
3004 * the general render reset domain that aren't tied to a
3005 * specific engine. Since all render+compute engines get reset
3006 * together, and the contents of these registers are lost during
3007 * the shared render domain reset, we'll define such workarounds
3008 * here and then add them to just a single RCS or CCS engine's
3009 * workaround list (whichever engine has the XXXX flag).
3010 */
3011 static void
general_render_compute_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)3012 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
3013 {
3014 struct drm_i915_private *i915 = engine->i915;
3015
3016 add_render_compute_tuning_settings(i915, wal);
3017
3018 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
3019 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
3020 IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
3021 IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
3022 /* Wa_22013037850 */
3023 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
3024 DISABLE_128B_EVICTION_COMMAND_UDW);
3025 }
3026
3027 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
3028 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
3029 IS_PONTEVECCHIO(i915) ||
3030 IS_DG2(i915)) {
3031 /* Wa_22014226127 */
3032 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
3033 }
3034
3035 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
3036 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
3037 IS_DG2(i915)) {
3038 /* Wa_18017747507 */
3039 wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
3040 }
3041
3042 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) ||
3043 IS_DG2_G11(i915)) {
3044 /*
3045 * Wa_22012826095:dg2
3046 * Wa_22013059131:dg2
3047 */
3048 wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
3049 MAXREQS_PER_BANK,
3050 REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
3051
3052 /* Wa_22013059131:dg2 */
3053 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
3054 FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
3055 }
3056
3057 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) {
3058 /*
3059 * Wa_14010918519:dg2_g10
3060 *
3061 * LSC_CHICKEN_BIT_0 always reads back as 0 is this stepping,
3062 * so ignoring verification.
3063 */
3064 wa_mcr_add(wal, LSC_CHICKEN_BIT_0_UDW, 0,
3065 FORCE_SLM_FENCE_SCOPE_TO_TILE | FORCE_UGM_FENCE_SCOPE_TO_TILE,
3066 0, false);
3067 }
3068
3069 if (IS_PONTEVECCHIO(i915)) {
3070 /* Wa_16016694945 */
3071 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC);
3072 }
3073
3074 if (IS_XEHPSDV(i915)) {
3075 /* Wa_1409954639 */
3076 wa_mcr_masked_en(wal,
3077 GEN8_ROW_CHICKEN,
3078 SYSTOLIC_DOP_CLOCK_GATING_DIS);
3079
3080 /* Wa_1607196519 */
3081 wa_mcr_masked_en(wal,
3082 GEN9_ROW_CHICKEN4,
3083 GEN12_DISABLE_GRF_CLEAR);
3084
3085 /* Wa_14010670810:xehpsdv */
3086 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
3087
3088 /* Wa_14010449647:xehpsdv */
3089 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
3090 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
3091
3092 /* Wa_18011725039:xehpsdv */
3093 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) {
3094 wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER);
3095 wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH);
3096 }
3097 }
3098
3099 if (IS_DG2(i915) || IS_PONTEVECCHIO(i915)) {
3100 /* Wa_14015227452:dg2,pvc */
3101 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
3102
3103 /* Wa_16015675438:dg2,pvc */
3104 wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE);
3105 }
3106
3107 if (IS_DG2(i915)) {
3108 /*
3109 * Wa_16011620976:dg2_g11
3110 * Wa_22015475538:dg2
3111 */
3112 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
3113 }
3114
3115 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_C0) || IS_DG2_G11(i915))
3116 /*
3117 * Wa_22012654132
3118 *
3119 * Note that register 0xE420 is write-only and cannot be read
3120 * back for verification on DG2 (due to Wa_14012342262), so
3121 * we need to explicitly skip the readback.
3122 */
3123 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
3124 _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
3125 0 /* write-only, so skip validation */,
3126 true);
3127 }
3128
3129 static void
engine_init_workarounds(struct intel_engine_cs * engine,struct i915_wa_list * wal)3130 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
3131 {
3132 if (GRAPHICS_VER(engine->i915) < 4)
3133 return;
3134
3135 engine_fake_wa_init(engine, wal);
3136
3137 /*
3138 * These are common workarounds that just need to applied
3139 * to a single RCS/CCS engine's workaround list since
3140 * they're reset as part of the general render domain reset.
3141 */
3142 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
3143 general_render_compute_wa_init(engine, wal);
3144
3145 if (engine->class == COMPUTE_CLASS)
3146 ccs_engine_wa_init(engine, wal);
3147 else if (engine->class == RENDER_CLASS)
3148 rcs_engine_wa_init(engine, wal);
3149 else
3150 xcs_engine_wa_init(engine, wal);
3151 }
3152
intel_engine_init_workarounds(struct intel_engine_cs * engine)3153 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
3154 {
3155 struct i915_wa_list *wal = &engine->wa_list;
3156
3157 wa_init_start(wal, engine->gt, "engine", engine->name);
3158 engine_init_workarounds(engine, wal);
3159 wa_init_finish(wal);
3160 }
3161
intel_engine_apply_workarounds(struct intel_engine_cs * engine)3162 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
3163 {
3164 wa_list_apply(&engine->wa_list);
3165 }
3166
3167 static const struct i915_range mcr_ranges_gen8[] = {
3168 { .start = 0x5500, .end = 0x55ff },
3169 { .start = 0x7000, .end = 0x7fff },
3170 { .start = 0x9400, .end = 0x97ff },
3171 { .start = 0xb000, .end = 0xb3ff },
3172 { .start = 0xe000, .end = 0xe7ff },
3173 {},
3174 };
3175
3176 static const struct i915_range mcr_ranges_gen12[] = {
3177 { .start = 0x8150, .end = 0x815f },
3178 { .start = 0x9520, .end = 0x955f },
3179 { .start = 0xb100, .end = 0xb3ff },
3180 { .start = 0xde80, .end = 0xe8ff },
3181 { .start = 0x24a00, .end = 0x24a7f },
3182 {},
3183 };
3184
3185 static const struct i915_range mcr_ranges_xehp[] = {
3186 { .start = 0x4000, .end = 0x4aff },
3187 { .start = 0x5200, .end = 0x52ff },
3188 { .start = 0x5400, .end = 0x7fff },
3189 { .start = 0x8140, .end = 0x815f },
3190 { .start = 0x8c80, .end = 0x8dff },
3191 { .start = 0x94d0, .end = 0x955f },
3192 { .start = 0x9680, .end = 0x96ff },
3193 { .start = 0xb000, .end = 0xb3ff },
3194 { .start = 0xc800, .end = 0xcfff },
3195 { .start = 0xd800, .end = 0xd8ff },
3196 { .start = 0xdc00, .end = 0xffff },
3197 { .start = 0x17000, .end = 0x17fff },
3198 { .start = 0x24a00, .end = 0x24a7f },
3199 {},
3200 };
3201
mcr_range(struct drm_i915_private * i915,u32 offset)3202 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
3203 {
3204 const struct i915_range *mcr_ranges;
3205 int i;
3206
3207 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
3208 mcr_ranges = mcr_ranges_xehp;
3209 else if (GRAPHICS_VER(i915) >= 12)
3210 mcr_ranges = mcr_ranges_gen12;
3211 else if (GRAPHICS_VER(i915) >= 8)
3212 mcr_ranges = mcr_ranges_gen8;
3213 else
3214 return false;
3215
3216 /*
3217 * Registers in these ranges are affected by the MCR selector
3218 * which only controls CPU initiated MMIO. Routing does not
3219 * work for CS access so we cannot verify them on this path.
3220 */
3221 for (i = 0; mcr_ranges[i].start; i++)
3222 if (offset >= mcr_ranges[i].start &&
3223 offset <= mcr_ranges[i].end)
3224 return true;
3225
3226 return false;
3227 }
3228
3229 static int
wa_list_srm(struct i915_request * rq,const struct i915_wa_list * wal,struct i915_vma * vma)3230 wa_list_srm(struct i915_request *rq,
3231 const struct i915_wa_list *wal,
3232 struct i915_vma *vma)
3233 {
3234 struct drm_i915_private *i915 = rq->engine->i915;
3235 unsigned int i, count = 0;
3236 const struct i915_wa *wa;
3237 u32 srm, *cs;
3238
3239 srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3240 if (GRAPHICS_VER(i915) >= 8)
3241 srm++;
3242
3243 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3244 if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3245 count++;
3246 }
3247
3248 cs = intel_ring_begin(rq, 4 * count);
3249 if (IS_ERR(cs))
3250 return PTR_ERR(cs);
3251
3252 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3253 u32 offset = i915_mmio_reg_offset(wa->reg);
3254
3255 if (mcr_range(i915, offset))
3256 continue;
3257
3258 *cs++ = srm;
3259 *cs++ = offset;
3260 *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3261 *cs++ = 0;
3262 }
3263 intel_ring_advance(rq, cs);
3264
3265 return 0;
3266 }
3267
engine_wa_list_verify(struct intel_context * ce,const struct i915_wa_list * const wal,const char * from)3268 static int engine_wa_list_verify(struct intel_context *ce,
3269 const struct i915_wa_list * const wal,
3270 const char *from)
3271 {
3272 const struct i915_wa *wa;
3273 struct i915_request *rq;
3274 struct i915_vma *vma;
3275 struct i915_gem_ww_ctx ww;
3276 unsigned int i;
3277 u32 *results;
3278 int err;
3279
3280 if (!wal->count)
3281 return 0;
3282
3283 vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3284 wal->count * sizeof(u32));
3285 if (IS_ERR(vma))
3286 return PTR_ERR(vma);
3287
3288 intel_engine_pm_get(ce->engine);
3289 i915_gem_ww_ctx_init(&ww, false);
3290 retry:
3291 err = i915_gem_object_lock(vma->obj, &ww);
3292 if (err == 0)
3293 err = intel_context_pin_ww(ce, &ww);
3294 if (err)
3295 goto err_pm;
3296
3297 err = i915_vma_pin_ww(vma, &ww, 0, 0,
3298 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3299 if (err)
3300 goto err_unpin;
3301
3302 rq = i915_request_create(ce);
3303 if (IS_ERR(rq)) {
3304 err = PTR_ERR(rq);
3305 goto err_vma;
3306 }
3307
3308 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3309 if (err == 0)
3310 err = wa_list_srm(rq, wal, vma);
3311
3312 i915_request_get(rq);
3313 if (err)
3314 i915_request_set_error_once(rq, err);
3315 i915_request_add(rq);
3316
3317 if (err)
3318 goto err_rq;
3319
3320 if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3321 err = -ETIME;
3322 goto err_rq;
3323 }
3324
3325 results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3326 if (IS_ERR(results)) {
3327 err = PTR_ERR(results);
3328 goto err_rq;
3329 }
3330
3331 err = 0;
3332 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3333 if (mcr_range(rq->engine->i915, i915_mmio_reg_offset(wa->reg)))
3334 continue;
3335
3336 if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3337 err = -ENXIO;
3338 }
3339
3340 i915_gem_object_unpin_map(vma->obj);
3341
3342 err_rq:
3343 i915_request_put(rq);
3344 err_vma:
3345 i915_vma_unpin(vma);
3346 err_unpin:
3347 intel_context_unpin(ce);
3348 err_pm:
3349 if (err == -EDEADLK) {
3350 err = i915_gem_ww_ctx_backoff(&ww);
3351 if (!err)
3352 goto retry;
3353 }
3354 i915_gem_ww_ctx_fini(&ww);
3355 intel_engine_pm_put(ce->engine);
3356 i915_vma_put(vma);
3357 return err;
3358 }
3359
intel_engine_verify_workarounds(struct intel_engine_cs * engine,const char * from)3360 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3361 const char *from)
3362 {
3363 return engine_wa_list_verify(engine->kernel_context,
3364 &engine->wa_list,
3365 from);
3366 }
3367
3368 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3369 #include "selftest_workarounds.c"
3370 #endif
3371