1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <drm/drm_atomic_helper.h>
25 #include <drm/drm_damage_helper.h>
26
27 #include "i915_drv.h"
28 #include "i915_reg.h"
29 #include "intel_atomic.h"
30 #include "intel_crtc.h"
31 #include "intel_de.h"
32 #include "intel_display_types.h"
33 #include "intel_dp.h"
34 #include "intel_dp_aux.h"
35 #include "intel_hdmi.h"
36 #include "intel_psr.h"
37 #include "intel_snps_phy.h"
38 #include "skl_universal_plane.h"
39
40 /**
41 * DOC: Panel Self Refresh (PSR/SRD)
42 *
43 * Since Haswell Display controller supports Panel Self-Refresh on display
44 * panels witch have a remote frame buffer (RFB) implemented according to PSR
45 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
46 * when system is idle but display is on as it eliminates display refresh
47 * request to DDR memory completely as long as the frame buffer for that
48 * display is unchanged.
49 *
50 * Panel Self Refresh must be supported by both Hardware (source) and
51 * Panel (sink).
52 *
53 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
54 * to power down the link and memory controller. For DSI panels the same idea
55 * is called "manual mode".
56 *
57 * The implementation uses the hardware-based PSR support which automatically
58 * enters/exits self-refresh mode. The hardware takes care of sending the
59 * required DP aux message and could even retrain the link (that part isn't
60 * enabled yet though). The hardware also keeps track of any frontbuffer
61 * changes to know when to exit self-refresh mode again. Unfortunately that
62 * part doesn't work too well, hence why the i915 PSR support uses the
63 * software frontbuffer tracking to make sure it doesn't miss a screen
64 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
65 * get called by the frontbuffer tracking code. Note that because of locking
66 * issues the self-refresh re-enable code is done from a work queue, which
67 * must be correctly synchronized/cancelled when shutting down the pipe."
68 *
69 * DC3CO (DC3 clock off)
70 *
71 * On top of PSR2, GEN12 adds a intermediate power savings state that turns
72 * clock off automatically during PSR2 idle state.
73 * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep
74 * entry/exit allows the HW to enter a low-power state even when page flipping
75 * periodically (for instance a 30fps video playback scenario).
76 *
77 * Every time a flips occurs PSR2 will get out of deep sleep state(if it was),
78 * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6
79 * frames, if no other flip occurs and the function above is executed, DC3CO is
80 * disabled and PSR2 is configured to enter deep sleep, resetting again in case
81 * of another flip.
82 * Front buffer modifications do not trigger DC3CO activation on purpose as it
83 * would bring a lot of complexity and most of the moderns systems will only
84 * use page flips.
85 */
86
psr_global_enabled(struct intel_dp * intel_dp)87 static bool psr_global_enabled(struct intel_dp *intel_dp)
88 {
89 struct intel_connector *connector = intel_dp->attached_connector;
90 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
91
92 switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
93 case I915_PSR_DEBUG_DEFAULT:
94 if (i915->params.enable_psr == -1)
95 return connector->panel.vbt.psr.enable;
96 return i915->params.enable_psr;
97 case I915_PSR_DEBUG_DISABLE:
98 return false;
99 default:
100 return true;
101 }
102 }
103
psr2_global_enabled(struct intel_dp * intel_dp)104 static bool psr2_global_enabled(struct intel_dp *intel_dp)
105 {
106 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
107
108 switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
109 case I915_PSR_DEBUG_DISABLE:
110 case I915_PSR_DEBUG_FORCE_PSR1:
111 return false;
112 default:
113 if (i915->params.enable_psr == 1)
114 return false;
115 return true;
116 }
117 }
118
psr_irq_psr_error_bit_get(struct intel_dp * intel_dp)119 static u32 psr_irq_psr_error_bit_get(struct intel_dp *intel_dp)
120 {
121 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
122
123 return DISPLAY_VER(dev_priv) >= 12 ? TGL_PSR_ERROR :
124 EDP_PSR_ERROR(intel_dp->psr.transcoder);
125 }
126
psr_irq_post_exit_bit_get(struct intel_dp * intel_dp)127 static u32 psr_irq_post_exit_bit_get(struct intel_dp *intel_dp)
128 {
129 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
130
131 return DISPLAY_VER(dev_priv) >= 12 ? TGL_PSR_POST_EXIT :
132 EDP_PSR_POST_EXIT(intel_dp->psr.transcoder);
133 }
134
psr_irq_pre_entry_bit_get(struct intel_dp * intel_dp)135 static u32 psr_irq_pre_entry_bit_get(struct intel_dp *intel_dp)
136 {
137 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
138
139 return DISPLAY_VER(dev_priv) >= 12 ? TGL_PSR_PRE_ENTRY :
140 EDP_PSR_PRE_ENTRY(intel_dp->psr.transcoder);
141 }
142
psr_irq_mask_get(struct intel_dp * intel_dp)143 static u32 psr_irq_mask_get(struct intel_dp *intel_dp)
144 {
145 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
146
147 return DISPLAY_VER(dev_priv) >= 12 ? TGL_PSR_MASK :
148 EDP_PSR_MASK(intel_dp->psr.transcoder);
149 }
150
psr_irq_control(struct intel_dp * intel_dp)151 static void psr_irq_control(struct intel_dp *intel_dp)
152 {
153 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
154 i915_reg_t imr_reg;
155 u32 mask, val;
156
157 if (DISPLAY_VER(dev_priv) >= 12)
158 imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder);
159 else
160 imr_reg = EDP_PSR_IMR;
161
162 mask = psr_irq_psr_error_bit_get(intel_dp);
163 if (intel_dp->psr.debug & I915_PSR_DEBUG_IRQ)
164 mask |= psr_irq_post_exit_bit_get(intel_dp) |
165 psr_irq_pre_entry_bit_get(intel_dp);
166
167 val = intel_de_read(dev_priv, imr_reg);
168 val &= ~psr_irq_mask_get(intel_dp);
169 val |= ~mask;
170 intel_de_write(dev_priv, imr_reg, val);
171 }
172
psr_event_print(struct drm_i915_private * i915,u32 val,bool psr2_enabled)173 static void psr_event_print(struct drm_i915_private *i915,
174 u32 val, bool psr2_enabled)
175 {
176 drm_dbg_kms(&i915->drm, "PSR exit events: 0x%x\n", val);
177 if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
178 drm_dbg_kms(&i915->drm, "\tPSR2 watchdog timer expired\n");
179 if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
180 drm_dbg_kms(&i915->drm, "\tPSR2 disabled\n");
181 if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
182 drm_dbg_kms(&i915->drm, "\tSU dirty FIFO underrun\n");
183 if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
184 drm_dbg_kms(&i915->drm, "\tSU CRC FIFO underrun\n");
185 if (val & PSR_EVENT_GRAPHICS_RESET)
186 drm_dbg_kms(&i915->drm, "\tGraphics reset\n");
187 if (val & PSR_EVENT_PCH_INTERRUPT)
188 drm_dbg_kms(&i915->drm, "\tPCH interrupt\n");
189 if (val & PSR_EVENT_MEMORY_UP)
190 drm_dbg_kms(&i915->drm, "\tMemory up\n");
191 if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
192 drm_dbg_kms(&i915->drm, "\tFront buffer modification\n");
193 if (val & PSR_EVENT_WD_TIMER_EXPIRE)
194 drm_dbg_kms(&i915->drm, "\tPSR watchdog timer expired\n");
195 if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
196 drm_dbg_kms(&i915->drm, "\tPIPE registers updated\n");
197 if (val & PSR_EVENT_REGISTER_UPDATE)
198 drm_dbg_kms(&i915->drm, "\tRegister updated\n");
199 if (val & PSR_EVENT_HDCP_ENABLE)
200 drm_dbg_kms(&i915->drm, "\tHDCP enabled\n");
201 if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
202 drm_dbg_kms(&i915->drm, "\tKVMR session enabled\n");
203 if (val & PSR_EVENT_VBI_ENABLE)
204 drm_dbg_kms(&i915->drm, "\tVBI enabled\n");
205 if (val & PSR_EVENT_LPSP_MODE_EXIT)
206 drm_dbg_kms(&i915->drm, "\tLPSP mode exited\n");
207 if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
208 drm_dbg_kms(&i915->drm, "\tPSR disabled\n");
209 }
210
intel_psr_irq_handler(struct intel_dp * intel_dp,u32 psr_iir)211 void intel_psr_irq_handler(struct intel_dp *intel_dp, u32 psr_iir)
212 {
213 enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
214 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
215 ktime_t time_ns = ktime_get();
216 i915_reg_t imr_reg;
217
218 if (DISPLAY_VER(dev_priv) >= 12)
219 imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder);
220 else
221 imr_reg = EDP_PSR_IMR;
222
223 if (psr_iir & psr_irq_pre_entry_bit_get(intel_dp)) {
224 intel_dp->psr.last_entry_attempt = time_ns;
225 drm_dbg_kms(&dev_priv->drm,
226 "[transcoder %s] PSR entry attempt in 2 vblanks\n",
227 transcoder_name(cpu_transcoder));
228 }
229
230 if (psr_iir & psr_irq_post_exit_bit_get(intel_dp)) {
231 intel_dp->psr.last_exit = time_ns;
232 drm_dbg_kms(&dev_priv->drm,
233 "[transcoder %s] PSR exit completed\n",
234 transcoder_name(cpu_transcoder));
235
236 if (DISPLAY_VER(dev_priv) >= 9) {
237 u32 val = intel_de_read(dev_priv,
238 PSR_EVENT(cpu_transcoder));
239 bool psr2_enabled = intel_dp->psr.psr2_enabled;
240
241 intel_de_write(dev_priv, PSR_EVENT(cpu_transcoder),
242 val);
243 psr_event_print(dev_priv, val, psr2_enabled);
244 }
245 }
246
247 if (psr_iir & psr_irq_psr_error_bit_get(intel_dp)) {
248 u32 val;
249
250 drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n",
251 transcoder_name(cpu_transcoder));
252
253 intel_dp->psr.irq_aux_error = true;
254
255 /*
256 * If this interruption is not masked it will keep
257 * interrupting so fast that it prevents the scheduled
258 * work to run.
259 * Also after a PSR error, we don't want to arm PSR
260 * again so we don't care about unmask the interruption
261 * or unset irq_aux_error.
262 */
263 val = intel_de_read(dev_priv, imr_reg);
264 val |= psr_irq_psr_error_bit_get(intel_dp);
265 intel_de_write(dev_priv, imr_reg, val);
266
267 schedule_work(&intel_dp->psr.work);
268 }
269 }
270
intel_dp_get_alpm_status(struct intel_dp * intel_dp)271 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
272 {
273 u8 alpm_caps = 0;
274
275 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
276 &alpm_caps) != 1)
277 return false;
278 return alpm_caps & DP_ALPM_CAP;
279 }
280
intel_dp_get_sink_sync_latency(struct intel_dp * intel_dp)281 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
282 {
283 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
284 u8 val = 8; /* assume the worst if we can't read the value */
285
286 if (drm_dp_dpcd_readb(&intel_dp->aux,
287 DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
288 val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
289 else
290 drm_dbg_kms(&i915->drm,
291 "Unable to get sink synchronization latency, assuming 8 frames\n");
292 return val;
293 }
294
intel_dp_get_su_granularity(struct intel_dp * intel_dp)295 static void intel_dp_get_su_granularity(struct intel_dp *intel_dp)
296 {
297 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
298 ssize_t r;
299 u16 w;
300 u8 y;
301
302 /* If sink don't have specific granularity requirements set legacy ones */
303 if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED)) {
304 /* As PSR2 HW sends full lines, we do not care about x granularity */
305 w = 4;
306 y = 4;
307 goto exit;
308 }
309
310 r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &w, 2);
311 if (r != 2)
312 drm_dbg_kms(&i915->drm,
313 "Unable to read DP_PSR2_SU_X_GRANULARITY\n");
314 /*
315 * Spec says that if the value read is 0 the default granularity should
316 * be used instead.
317 */
318 if (r != 2 || w == 0)
319 w = 4;
320
321 r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_Y_GRANULARITY, &y, 1);
322 if (r != 1) {
323 drm_dbg_kms(&i915->drm,
324 "Unable to read DP_PSR2_SU_Y_GRANULARITY\n");
325 y = 4;
326 }
327 if (y == 0)
328 y = 1;
329
330 exit:
331 intel_dp->psr.su_w_granularity = w;
332 intel_dp->psr.su_y_granularity = y;
333 }
334
intel_psr_init_dpcd(struct intel_dp * intel_dp)335 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
336 {
337 struct drm_i915_private *dev_priv =
338 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
339
340 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
341 sizeof(intel_dp->psr_dpcd));
342
343 if (!intel_dp->psr_dpcd[0])
344 return;
345 drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n",
346 intel_dp->psr_dpcd[0]);
347
348 if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
349 drm_dbg_kms(&dev_priv->drm,
350 "PSR support not currently available for this panel\n");
351 return;
352 }
353
354 if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
355 drm_dbg_kms(&dev_priv->drm,
356 "Panel lacks power state control, PSR cannot be enabled\n");
357 return;
358 }
359
360 intel_dp->psr.sink_support = true;
361 intel_dp->psr.sink_sync_latency =
362 intel_dp_get_sink_sync_latency(intel_dp);
363
364 if (DISPLAY_VER(dev_priv) >= 9 &&
365 (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
366 bool y_req = intel_dp->psr_dpcd[1] &
367 DP_PSR2_SU_Y_COORDINATE_REQUIRED;
368 bool alpm = intel_dp_get_alpm_status(intel_dp);
369
370 /*
371 * All panels that supports PSR version 03h (PSR2 +
372 * Y-coordinate) can handle Y-coordinates in VSC but we are
373 * only sure that it is going to be used when required by the
374 * panel. This way panel is capable to do selective update
375 * without a aux frame sync.
376 *
377 * To support PSR version 02h and PSR version 03h without
378 * Y-coordinate requirement panels we would need to enable
379 * GTC first.
380 */
381 intel_dp->psr.sink_psr2_support = y_req && alpm;
382 drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n",
383 intel_dp->psr.sink_psr2_support ? "" : "not ");
384
385 if (intel_dp->psr.sink_psr2_support) {
386 intel_dp->psr.colorimetry_support =
387 intel_dp_get_colorimetry_status(intel_dp);
388 intel_dp_get_su_granularity(intel_dp);
389 }
390 }
391 }
392
intel_psr_enable_sink(struct intel_dp * intel_dp)393 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
394 {
395 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
396 u8 dpcd_val = DP_PSR_ENABLE;
397
398 /* Enable ALPM at sink for psr2 */
399 if (intel_dp->psr.psr2_enabled) {
400 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
401 DP_ALPM_ENABLE |
402 DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE);
403
404 dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
405 } else {
406 if (intel_dp->psr.link_standby)
407 dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
408
409 if (DISPLAY_VER(dev_priv) >= 8)
410 dpcd_val |= DP_PSR_CRC_VERIFICATION;
411 }
412
413 if (intel_dp->psr.req_psr2_sdp_prior_scanline)
414 dpcd_val |= DP_PSR_SU_REGION_SCANLINE_CAPTURE;
415
416 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
417
418 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
419 }
420
intel_psr1_get_tp_time(struct intel_dp * intel_dp)421 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
422 {
423 struct intel_connector *connector = intel_dp->attached_connector;
424 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
425 u32 val = 0;
426
427 if (DISPLAY_VER(dev_priv) >= 11)
428 val |= EDP_PSR_TP4_TIME_0US;
429
430 if (dev_priv->params.psr_safest_params) {
431 val |= EDP_PSR_TP1_TIME_2500us;
432 val |= EDP_PSR_TP2_TP3_TIME_2500us;
433 goto check_tp3_sel;
434 }
435
436 if (connector->panel.vbt.psr.tp1_wakeup_time_us == 0)
437 val |= EDP_PSR_TP1_TIME_0us;
438 else if (connector->panel.vbt.psr.tp1_wakeup_time_us <= 100)
439 val |= EDP_PSR_TP1_TIME_100us;
440 else if (connector->panel.vbt.psr.tp1_wakeup_time_us <= 500)
441 val |= EDP_PSR_TP1_TIME_500us;
442 else
443 val |= EDP_PSR_TP1_TIME_2500us;
444
445 if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us == 0)
446 val |= EDP_PSR_TP2_TP3_TIME_0us;
447 else if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us <= 100)
448 val |= EDP_PSR_TP2_TP3_TIME_100us;
449 else if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us <= 500)
450 val |= EDP_PSR_TP2_TP3_TIME_500us;
451 else
452 val |= EDP_PSR_TP2_TP3_TIME_2500us;
453
454 check_tp3_sel:
455 if (intel_dp_source_supports_tps3(dev_priv) &&
456 drm_dp_tps3_supported(intel_dp->dpcd))
457 val |= EDP_PSR_TP1_TP3_SEL;
458 else
459 val |= EDP_PSR_TP1_TP2_SEL;
460
461 return val;
462 }
463
psr_compute_idle_frames(struct intel_dp * intel_dp)464 static u8 psr_compute_idle_frames(struct intel_dp *intel_dp)
465 {
466 struct intel_connector *connector = intel_dp->attached_connector;
467 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
468 int idle_frames;
469
470 /* Let's use 6 as the minimum to cover all known cases including the
471 * off-by-one issue that HW has in some cases.
472 */
473 idle_frames = max(6, connector->panel.vbt.psr.idle_frames);
474 idle_frames = max(idle_frames, intel_dp->psr.sink_sync_latency + 1);
475
476 if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf))
477 idle_frames = 0xf;
478
479 return idle_frames;
480 }
481
hsw_activate_psr1(struct intel_dp * intel_dp)482 static void hsw_activate_psr1(struct intel_dp *intel_dp)
483 {
484 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
485 u32 max_sleep_time = 0x1f;
486 u32 val = EDP_PSR_ENABLE;
487
488 val |= psr_compute_idle_frames(intel_dp) << EDP_PSR_IDLE_FRAME_SHIFT;
489
490 val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
491 if (IS_HASWELL(dev_priv))
492 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
493
494 if (intel_dp->psr.link_standby)
495 val |= EDP_PSR_LINK_STANDBY;
496
497 val |= intel_psr1_get_tp_time(intel_dp);
498
499 if (DISPLAY_VER(dev_priv) >= 8)
500 val |= EDP_PSR_CRC_ENABLE;
501
502 val |= (intel_de_read(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder)) &
503 EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK);
504 intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), val);
505 }
506
intel_psr2_get_tp_time(struct intel_dp * intel_dp)507 static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp)
508 {
509 struct intel_connector *connector = intel_dp->attached_connector;
510 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
511 u32 val = 0;
512
513 if (dev_priv->params.psr_safest_params)
514 return EDP_PSR2_TP2_TIME_2500us;
515
516 if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
517 connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
518 val |= EDP_PSR2_TP2_TIME_50us;
519 else if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
520 val |= EDP_PSR2_TP2_TIME_100us;
521 else if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
522 val |= EDP_PSR2_TP2_TIME_500us;
523 else
524 val |= EDP_PSR2_TP2_TIME_2500us;
525
526 return val;
527 }
528
hsw_activate_psr2(struct intel_dp * intel_dp)529 static void hsw_activate_psr2(struct intel_dp *intel_dp)
530 {
531 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
532 u32 val = EDP_PSR2_ENABLE;
533
534 val |= psr_compute_idle_frames(intel_dp) << EDP_PSR2_IDLE_FRAME_SHIFT;
535
536 if (DISPLAY_VER(dev_priv) <= 13 && !IS_ALDERLAKE_P(dev_priv))
537 val |= EDP_SU_TRACK_ENABLE;
538
539 if (DISPLAY_VER(dev_priv) >= 10 && DISPLAY_VER(dev_priv) <= 12)
540 val |= EDP_Y_COORDINATE_ENABLE;
541
542 val |= EDP_PSR2_FRAME_BEFORE_SU(max_t(u8, intel_dp->psr.sink_sync_latency + 1, 2));
543 val |= intel_psr2_get_tp_time(intel_dp);
544
545 /* Wa_22012278275:adl-p */
546 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_E0)) {
547 static const u8 map[] = {
548 2, /* 5 lines */
549 1, /* 6 lines */
550 0, /* 7 lines */
551 3, /* 8 lines */
552 6, /* 9 lines */
553 5, /* 10 lines */
554 4, /* 11 lines */
555 7, /* 12 lines */
556 };
557 /*
558 * Still using the default IO_BUFFER_WAKE and FAST_WAKE, see
559 * comments bellow for more information
560 */
561 u32 tmp, lines = 7;
562
563 val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
564
565 tmp = map[lines - TGL_EDP_PSR2_IO_BUFFER_WAKE_MIN_LINES];
566 tmp = tmp << TGL_EDP_PSR2_IO_BUFFER_WAKE_SHIFT;
567 val |= tmp;
568
569 tmp = map[lines - TGL_EDP_PSR2_FAST_WAKE_MIN_LINES];
570 tmp = tmp << TGL_EDP_PSR2_FAST_WAKE_MIN_SHIFT;
571 val |= tmp;
572 } else if (DISPLAY_VER(dev_priv) >= 12) {
573 /*
574 * TODO: 7 lines of IO_BUFFER_WAKE and FAST_WAKE are default
575 * values from BSpec. In order to setting an optimal power
576 * consumption, lower than 4k resolution mode needs to decrease
577 * IO_BUFFER_WAKE and FAST_WAKE. And higher than 4K resolution
578 * mode needs to increase IO_BUFFER_WAKE and FAST_WAKE.
579 */
580 val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
581 val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(7);
582 val |= TGL_EDP_PSR2_FAST_WAKE(7);
583 } else if (DISPLAY_VER(dev_priv) >= 9) {
584 val |= EDP_PSR2_IO_BUFFER_WAKE(7);
585 val |= EDP_PSR2_FAST_WAKE(7);
586 }
587
588 if (intel_dp->psr.req_psr2_sdp_prior_scanline)
589 val |= EDP_PSR2_SU_SDP_SCANLINE;
590
591 if (intel_dp->psr.psr2_sel_fetch_enabled) {
592 u32 tmp;
593
594 /* Wa_1408330847 */
595 if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
596 intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
597 DIS_RAM_BYPASS_PSR2_MAN_TRACK,
598 DIS_RAM_BYPASS_PSR2_MAN_TRACK);
599
600 tmp = intel_de_read(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder));
601 drm_WARN_ON(&dev_priv->drm, !(tmp & PSR2_MAN_TRK_CTL_ENABLE));
602 } else if (HAS_PSR2_SEL_FETCH(dev_priv)) {
603 intel_de_write(dev_priv,
604 PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), 0);
605 }
606
607 /*
608 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
609 * recommending keep this bit unset while PSR2 is enabled.
610 */
611 intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), 0);
612
613 intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
614 }
615
616 static bool
transcoder_has_psr2(struct drm_i915_private * dev_priv,enum transcoder trans)617 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans)
618 {
619 if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
620 return trans == TRANSCODER_A || trans == TRANSCODER_B;
621 else if (DISPLAY_VER(dev_priv) >= 12)
622 return trans == TRANSCODER_A;
623 else
624 return trans == TRANSCODER_EDP;
625 }
626
intel_get_frame_time_us(const struct intel_crtc_state * cstate)627 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate)
628 {
629 if (!cstate || !cstate->hw.active)
630 return 0;
631
632 return DIV_ROUND_UP(1000 * 1000,
633 drm_mode_vrefresh(&cstate->hw.adjusted_mode));
634 }
635
psr2_program_idle_frames(struct intel_dp * intel_dp,u32 idle_frames)636 static void psr2_program_idle_frames(struct intel_dp *intel_dp,
637 u32 idle_frames)
638 {
639 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
640 u32 val;
641
642 idle_frames <<= EDP_PSR2_IDLE_FRAME_SHIFT;
643 val = intel_de_read(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder));
644 val &= ~EDP_PSR2_IDLE_FRAME_MASK;
645 val |= idle_frames;
646 intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
647 }
648
tgl_psr2_enable_dc3co(struct intel_dp * intel_dp)649 static void tgl_psr2_enable_dc3co(struct intel_dp *intel_dp)
650 {
651 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
652
653 psr2_program_idle_frames(intel_dp, 0);
654 intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
655 }
656
tgl_psr2_disable_dc3co(struct intel_dp * intel_dp)657 static void tgl_psr2_disable_dc3co(struct intel_dp *intel_dp)
658 {
659 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
660
661 intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
662 psr2_program_idle_frames(intel_dp, psr_compute_idle_frames(intel_dp));
663 }
664
tgl_dc3co_disable_work(struct work_struct * work)665 static void tgl_dc3co_disable_work(struct work_struct *work)
666 {
667 struct intel_dp *intel_dp =
668 container_of(work, typeof(*intel_dp), psr.dc3co_work.work);
669
670 mutex_lock(&intel_dp->psr.lock);
671 /* If delayed work is pending, it is not idle */
672 if (delayed_work_pending(&intel_dp->psr.dc3co_work))
673 goto unlock;
674
675 tgl_psr2_disable_dc3co(intel_dp);
676 unlock:
677 mutex_unlock(&intel_dp->psr.lock);
678 }
679
tgl_disallow_dc3co_on_psr2_exit(struct intel_dp * intel_dp)680 static void tgl_disallow_dc3co_on_psr2_exit(struct intel_dp *intel_dp)
681 {
682 if (!intel_dp->psr.dc3co_exitline)
683 return;
684
685 cancel_delayed_work(&intel_dp->psr.dc3co_work);
686 /* Before PSR2 exit disallow dc3co*/
687 tgl_psr2_disable_dc3co(intel_dp);
688 }
689
690 static bool
dc3co_is_pipe_port_compatible(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)691 dc3co_is_pipe_port_compatible(struct intel_dp *intel_dp,
692 struct intel_crtc_state *crtc_state)
693 {
694 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
695 enum pipe pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
696 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
697 enum port port = dig_port->base.port;
698
699 if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
700 return pipe <= PIPE_B && port <= PORT_B;
701 else
702 return pipe == PIPE_A && port == PORT_A;
703 }
704
705 static void
tgl_dc3co_exitline_compute_config(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)706 tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp,
707 struct intel_crtc_state *crtc_state)
708 {
709 const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay;
710 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
711 u32 exit_scanlines;
712
713 /*
714 * FIXME: Due to the changed sequence of activating/deactivating DC3CO,
715 * disable DC3CO until the changed dc3co activating/deactivating sequence
716 * is applied. B.Specs:49196
717 */
718 return;
719
720 /*
721 * DMC's DC3CO exit mechanism has an issue with Selective Fecth
722 * TODO: when the issue is addressed, this restriction should be removed.
723 */
724 if (crtc_state->enable_psr2_sel_fetch)
725 return;
726
727 if (!(dev_priv->display.dmc.allowed_dc_mask & DC_STATE_EN_DC3CO))
728 return;
729
730 if (!dc3co_is_pipe_port_compatible(intel_dp, crtc_state))
731 return;
732
733 /* Wa_16011303918:adl-p */
734 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
735 return;
736
737 /*
738 * DC3CO Exit time 200us B.Spec 49196
739 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1
740 */
741 exit_scanlines =
742 intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1;
743
744 if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay))
745 return;
746
747 crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines;
748 }
749
intel_psr2_sel_fetch_config_valid(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)750 static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp,
751 struct intel_crtc_state *crtc_state)
752 {
753 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
754
755 if (!dev_priv->params.enable_psr2_sel_fetch &&
756 intel_dp->psr.debug != I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
757 drm_dbg_kms(&dev_priv->drm,
758 "PSR2 sel fetch not enabled, disabled by parameter\n");
759 return false;
760 }
761
762 if (crtc_state->uapi.async_flip) {
763 drm_dbg_kms(&dev_priv->drm,
764 "PSR2 sel fetch not enabled, async flip enabled\n");
765 return false;
766 }
767
768 /* Wa_14010254185 Wa_14010103792 */
769 if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0)) {
770 drm_dbg_kms(&dev_priv->drm,
771 "PSR2 sel fetch not enabled, missing the implementation of WAs\n");
772 return false;
773 }
774
775 return crtc_state->enable_psr2_sel_fetch = true;
776 }
777
psr2_granularity_check(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)778 static bool psr2_granularity_check(struct intel_dp *intel_dp,
779 struct intel_crtc_state *crtc_state)
780 {
781 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
782 const struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
783 const int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
784 const int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
785 u16 y_granularity = 0;
786
787 /* PSR2 HW only send full lines so we only need to validate the width */
788 if (crtc_hdisplay % intel_dp->psr.su_w_granularity)
789 return false;
790
791 if (crtc_vdisplay % intel_dp->psr.su_y_granularity)
792 return false;
793
794 /* HW tracking is only aligned to 4 lines */
795 if (!crtc_state->enable_psr2_sel_fetch)
796 return intel_dp->psr.su_y_granularity == 4;
797
798 /*
799 * adl_p and mtl platforms have 1 line granularity.
800 * For other platforms with SW tracking we can adjust the y coordinates
801 * to match sink requirement if multiple of 4.
802 */
803 if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
804 y_granularity = intel_dp->psr.su_y_granularity;
805 else if (intel_dp->psr.su_y_granularity <= 2)
806 y_granularity = 4;
807 else if ((intel_dp->psr.su_y_granularity % 4) == 0)
808 y_granularity = intel_dp->psr.su_y_granularity;
809
810 if (y_granularity == 0 || crtc_vdisplay % y_granularity)
811 return false;
812
813 if (crtc_state->dsc.compression_enable &&
814 vdsc_cfg->slice_height % y_granularity)
815 return false;
816
817 crtc_state->su_y_granularity = y_granularity;
818 return true;
819 }
820
_compute_psr2_sdp_prior_scanline_indication(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)821 static bool _compute_psr2_sdp_prior_scanline_indication(struct intel_dp *intel_dp,
822 struct intel_crtc_state *crtc_state)
823 {
824 const struct drm_display_mode *adjusted_mode = &crtc_state->uapi.adjusted_mode;
825 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
826 u32 hblank_total, hblank_ns, req_ns;
827
828 hblank_total = adjusted_mode->crtc_hblank_end - adjusted_mode->crtc_hblank_start;
829 hblank_ns = div_u64(1000000ULL * hblank_total, adjusted_mode->crtc_clock);
830
831 /* From spec: ((60 / number of lanes) + 11) * 1000 / symbol clock frequency MHz */
832 req_ns = ((60 / crtc_state->lane_count) + 11) * 1000 / (crtc_state->port_clock / 1000);
833
834 if ((hblank_ns - req_ns) > 100)
835 return true;
836
837 /* Not supported <13 / Wa_22012279113:adl-p */
838 if (DISPLAY_VER(dev_priv) <= 13 || intel_dp->edp_dpcd[0] < DP_EDP_14b)
839 return false;
840
841 crtc_state->req_psr2_sdp_prior_scanline = true;
842 return true;
843 }
844
intel_psr2_config_valid(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)845 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
846 struct intel_crtc_state *crtc_state)
847 {
848 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
849 int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
850 int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
851 int psr_max_h = 0, psr_max_v = 0, max_bpp = 0;
852
853 if (!intel_dp->psr.sink_psr2_support)
854 return false;
855
856 /* JSL and EHL only supports eDP 1.3 */
857 if (IS_JSL_EHL(dev_priv)) {
858 drm_dbg_kms(&dev_priv->drm, "PSR2 not supported by phy\n");
859 return false;
860 }
861
862 /* Wa_16011181250 */
863 if (IS_ROCKETLAKE(dev_priv) || IS_ALDERLAKE_S(dev_priv) ||
864 IS_DG2(dev_priv)) {
865 drm_dbg_kms(&dev_priv->drm, "PSR2 is defeatured for this platform\n");
866 return false;
867 }
868
869 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) {
870 drm_dbg_kms(&dev_priv->drm, "PSR2 not completely functional in this stepping\n");
871 return false;
872 }
873
874 if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) {
875 drm_dbg_kms(&dev_priv->drm,
876 "PSR2 not supported in transcoder %s\n",
877 transcoder_name(crtc_state->cpu_transcoder));
878 return false;
879 }
880
881 if (!psr2_global_enabled(intel_dp)) {
882 drm_dbg_kms(&dev_priv->drm, "PSR2 disabled by flag\n");
883 return false;
884 }
885
886 /*
887 * DSC and PSR2 cannot be enabled simultaneously. If a requested
888 * resolution requires DSC to be enabled, priority is given to DSC
889 * over PSR2.
890 */
891 if (crtc_state->dsc.compression_enable &&
892 (DISPLAY_VER(dev_priv) <= 13 && !IS_ALDERLAKE_P(dev_priv))) {
893 drm_dbg_kms(&dev_priv->drm,
894 "PSR2 cannot be enabled since DSC is enabled\n");
895 return false;
896 }
897
898 if (crtc_state->crc_enabled) {
899 drm_dbg_kms(&dev_priv->drm,
900 "PSR2 not enabled because it would inhibit pipe CRC calculation\n");
901 return false;
902 }
903
904 if (DISPLAY_VER(dev_priv) >= 12) {
905 psr_max_h = 5120;
906 psr_max_v = 3200;
907 max_bpp = 30;
908 } else if (DISPLAY_VER(dev_priv) >= 10) {
909 psr_max_h = 4096;
910 psr_max_v = 2304;
911 max_bpp = 24;
912 } else if (DISPLAY_VER(dev_priv) == 9) {
913 psr_max_h = 3640;
914 psr_max_v = 2304;
915 max_bpp = 24;
916 }
917
918 if (crtc_state->pipe_bpp > max_bpp) {
919 drm_dbg_kms(&dev_priv->drm,
920 "PSR2 not enabled, pipe bpp %d > max supported %d\n",
921 crtc_state->pipe_bpp, max_bpp);
922 return false;
923 }
924
925 /* Wa_16011303918:adl-p */
926 if (crtc_state->vrr.enable &&
927 IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) {
928 drm_dbg_kms(&dev_priv->drm,
929 "PSR2 not enabled, not compatible with HW stepping + VRR\n");
930 return false;
931 }
932
933 if (!_compute_psr2_sdp_prior_scanline_indication(intel_dp, crtc_state)) {
934 drm_dbg_kms(&dev_priv->drm,
935 "PSR2 not enabled, PSR2 SDP indication do not fit in hblank\n");
936 return false;
937 }
938
939 if (HAS_PSR2_SEL_FETCH(dev_priv)) {
940 if (!intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) &&
941 !HAS_PSR_HW_TRACKING(dev_priv)) {
942 drm_dbg_kms(&dev_priv->drm,
943 "PSR2 not enabled, selective fetch not valid and no HW tracking available\n");
944 return false;
945 }
946 }
947
948 /* Wa_2209313811 */
949 if (!crtc_state->enable_psr2_sel_fetch &&
950 IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0)) {
951 drm_dbg_kms(&dev_priv->drm, "PSR2 HW tracking is not supported this Display stepping\n");
952 goto unsupported;
953 }
954
955 if (!psr2_granularity_check(intel_dp, crtc_state)) {
956 drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled, SU granularity not compatible\n");
957 goto unsupported;
958 }
959
960 if (!crtc_state->enable_psr2_sel_fetch &&
961 (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) {
962 drm_dbg_kms(&dev_priv->drm,
963 "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
964 crtc_hdisplay, crtc_vdisplay,
965 psr_max_h, psr_max_v);
966 goto unsupported;
967 }
968
969 tgl_dc3co_exitline_compute_config(intel_dp, crtc_state);
970 return true;
971
972 unsupported:
973 crtc_state->enable_psr2_sel_fetch = false;
974 return false;
975 }
976
intel_psr_compute_config(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)977 void intel_psr_compute_config(struct intel_dp *intel_dp,
978 struct intel_crtc_state *crtc_state,
979 struct drm_connector_state *conn_state)
980 {
981 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
982 const struct drm_display_mode *adjusted_mode =
983 &crtc_state->hw.adjusted_mode;
984 int psr_setup_time;
985
986 /*
987 * Current PSR panels don't work reliably with VRR enabled
988 * So if VRR is enabled, do not enable PSR.
989 */
990 if (crtc_state->vrr.enable)
991 return;
992
993 if (!CAN_PSR(intel_dp))
994 return;
995
996 if (!psr_global_enabled(intel_dp)) {
997 drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n");
998 return;
999 }
1000
1001 if (intel_dp->psr.sink_not_reliable) {
1002 drm_dbg_kms(&dev_priv->drm,
1003 "PSR sink implementation is not reliable\n");
1004 return;
1005 }
1006
1007 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
1008 drm_dbg_kms(&dev_priv->drm,
1009 "PSR condition failed: Interlaced mode enabled\n");
1010 return;
1011 }
1012
1013 psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
1014 if (psr_setup_time < 0) {
1015 drm_dbg_kms(&dev_priv->drm,
1016 "PSR condition failed: Invalid PSR setup time (0x%02x)\n",
1017 intel_dp->psr_dpcd[1]);
1018 return;
1019 }
1020
1021 if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
1022 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
1023 drm_dbg_kms(&dev_priv->drm,
1024 "PSR condition failed: PSR setup time (%d us) too long\n",
1025 psr_setup_time);
1026 return;
1027 }
1028
1029 crtc_state->has_psr = true;
1030 crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
1031
1032 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
1033 intel_dp_compute_psr_vsc_sdp(intel_dp, crtc_state, conn_state,
1034 &crtc_state->psr_vsc);
1035 }
1036
intel_psr_get_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)1037 void intel_psr_get_config(struct intel_encoder *encoder,
1038 struct intel_crtc_state *pipe_config)
1039 {
1040 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1041 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1042 struct intel_dp *intel_dp;
1043 u32 val;
1044
1045 if (!dig_port)
1046 return;
1047
1048 intel_dp = &dig_port->dp;
1049 if (!CAN_PSR(intel_dp))
1050 return;
1051
1052 mutex_lock(&intel_dp->psr.lock);
1053 if (!intel_dp->psr.enabled)
1054 goto unlock;
1055
1056 /*
1057 * Not possible to read EDP_PSR/PSR2_CTL registers as it is
1058 * enabled/disabled because of frontbuffer tracking and others.
1059 */
1060 pipe_config->has_psr = true;
1061 pipe_config->has_psr2 = intel_dp->psr.psr2_enabled;
1062 pipe_config->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
1063
1064 if (!intel_dp->psr.psr2_enabled)
1065 goto unlock;
1066
1067 if (HAS_PSR2_SEL_FETCH(dev_priv)) {
1068 val = intel_de_read(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder));
1069 if (val & PSR2_MAN_TRK_CTL_ENABLE)
1070 pipe_config->enable_psr2_sel_fetch = true;
1071 }
1072
1073 if (DISPLAY_VER(dev_priv) >= 12) {
1074 val = intel_de_read(dev_priv, EXITLINE(intel_dp->psr.transcoder));
1075 val &= EXITLINE_MASK;
1076 pipe_config->dc3co_exitline = val;
1077 }
1078 unlock:
1079 mutex_unlock(&intel_dp->psr.lock);
1080 }
1081
intel_psr_activate(struct intel_dp * intel_dp)1082 static void intel_psr_activate(struct intel_dp *intel_dp)
1083 {
1084 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1085 enum transcoder transcoder = intel_dp->psr.transcoder;
1086
1087 if (transcoder_has_psr2(dev_priv, transcoder))
1088 drm_WARN_ON(&dev_priv->drm,
1089 intel_de_read(dev_priv, EDP_PSR2_CTL(transcoder)) & EDP_PSR2_ENABLE);
1090
1091 drm_WARN_ON(&dev_priv->drm,
1092 intel_de_read(dev_priv, EDP_PSR_CTL(transcoder)) & EDP_PSR_ENABLE);
1093 drm_WARN_ON(&dev_priv->drm, intel_dp->psr.active);
1094 lockdep_assert_held(&intel_dp->psr.lock);
1095
1096 /* psr1 and psr2 are mutually exclusive.*/
1097 if (intel_dp->psr.psr2_enabled)
1098 hsw_activate_psr2(intel_dp);
1099 else
1100 hsw_activate_psr1(intel_dp);
1101
1102 intel_dp->psr.active = true;
1103 }
1104
wa_16013835468_bit_get(struct intel_dp * intel_dp)1105 static u32 wa_16013835468_bit_get(struct intel_dp *intel_dp)
1106 {
1107 switch (intel_dp->psr.pipe) {
1108 case PIPE_A:
1109 return LATENCY_REPORTING_REMOVED_PIPE_A;
1110 case PIPE_B:
1111 return LATENCY_REPORTING_REMOVED_PIPE_B;
1112 case PIPE_C:
1113 return LATENCY_REPORTING_REMOVED_PIPE_C;
1114 case PIPE_D:
1115 return LATENCY_REPORTING_REMOVED_PIPE_D;
1116 default:
1117 MISSING_CASE(intel_dp->psr.pipe);
1118 return 0;
1119 }
1120 }
1121
intel_psr_enable_source(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)1122 static void intel_psr_enable_source(struct intel_dp *intel_dp,
1123 const struct intel_crtc_state *crtc_state)
1124 {
1125 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1126 enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
1127 u32 mask;
1128
1129 /*
1130 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
1131 * mask LPSP to avoid dependency on other drivers that might block
1132 * runtime_pm besides preventing other hw tracking issues now we
1133 * can rely on frontbuffer tracking.
1134 */
1135 mask = EDP_PSR_DEBUG_MASK_MEMUP |
1136 EDP_PSR_DEBUG_MASK_HPD |
1137 EDP_PSR_DEBUG_MASK_LPSP |
1138 EDP_PSR_DEBUG_MASK_MAX_SLEEP;
1139
1140 if (DISPLAY_VER(dev_priv) < 11)
1141 mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
1142
1143 intel_de_write(dev_priv, EDP_PSR_DEBUG(intel_dp->psr.transcoder),
1144 mask);
1145
1146 psr_irq_control(intel_dp);
1147
1148 if (intel_dp->psr.dc3co_exitline) {
1149 u32 val;
1150
1151 /*
1152 * TODO: if future platforms supports DC3CO in more than one
1153 * transcoder, EXITLINE will need to be unset when disabling PSR
1154 */
1155 val = intel_de_read(dev_priv, EXITLINE(cpu_transcoder));
1156 val &= ~EXITLINE_MASK;
1157 val |= intel_dp->psr.dc3co_exitline << EXITLINE_SHIFT;
1158 val |= EXITLINE_ENABLE;
1159 intel_de_write(dev_priv, EXITLINE(cpu_transcoder), val);
1160 }
1161
1162 if (HAS_PSR_HW_TRACKING(dev_priv) && HAS_PSR2_SEL_FETCH(dev_priv))
1163 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING,
1164 intel_dp->psr.psr2_sel_fetch_enabled ?
1165 IGNORE_PSR2_HW_TRACKING : 0);
1166
1167 /*
1168 * Wa_16013835468
1169 * Wa_14015648006
1170 */
1171 if (IS_MTL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
1172 IS_DISPLAY_VER(dev_priv, 12, 13)) {
1173 u16 vtotal, vblank;
1174
1175 vtotal = crtc_state->uapi.adjusted_mode.crtc_vtotal -
1176 crtc_state->uapi.adjusted_mode.crtc_vdisplay;
1177 vblank = crtc_state->uapi.adjusted_mode.crtc_vblank_end -
1178 crtc_state->uapi.adjusted_mode.crtc_vblank_start;
1179 if (vblank > vtotal)
1180 intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, 0,
1181 wa_16013835468_bit_get(intel_dp));
1182 }
1183
1184 if (intel_dp->psr.psr2_enabled) {
1185 if (DISPLAY_VER(dev_priv) == 9)
1186 intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 0,
1187 PSR2_VSC_ENABLE_PROG_HEADER |
1188 PSR2_ADD_VERTICAL_LINE_COUNT);
1189
1190 /*
1191 * Wa_16014451276:adlp,mtl[a0,b0]
1192 * All supported adlp panels have 1-based X granularity, this may
1193 * cause issues if non-supported panels are used.
1194 */
1195 if (IS_MTL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1196 intel_de_rmw(dev_priv, MTL_CHICKEN_TRANS(cpu_transcoder), 0,
1197 ADLP_1_BASED_X_GRANULARITY);
1198 else if (IS_ALDERLAKE_P(dev_priv))
1199 intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 0,
1200 ADLP_1_BASED_X_GRANULARITY);
1201
1202 /* Wa_16011168373:adl-p */
1203 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1204 intel_de_rmw(dev_priv,
1205 TRANS_SET_CONTEXT_LATENCY(intel_dp->psr.transcoder),
1206 TRANS_SET_CONTEXT_LATENCY_MASK,
1207 TRANS_SET_CONTEXT_LATENCY_VALUE(1));
1208
1209 /* Wa_16012604467:adlp,mtl[a0,b0] */
1210 if (IS_MTL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1211 intel_de_rmw(dev_priv,
1212 MTL_CLKGATE_DIS_TRANS(cpu_transcoder), 0,
1213 MTL_CLKGATE_DIS_TRANS_DMASC_GATING_DIS);
1214 else if (IS_ALDERLAKE_P(dev_priv))
1215 intel_de_rmw(dev_priv, CLKGATE_DIS_MISC, 0,
1216 CLKGATE_DIS_MISC_DMASC_GATING_DIS);
1217 }
1218 }
1219
psr_interrupt_error_check(struct intel_dp * intel_dp)1220 static bool psr_interrupt_error_check(struct intel_dp *intel_dp)
1221 {
1222 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1223 u32 val;
1224
1225 /*
1226 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
1227 * will still keep the error set even after the reset done in the
1228 * irq_preinstall and irq_uninstall hooks.
1229 * And enabling in this situation cause the screen to freeze in the
1230 * first time that PSR HW tries to activate so lets keep PSR disabled
1231 * to avoid any rendering problems.
1232 */
1233 if (DISPLAY_VER(dev_priv) >= 12)
1234 val = intel_de_read(dev_priv,
1235 TRANS_PSR_IIR(intel_dp->psr.transcoder));
1236 else
1237 val = intel_de_read(dev_priv, EDP_PSR_IIR);
1238 val &= psr_irq_psr_error_bit_get(intel_dp);
1239 if (val) {
1240 intel_dp->psr.sink_not_reliable = true;
1241 drm_dbg_kms(&dev_priv->drm,
1242 "PSR interruption error set, not enabling PSR\n");
1243 return false;
1244 }
1245
1246 return true;
1247 }
1248
intel_psr_enable_locked(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)1249 static void intel_psr_enable_locked(struct intel_dp *intel_dp,
1250 const struct intel_crtc_state *crtc_state)
1251 {
1252 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1253 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1254 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
1255 struct intel_encoder *encoder = &dig_port->base;
1256 u32 val;
1257
1258 drm_WARN_ON(&dev_priv->drm, intel_dp->psr.enabled);
1259
1260 intel_dp->psr.psr2_enabled = crtc_state->has_psr2;
1261 intel_dp->psr.busy_frontbuffer_bits = 0;
1262 intel_dp->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
1263 intel_dp->psr.transcoder = crtc_state->cpu_transcoder;
1264 /* DC5/DC6 requires at least 6 idle frames */
1265 val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6);
1266 intel_dp->psr.dc3co_exit_delay = val;
1267 intel_dp->psr.dc3co_exitline = crtc_state->dc3co_exitline;
1268 intel_dp->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch;
1269 intel_dp->psr.psr2_sel_fetch_cff_enabled = false;
1270 intel_dp->psr.req_psr2_sdp_prior_scanline =
1271 crtc_state->req_psr2_sdp_prior_scanline;
1272
1273 if (!psr_interrupt_error_check(intel_dp))
1274 return;
1275
1276 drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n",
1277 intel_dp->psr.psr2_enabled ? "2" : "1");
1278 intel_write_dp_vsc_sdp(encoder, crtc_state, &crtc_state->psr_vsc);
1279 intel_snps_phy_update_psr_power_state(dev_priv, phy, true);
1280 intel_psr_enable_sink(intel_dp);
1281 intel_psr_enable_source(intel_dp, crtc_state);
1282 intel_dp->psr.enabled = true;
1283 intel_dp->psr.paused = false;
1284
1285 intel_psr_activate(intel_dp);
1286 }
1287
intel_psr_exit(struct intel_dp * intel_dp)1288 static void intel_psr_exit(struct intel_dp *intel_dp)
1289 {
1290 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1291 u32 val;
1292
1293 if (!intel_dp->psr.active) {
1294 if (transcoder_has_psr2(dev_priv, intel_dp->psr.transcoder)) {
1295 val = intel_de_read(dev_priv,
1296 EDP_PSR2_CTL(intel_dp->psr.transcoder));
1297 drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE);
1298 }
1299
1300 val = intel_de_read(dev_priv,
1301 EDP_PSR_CTL(intel_dp->psr.transcoder));
1302 drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE);
1303
1304 return;
1305 }
1306
1307 if (intel_dp->psr.psr2_enabled) {
1308 tgl_disallow_dc3co_on_psr2_exit(intel_dp);
1309 val = intel_de_read(dev_priv,
1310 EDP_PSR2_CTL(intel_dp->psr.transcoder));
1311 drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE));
1312 val &= ~EDP_PSR2_ENABLE;
1313 intel_de_write(dev_priv,
1314 EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
1315 } else {
1316 val = intel_de_read(dev_priv,
1317 EDP_PSR_CTL(intel_dp->psr.transcoder));
1318 drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE));
1319 val &= ~EDP_PSR_ENABLE;
1320 intel_de_write(dev_priv,
1321 EDP_PSR_CTL(intel_dp->psr.transcoder), val);
1322 }
1323 intel_dp->psr.active = false;
1324 }
1325
intel_psr_wait_exit_locked(struct intel_dp * intel_dp)1326 static void intel_psr_wait_exit_locked(struct intel_dp *intel_dp)
1327 {
1328 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1329 i915_reg_t psr_status;
1330 u32 psr_status_mask;
1331
1332 if (intel_dp->psr.psr2_enabled) {
1333 psr_status = EDP_PSR2_STATUS(intel_dp->psr.transcoder);
1334 psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
1335 } else {
1336 psr_status = EDP_PSR_STATUS(intel_dp->psr.transcoder);
1337 psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
1338 }
1339
1340 /* Wait till PSR is idle */
1341 if (intel_de_wait_for_clear(dev_priv, psr_status,
1342 psr_status_mask, 2000))
1343 drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n");
1344 }
1345
intel_psr_disable_locked(struct intel_dp * intel_dp)1346 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
1347 {
1348 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1349 enum phy phy = intel_port_to_phy(dev_priv,
1350 dp_to_dig_port(intel_dp)->base.port);
1351
1352 lockdep_assert_held(&intel_dp->psr.lock);
1353
1354 if (!intel_dp->psr.enabled)
1355 return;
1356
1357 drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n",
1358 intel_dp->psr.psr2_enabled ? "2" : "1");
1359
1360 intel_psr_exit(intel_dp);
1361 intel_psr_wait_exit_locked(intel_dp);
1362
1363 /* Wa_1408330847 */
1364 if (intel_dp->psr.psr2_sel_fetch_enabled &&
1365 IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1366 intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
1367 DIS_RAM_BYPASS_PSR2_MAN_TRACK, 0);
1368
1369 /*
1370 * Wa_16013835468
1371 * Wa_14015648006
1372 */
1373 if (IS_MTL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
1374 IS_DISPLAY_VER(dev_priv, 12, 13))
1375 intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1,
1376 wa_16013835468_bit_get(intel_dp), 0);
1377
1378 if (intel_dp->psr.psr2_enabled) {
1379 /* Wa_16011168373:adl-p */
1380 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1381 intel_de_rmw(dev_priv,
1382 TRANS_SET_CONTEXT_LATENCY(intel_dp->psr.transcoder),
1383 TRANS_SET_CONTEXT_LATENCY_MASK, 0);
1384
1385 /* Wa_16012604467:adlp,mtl[a0,b0] */
1386 if (IS_MTL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1387 intel_de_rmw(dev_priv,
1388 MTL_CLKGATE_DIS_TRANS(intel_dp->psr.transcoder),
1389 MTL_CLKGATE_DIS_TRANS_DMASC_GATING_DIS, 0);
1390 else if (IS_ALDERLAKE_P(dev_priv))
1391 intel_de_rmw(dev_priv, CLKGATE_DIS_MISC,
1392 CLKGATE_DIS_MISC_DMASC_GATING_DIS, 0);
1393 }
1394
1395 intel_snps_phy_update_psr_power_state(dev_priv, phy, false);
1396
1397 /* Disable PSR on Sink */
1398 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
1399
1400 if (intel_dp->psr.psr2_enabled)
1401 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0);
1402
1403 intel_dp->psr.enabled = false;
1404 intel_dp->psr.psr2_enabled = false;
1405 intel_dp->psr.psr2_sel_fetch_enabled = false;
1406 intel_dp->psr.psr2_sel_fetch_cff_enabled = false;
1407 }
1408
1409 /**
1410 * intel_psr_disable - Disable PSR
1411 * @intel_dp: Intel DP
1412 * @old_crtc_state: old CRTC state
1413 *
1414 * This function needs to be called before disabling pipe.
1415 */
intel_psr_disable(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)1416 void intel_psr_disable(struct intel_dp *intel_dp,
1417 const struct intel_crtc_state *old_crtc_state)
1418 {
1419 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1420
1421 if (!old_crtc_state->has_psr)
1422 return;
1423
1424 if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(intel_dp)))
1425 return;
1426
1427 mutex_lock(&intel_dp->psr.lock);
1428
1429 intel_psr_disable_locked(intel_dp);
1430
1431 mutex_unlock(&intel_dp->psr.lock);
1432 cancel_work_sync(&intel_dp->psr.work);
1433 cancel_delayed_work_sync(&intel_dp->psr.dc3co_work);
1434 }
1435
1436 /**
1437 * intel_psr_pause - Pause PSR
1438 * @intel_dp: Intel DP
1439 *
1440 * This function need to be called after enabling psr.
1441 */
intel_psr_pause(struct intel_dp * intel_dp)1442 void intel_psr_pause(struct intel_dp *intel_dp)
1443 {
1444 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1445 struct intel_psr *psr = &intel_dp->psr;
1446
1447 if (!CAN_PSR(intel_dp))
1448 return;
1449
1450 mutex_lock(&psr->lock);
1451
1452 if (!psr->enabled) {
1453 mutex_unlock(&psr->lock);
1454 return;
1455 }
1456
1457 /* If we ever hit this, we will need to add refcount to pause/resume */
1458 drm_WARN_ON(&dev_priv->drm, psr->paused);
1459
1460 intel_psr_exit(intel_dp);
1461 intel_psr_wait_exit_locked(intel_dp);
1462 psr->paused = true;
1463
1464 mutex_unlock(&psr->lock);
1465
1466 cancel_work_sync(&psr->work);
1467 cancel_delayed_work_sync(&psr->dc3co_work);
1468 }
1469
1470 /**
1471 * intel_psr_resume - Resume PSR
1472 * @intel_dp: Intel DP
1473 *
1474 * This function need to be called after pausing psr.
1475 */
intel_psr_resume(struct intel_dp * intel_dp)1476 void intel_psr_resume(struct intel_dp *intel_dp)
1477 {
1478 struct intel_psr *psr = &intel_dp->psr;
1479
1480 if (!CAN_PSR(intel_dp))
1481 return;
1482
1483 mutex_lock(&psr->lock);
1484
1485 if (!psr->paused)
1486 goto unlock;
1487
1488 psr->paused = false;
1489 intel_psr_activate(intel_dp);
1490
1491 unlock:
1492 mutex_unlock(&psr->lock);
1493 }
1494
man_trk_ctl_enable_bit_get(struct drm_i915_private * dev_priv)1495 static u32 man_trk_ctl_enable_bit_get(struct drm_i915_private *dev_priv)
1496 {
1497 return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14 ? 0 :
1498 PSR2_MAN_TRK_CTL_ENABLE;
1499 }
1500
man_trk_ctl_single_full_frame_bit_get(struct drm_i915_private * dev_priv)1501 static u32 man_trk_ctl_single_full_frame_bit_get(struct drm_i915_private *dev_priv)
1502 {
1503 return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14 ?
1504 ADLP_PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME :
1505 PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME;
1506 }
1507
man_trk_ctl_partial_frame_bit_get(struct drm_i915_private * dev_priv)1508 static u32 man_trk_ctl_partial_frame_bit_get(struct drm_i915_private *dev_priv)
1509 {
1510 return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14 ?
1511 ADLP_PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE :
1512 PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE;
1513 }
1514
man_trk_ctl_continuos_full_frame(struct drm_i915_private * dev_priv)1515 static u32 man_trk_ctl_continuos_full_frame(struct drm_i915_private *dev_priv)
1516 {
1517 return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14 ?
1518 ADLP_PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME :
1519 PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME;
1520 }
1521
psr_force_hw_tracking_exit(struct intel_dp * intel_dp)1522 static void psr_force_hw_tracking_exit(struct intel_dp *intel_dp)
1523 {
1524 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1525
1526 if (intel_dp->psr.psr2_sel_fetch_enabled)
1527 intel_de_write(dev_priv,
1528 PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder),
1529 man_trk_ctl_enable_bit_get(dev_priv) |
1530 man_trk_ctl_partial_frame_bit_get(dev_priv) |
1531 man_trk_ctl_single_full_frame_bit_get(dev_priv) |
1532 man_trk_ctl_continuos_full_frame(dev_priv));
1533
1534 /*
1535 * Display WA #0884: skl+
1536 * This documented WA for bxt can be safely applied
1537 * broadly so we can force HW tracking to exit PSR
1538 * instead of disabling and re-enabling.
1539 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
1540 * but it makes more sense write to the current active
1541 * pipe.
1542 *
1543 * This workaround do not exist for platforms with display 10 or newer
1544 * but testing proved that it works for up display 13, for newer
1545 * than that testing will be needed.
1546 */
1547 intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
1548 }
1549
intel_psr2_disable_plane_sel_fetch(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)1550 void intel_psr2_disable_plane_sel_fetch(struct intel_plane *plane,
1551 const struct intel_crtc_state *crtc_state)
1552 {
1553 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1554 enum pipe pipe = plane->pipe;
1555
1556 if (!crtc_state->enable_psr2_sel_fetch)
1557 return;
1558
1559 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id), 0);
1560 }
1561
intel_psr2_program_plane_sel_fetch(struct intel_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int color_plane)1562 void intel_psr2_program_plane_sel_fetch(struct intel_plane *plane,
1563 const struct intel_crtc_state *crtc_state,
1564 const struct intel_plane_state *plane_state,
1565 int color_plane)
1566 {
1567 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1568 enum pipe pipe = plane->pipe;
1569 const struct drm_rect *clip;
1570 u32 val;
1571 int x, y;
1572
1573 if (!crtc_state->enable_psr2_sel_fetch)
1574 return;
1575
1576 if (plane->id == PLANE_CURSOR) {
1577 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id),
1578 plane_state->ctl);
1579 return;
1580 }
1581
1582 clip = &plane_state->psr2_sel_fetch_area;
1583
1584 val = (clip->y1 + plane_state->uapi.dst.y1) << 16;
1585 val |= plane_state->uapi.dst.x1;
1586 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_POS(pipe, plane->id), val);
1587
1588 x = plane_state->view.color_plane[color_plane].x;
1589
1590 /*
1591 * From Bspec: UV surface Start Y Position = half of Y plane Y
1592 * start position.
1593 */
1594 if (!color_plane)
1595 y = plane_state->view.color_plane[color_plane].y + clip->y1;
1596 else
1597 y = plane_state->view.color_plane[color_plane].y + clip->y1 / 2;
1598
1599 val = y << 16 | x;
1600
1601 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_OFFSET(pipe, plane->id),
1602 val);
1603
1604 /* Sizes are 0 based */
1605 val = (drm_rect_height(clip) - 1) << 16;
1606 val |= (drm_rect_width(&plane_state->uapi.src) >> 16) - 1;
1607 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_SIZE(pipe, plane->id), val);
1608
1609 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id),
1610 PLANE_SEL_FETCH_CTL_ENABLE);
1611 }
1612
intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state * crtc_state)1613 void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state)
1614 {
1615 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1616 struct intel_encoder *encoder;
1617
1618 if (!crtc_state->enable_psr2_sel_fetch)
1619 return;
1620
1621 for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder,
1622 crtc_state->uapi.encoder_mask) {
1623 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1624
1625 lockdep_assert_held(&intel_dp->psr.lock);
1626 if (intel_dp->psr.psr2_sel_fetch_cff_enabled)
1627 return;
1628 break;
1629 }
1630
1631 intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(crtc_state->cpu_transcoder),
1632 crtc_state->psr2_man_track_ctl);
1633 }
1634
psr2_man_trk_ctl_calc(struct intel_crtc_state * crtc_state,struct drm_rect * clip,bool full_update)1635 static void psr2_man_trk_ctl_calc(struct intel_crtc_state *crtc_state,
1636 struct drm_rect *clip, bool full_update)
1637 {
1638 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1639 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1640 u32 val = man_trk_ctl_enable_bit_get(dev_priv);
1641
1642 /* SF partial frame enable has to be set even on full update */
1643 val |= man_trk_ctl_partial_frame_bit_get(dev_priv);
1644
1645 if (full_update) {
1646 val |= man_trk_ctl_single_full_frame_bit_get(dev_priv);
1647 val |= man_trk_ctl_continuos_full_frame(dev_priv);
1648 goto exit;
1649 }
1650
1651 if (clip->y1 == -1)
1652 goto exit;
1653
1654 if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14) {
1655 val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1);
1656 val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 - 1);
1657 } else {
1658 drm_WARN_ON(crtc_state->uapi.crtc->dev, clip->y1 % 4 || clip->y2 % 4);
1659
1660 val |= PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1 / 4 + 1);
1661 val |= PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 / 4 + 1);
1662 }
1663 exit:
1664 crtc_state->psr2_man_track_ctl = val;
1665 }
1666
clip_area_update(struct drm_rect * overlap_damage_area,struct drm_rect * damage_area,struct drm_rect * pipe_src)1667 static void clip_area_update(struct drm_rect *overlap_damage_area,
1668 struct drm_rect *damage_area,
1669 struct drm_rect *pipe_src)
1670 {
1671 if (!drm_rect_intersect(damage_area, pipe_src))
1672 return;
1673
1674 if (overlap_damage_area->y1 == -1) {
1675 overlap_damage_area->y1 = damage_area->y1;
1676 overlap_damage_area->y2 = damage_area->y2;
1677 return;
1678 }
1679
1680 if (damage_area->y1 < overlap_damage_area->y1)
1681 overlap_damage_area->y1 = damage_area->y1;
1682
1683 if (damage_area->y2 > overlap_damage_area->y2)
1684 overlap_damage_area->y2 = damage_area->y2;
1685 }
1686
intel_psr2_sel_fetch_pipe_alignment(const struct intel_crtc_state * crtc_state,struct drm_rect * pipe_clip)1687 static void intel_psr2_sel_fetch_pipe_alignment(const struct intel_crtc_state *crtc_state,
1688 struct drm_rect *pipe_clip)
1689 {
1690 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1691 const struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
1692 u16 y_alignment;
1693
1694 /* ADLP aligns the SU region to vdsc slice height in case dsc is enabled */
1695 if (crtc_state->dsc.compression_enable &&
1696 (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14))
1697 y_alignment = vdsc_cfg->slice_height;
1698 else
1699 y_alignment = crtc_state->su_y_granularity;
1700
1701 pipe_clip->y1 -= pipe_clip->y1 % y_alignment;
1702 if (pipe_clip->y2 % y_alignment)
1703 pipe_clip->y2 = ((pipe_clip->y2 / y_alignment) + 1) * y_alignment;
1704 }
1705
1706 /*
1707 * TODO: Not clear how to handle planes with negative position,
1708 * also planes are not updated if they have a negative X
1709 * position so for now doing a full update in this cases
1710 *
1711 * Plane scaling and rotation is not supported by selective fetch and both
1712 * properties can change without a modeset, so need to be check at every
1713 * atomic commit.
1714 */
psr2_sel_fetch_plane_state_supported(const struct intel_plane_state * plane_state)1715 static bool psr2_sel_fetch_plane_state_supported(const struct intel_plane_state *plane_state)
1716 {
1717 if (plane_state->uapi.dst.y1 < 0 ||
1718 plane_state->uapi.dst.x1 < 0 ||
1719 plane_state->scaler_id >= 0 ||
1720 plane_state->uapi.rotation != DRM_MODE_ROTATE_0)
1721 return false;
1722
1723 return true;
1724 }
1725
1726 /*
1727 * Check for pipe properties that is not supported by selective fetch.
1728 *
1729 * TODO: pipe scaling causes a modeset but skl_update_scaler_crtc() is executed
1730 * after intel_psr_compute_config(), so for now keeping PSR2 selective fetch
1731 * enabled and going to the full update path.
1732 */
psr2_sel_fetch_pipe_state_supported(const struct intel_crtc_state * crtc_state)1733 static bool psr2_sel_fetch_pipe_state_supported(const struct intel_crtc_state *crtc_state)
1734 {
1735 if (crtc_state->scaler_state.scaler_id >= 0)
1736 return false;
1737
1738 return true;
1739 }
1740
intel_psr2_sel_fetch_update(struct intel_atomic_state * state,struct intel_crtc * crtc)1741 int intel_psr2_sel_fetch_update(struct intel_atomic_state *state,
1742 struct intel_crtc *crtc)
1743 {
1744 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1745 struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
1746 struct drm_rect pipe_clip = { .x1 = 0, .y1 = -1, .x2 = INT_MAX, .y2 = -1 };
1747 struct intel_plane_state *new_plane_state, *old_plane_state;
1748 struct intel_plane *plane;
1749 bool full_update = false;
1750 int i, ret;
1751
1752 if (!crtc_state->enable_psr2_sel_fetch)
1753 return 0;
1754
1755 if (!psr2_sel_fetch_pipe_state_supported(crtc_state)) {
1756 full_update = true;
1757 goto skip_sel_fetch_set_loop;
1758 }
1759
1760 /*
1761 * Calculate minimal selective fetch area of each plane and calculate
1762 * the pipe damaged area.
1763 * In the next loop the plane selective fetch area will actually be set
1764 * using whole pipe damaged area.
1765 */
1766 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1767 new_plane_state, i) {
1768 struct drm_rect src, damaged_area = { .x1 = 0, .y1 = -1,
1769 .x2 = INT_MAX };
1770
1771 if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc)
1772 continue;
1773
1774 if (!new_plane_state->uapi.visible &&
1775 !old_plane_state->uapi.visible)
1776 continue;
1777
1778 if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) {
1779 full_update = true;
1780 break;
1781 }
1782
1783 /*
1784 * If visibility or plane moved, mark the whole plane area as
1785 * damaged as it needs to be complete redraw in the new and old
1786 * position.
1787 */
1788 if (new_plane_state->uapi.visible != old_plane_state->uapi.visible ||
1789 !drm_rect_equals(&new_plane_state->uapi.dst,
1790 &old_plane_state->uapi.dst)) {
1791 if (old_plane_state->uapi.visible) {
1792 damaged_area.y1 = old_plane_state->uapi.dst.y1;
1793 damaged_area.y2 = old_plane_state->uapi.dst.y2;
1794 clip_area_update(&pipe_clip, &damaged_area,
1795 &crtc_state->pipe_src);
1796 }
1797
1798 if (new_plane_state->uapi.visible) {
1799 damaged_area.y1 = new_plane_state->uapi.dst.y1;
1800 damaged_area.y2 = new_plane_state->uapi.dst.y2;
1801 clip_area_update(&pipe_clip, &damaged_area,
1802 &crtc_state->pipe_src);
1803 }
1804 continue;
1805 } else if (new_plane_state->uapi.alpha != old_plane_state->uapi.alpha) {
1806 /* If alpha changed mark the whole plane area as damaged */
1807 damaged_area.y1 = new_plane_state->uapi.dst.y1;
1808 damaged_area.y2 = new_plane_state->uapi.dst.y2;
1809 clip_area_update(&pipe_clip, &damaged_area,
1810 &crtc_state->pipe_src);
1811 continue;
1812 }
1813
1814 src = drm_plane_state_src(&new_plane_state->uapi);
1815 drm_rect_fp_to_int(&src, &src);
1816
1817 if (!drm_atomic_helper_damage_merged(&old_plane_state->uapi,
1818 &new_plane_state->uapi, &damaged_area))
1819 continue;
1820
1821 damaged_area.y1 += new_plane_state->uapi.dst.y1 - src.y1;
1822 damaged_area.y2 += new_plane_state->uapi.dst.y1 - src.y1;
1823 damaged_area.x1 += new_plane_state->uapi.dst.x1 - src.x1;
1824 damaged_area.x2 += new_plane_state->uapi.dst.x1 - src.x1;
1825
1826 clip_area_update(&pipe_clip, &damaged_area, &crtc_state->pipe_src);
1827 }
1828
1829 /*
1830 * TODO: For now we are just using full update in case
1831 * selective fetch area calculation fails. To optimize this we
1832 * should identify cases where this happens and fix the area
1833 * calculation for those.
1834 */
1835 if (pipe_clip.y1 == -1) {
1836 drm_info_once(&dev_priv->drm,
1837 "Selective fetch area calculation failed in pipe %c\n",
1838 pipe_name(crtc->pipe));
1839 full_update = true;
1840 }
1841
1842 if (full_update)
1843 goto skip_sel_fetch_set_loop;
1844
1845 /* Wa_14014971492 */
1846 if ((IS_MTL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
1847 IS_ALDERLAKE_P(dev_priv) || IS_TIGERLAKE(dev_priv)) &&
1848 crtc_state->splitter.enable)
1849 pipe_clip.y1 = 0;
1850
1851 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
1852 if (ret)
1853 return ret;
1854
1855 intel_psr2_sel_fetch_pipe_alignment(crtc_state, &pipe_clip);
1856
1857 /*
1858 * Now that we have the pipe damaged area check if it intersect with
1859 * every plane, if it does set the plane selective fetch area.
1860 */
1861 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1862 new_plane_state, i) {
1863 struct drm_rect *sel_fetch_area, inter;
1864 struct intel_plane *linked = new_plane_state->planar_linked_plane;
1865
1866 if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc ||
1867 !new_plane_state->uapi.visible)
1868 continue;
1869
1870 inter = pipe_clip;
1871 if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst))
1872 continue;
1873
1874 if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) {
1875 full_update = true;
1876 break;
1877 }
1878
1879 sel_fetch_area = &new_plane_state->psr2_sel_fetch_area;
1880 sel_fetch_area->y1 = inter.y1 - new_plane_state->uapi.dst.y1;
1881 sel_fetch_area->y2 = inter.y2 - new_plane_state->uapi.dst.y1;
1882 crtc_state->update_planes |= BIT(plane->id);
1883
1884 /*
1885 * Sel_fetch_area is calculated for UV plane. Use
1886 * same area for Y plane as well.
1887 */
1888 if (linked) {
1889 struct intel_plane_state *linked_new_plane_state;
1890 struct drm_rect *linked_sel_fetch_area;
1891
1892 linked_new_plane_state = intel_atomic_get_plane_state(state, linked);
1893 if (IS_ERR(linked_new_plane_state))
1894 return PTR_ERR(linked_new_plane_state);
1895
1896 linked_sel_fetch_area = &linked_new_plane_state->psr2_sel_fetch_area;
1897 linked_sel_fetch_area->y1 = sel_fetch_area->y1;
1898 linked_sel_fetch_area->y2 = sel_fetch_area->y2;
1899 crtc_state->update_planes |= BIT(linked->id);
1900 }
1901 }
1902
1903 skip_sel_fetch_set_loop:
1904 psr2_man_trk_ctl_calc(crtc_state, &pipe_clip, full_update);
1905 return 0;
1906 }
1907
intel_psr_pre_plane_update(struct intel_atomic_state * state,struct intel_crtc * crtc)1908 void intel_psr_pre_plane_update(struct intel_atomic_state *state,
1909 struct intel_crtc *crtc)
1910 {
1911 struct drm_i915_private *i915 = to_i915(state->base.dev);
1912 const struct intel_crtc_state *old_crtc_state =
1913 intel_atomic_get_old_crtc_state(state, crtc);
1914 const struct intel_crtc_state *new_crtc_state =
1915 intel_atomic_get_new_crtc_state(state, crtc);
1916 struct intel_encoder *encoder;
1917
1918 if (!HAS_PSR(i915))
1919 return;
1920
1921 for_each_intel_encoder_mask_with_psr(state->base.dev, encoder,
1922 old_crtc_state->uapi.encoder_mask) {
1923 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1924 struct intel_psr *psr = &intel_dp->psr;
1925 bool needs_to_disable = false;
1926
1927 mutex_lock(&psr->lock);
1928
1929 /*
1930 * Reasons to disable:
1931 * - PSR disabled in new state
1932 * - All planes will go inactive
1933 * - Changing between PSR versions
1934 */
1935 needs_to_disable |= intel_crtc_needs_modeset(new_crtc_state);
1936 needs_to_disable |= !new_crtc_state->has_psr;
1937 needs_to_disable |= !new_crtc_state->active_planes;
1938 needs_to_disable |= new_crtc_state->has_psr2 != psr->psr2_enabled;
1939
1940 if (psr->enabled && needs_to_disable)
1941 intel_psr_disable_locked(intel_dp);
1942
1943 mutex_unlock(&psr->lock);
1944 }
1945 }
1946
_intel_psr_post_plane_update(const struct intel_atomic_state * state,const struct intel_crtc_state * crtc_state)1947 static void _intel_psr_post_plane_update(const struct intel_atomic_state *state,
1948 const struct intel_crtc_state *crtc_state)
1949 {
1950 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1951 struct intel_encoder *encoder;
1952
1953 if (!crtc_state->has_psr)
1954 return;
1955
1956 for_each_intel_encoder_mask_with_psr(state->base.dev, encoder,
1957 crtc_state->uapi.encoder_mask) {
1958 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1959 struct intel_psr *psr = &intel_dp->psr;
1960
1961 mutex_lock(&psr->lock);
1962
1963 if (psr->sink_not_reliable)
1964 goto exit;
1965
1966 drm_WARN_ON(&dev_priv->drm, psr->enabled && !crtc_state->active_planes);
1967
1968 /* Only enable if there is active planes */
1969 if (!psr->enabled && crtc_state->active_planes)
1970 intel_psr_enable_locked(intel_dp, crtc_state);
1971
1972 /* Force a PSR exit when enabling CRC to avoid CRC timeouts */
1973 if (crtc_state->crc_enabled && psr->enabled)
1974 psr_force_hw_tracking_exit(intel_dp);
1975
1976 exit:
1977 mutex_unlock(&psr->lock);
1978 }
1979 }
1980
intel_psr_post_plane_update(const struct intel_atomic_state * state)1981 void intel_psr_post_plane_update(const struct intel_atomic_state *state)
1982 {
1983 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1984 struct intel_crtc_state *crtc_state;
1985 struct intel_crtc *crtc;
1986 int i;
1987
1988 if (!HAS_PSR(dev_priv))
1989 return;
1990
1991 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
1992 _intel_psr_post_plane_update(state, crtc_state);
1993 }
1994
_psr2_ready_for_pipe_update_locked(struct intel_dp * intel_dp)1995 static int _psr2_ready_for_pipe_update_locked(struct intel_dp *intel_dp)
1996 {
1997 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1998
1999 /*
2000 * Any state lower than EDP_PSR2_STATUS_STATE_DEEP_SLEEP is enough.
2001 * As all higher states has bit 4 of PSR2 state set we can just wait for
2002 * EDP_PSR2_STATUS_STATE_DEEP_SLEEP to be cleared.
2003 */
2004 return intel_de_wait_for_clear(dev_priv,
2005 EDP_PSR2_STATUS(intel_dp->psr.transcoder),
2006 EDP_PSR2_STATUS_STATE_DEEP_SLEEP, 50);
2007 }
2008
_psr1_ready_for_pipe_update_locked(struct intel_dp * intel_dp)2009 static int _psr1_ready_for_pipe_update_locked(struct intel_dp *intel_dp)
2010 {
2011 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2012
2013 /*
2014 * From bspec: Panel Self Refresh (BDW+)
2015 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
2016 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
2017 * defensive enough to cover everything.
2018 */
2019 return intel_de_wait_for_clear(dev_priv,
2020 EDP_PSR_STATUS(intel_dp->psr.transcoder),
2021 EDP_PSR_STATUS_STATE_MASK, 50);
2022 }
2023
2024 /**
2025 * intel_psr_wait_for_idle_locked - wait for PSR be ready for a pipe update
2026 * @new_crtc_state: new CRTC state
2027 *
2028 * This function is expected to be called from pipe_update_start() where it is
2029 * not expected to race with PSR enable or disable.
2030 */
intel_psr_wait_for_idle_locked(const struct intel_crtc_state * new_crtc_state)2031 void intel_psr_wait_for_idle_locked(const struct intel_crtc_state *new_crtc_state)
2032 {
2033 struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev);
2034 struct intel_encoder *encoder;
2035
2036 if (!new_crtc_state->has_psr)
2037 return;
2038
2039 for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder,
2040 new_crtc_state->uapi.encoder_mask) {
2041 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2042 int ret;
2043
2044 lockdep_assert_held(&intel_dp->psr.lock);
2045
2046 if (!intel_dp->psr.enabled)
2047 continue;
2048
2049 if (intel_dp->psr.psr2_enabled)
2050 ret = _psr2_ready_for_pipe_update_locked(intel_dp);
2051 else
2052 ret = _psr1_ready_for_pipe_update_locked(intel_dp);
2053
2054 if (ret)
2055 drm_err(&dev_priv->drm, "PSR wait timed out, atomic update may fail\n");
2056 }
2057 }
2058
__psr_wait_for_idle_locked(struct intel_dp * intel_dp)2059 static bool __psr_wait_for_idle_locked(struct intel_dp *intel_dp)
2060 {
2061 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2062 i915_reg_t reg;
2063 u32 mask;
2064 int err;
2065
2066 if (!intel_dp->psr.enabled)
2067 return false;
2068
2069 if (intel_dp->psr.psr2_enabled) {
2070 reg = EDP_PSR2_STATUS(intel_dp->psr.transcoder);
2071 mask = EDP_PSR2_STATUS_STATE_MASK;
2072 } else {
2073 reg = EDP_PSR_STATUS(intel_dp->psr.transcoder);
2074 mask = EDP_PSR_STATUS_STATE_MASK;
2075 }
2076
2077 mutex_unlock(&intel_dp->psr.lock);
2078
2079 err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
2080 if (err)
2081 drm_err(&dev_priv->drm,
2082 "Timed out waiting for PSR Idle for re-enable\n");
2083
2084 /* After the unlocked wait, verify that PSR is still wanted! */
2085 mutex_lock(&intel_dp->psr.lock);
2086 return err == 0 && intel_dp->psr.enabled;
2087 }
2088
intel_psr_fastset_force(struct drm_i915_private * dev_priv)2089 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
2090 {
2091 struct drm_connector_list_iter conn_iter;
2092 struct drm_modeset_acquire_ctx ctx;
2093 struct drm_atomic_state *state;
2094 struct drm_connector *conn;
2095 int err = 0;
2096
2097 state = drm_atomic_state_alloc(&dev_priv->drm);
2098 if (!state)
2099 return -ENOMEM;
2100
2101 drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
2102 state->acquire_ctx = &ctx;
2103
2104 retry:
2105
2106 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
2107 drm_for_each_connector_iter(conn, &conn_iter) {
2108 struct drm_connector_state *conn_state;
2109 struct drm_crtc_state *crtc_state;
2110
2111 if (conn->connector_type != DRM_MODE_CONNECTOR_eDP)
2112 continue;
2113
2114 conn_state = drm_atomic_get_connector_state(state, conn);
2115 if (IS_ERR(conn_state)) {
2116 err = PTR_ERR(conn_state);
2117 break;
2118 }
2119
2120 if (!conn_state->crtc)
2121 continue;
2122
2123 crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc);
2124 if (IS_ERR(crtc_state)) {
2125 err = PTR_ERR(crtc_state);
2126 break;
2127 }
2128
2129 /* Mark mode as changed to trigger a pipe->update() */
2130 crtc_state->mode_changed = true;
2131 }
2132 drm_connector_list_iter_end(&conn_iter);
2133
2134 if (err == 0)
2135 err = drm_atomic_commit(state);
2136
2137 if (err == -EDEADLK) {
2138 drm_atomic_state_clear(state);
2139 err = drm_modeset_backoff(&ctx);
2140 if (!err)
2141 goto retry;
2142 }
2143
2144 drm_modeset_drop_locks(&ctx);
2145 drm_modeset_acquire_fini(&ctx);
2146 drm_atomic_state_put(state);
2147
2148 return err;
2149 }
2150
intel_psr_debug_set(struct intel_dp * intel_dp,u64 val)2151 int intel_psr_debug_set(struct intel_dp *intel_dp, u64 val)
2152 {
2153 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2154 const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
2155 u32 old_mode;
2156 int ret;
2157
2158 if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
2159 mode > I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
2160 drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val);
2161 return -EINVAL;
2162 }
2163
2164 ret = mutex_lock_interruptible(&intel_dp->psr.lock);
2165 if (ret)
2166 return ret;
2167
2168 old_mode = intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK;
2169 intel_dp->psr.debug = val;
2170
2171 /*
2172 * Do it right away if it's already enabled, otherwise it will be done
2173 * when enabling the source.
2174 */
2175 if (intel_dp->psr.enabled)
2176 psr_irq_control(intel_dp);
2177
2178 mutex_unlock(&intel_dp->psr.lock);
2179
2180 if (old_mode != mode)
2181 ret = intel_psr_fastset_force(dev_priv);
2182
2183 return ret;
2184 }
2185
intel_psr_handle_irq(struct intel_dp * intel_dp)2186 static void intel_psr_handle_irq(struct intel_dp *intel_dp)
2187 {
2188 struct intel_psr *psr = &intel_dp->psr;
2189
2190 intel_psr_disable_locked(intel_dp);
2191 psr->sink_not_reliable = true;
2192 /* let's make sure that sink is awaken */
2193 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
2194 }
2195
intel_psr_work(struct work_struct * work)2196 static void intel_psr_work(struct work_struct *work)
2197 {
2198 struct intel_dp *intel_dp =
2199 container_of(work, typeof(*intel_dp), psr.work);
2200
2201 mutex_lock(&intel_dp->psr.lock);
2202
2203 if (!intel_dp->psr.enabled)
2204 goto unlock;
2205
2206 if (READ_ONCE(intel_dp->psr.irq_aux_error))
2207 intel_psr_handle_irq(intel_dp);
2208
2209 /*
2210 * We have to make sure PSR is ready for re-enable
2211 * otherwise it keeps disabled until next full enable/disable cycle.
2212 * PSR might take some time to get fully disabled
2213 * and be ready for re-enable.
2214 */
2215 if (!__psr_wait_for_idle_locked(intel_dp))
2216 goto unlock;
2217
2218 /*
2219 * The delayed work can race with an invalidate hence we need to
2220 * recheck. Since psr_flush first clears this and then reschedules we
2221 * won't ever miss a flush when bailing out here.
2222 */
2223 if (intel_dp->psr.busy_frontbuffer_bits || intel_dp->psr.active)
2224 goto unlock;
2225
2226 intel_psr_activate(intel_dp);
2227 unlock:
2228 mutex_unlock(&intel_dp->psr.lock);
2229 }
2230
_psr_invalidate_handle(struct intel_dp * intel_dp)2231 static void _psr_invalidate_handle(struct intel_dp *intel_dp)
2232 {
2233 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2234
2235 if (intel_dp->psr.psr2_sel_fetch_enabled) {
2236 u32 val;
2237
2238 if (intel_dp->psr.psr2_sel_fetch_cff_enabled) {
2239 /* Send one update otherwise lag is observed in screen */
2240 intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
2241 return;
2242 }
2243
2244 val = man_trk_ctl_enable_bit_get(dev_priv) |
2245 man_trk_ctl_partial_frame_bit_get(dev_priv) |
2246 man_trk_ctl_continuos_full_frame(dev_priv);
2247 intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), val);
2248 intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
2249 intel_dp->psr.psr2_sel_fetch_cff_enabled = true;
2250 } else {
2251 intel_psr_exit(intel_dp);
2252 }
2253 }
2254
2255 /**
2256 * intel_psr_invalidate - Invalidate PSR
2257 * @dev_priv: i915 device
2258 * @frontbuffer_bits: frontbuffer plane tracking bits
2259 * @origin: which operation caused the invalidate
2260 *
2261 * Since the hardware frontbuffer tracking has gaps we need to integrate
2262 * with the software frontbuffer tracking. This function gets called every
2263 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
2264 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
2265 *
2266 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
2267 */
intel_psr_invalidate(struct drm_i915_private * dev_priv,unsigned frontbuffer_bits,enum fb_op_origin origin)2268 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
2269 unsigned frontbuffer_bits, enum fb_op_origin origin)
2270 {
2271 struct intel_encoder *encoder;
2272
2273 if (origin == ORIGIN_FLIP)
2274 return;
2275
2276 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2277 unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
2278 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2279
2280 mutex_lock(&intel_dp->psr.lock);
2281 if (!intel_dp->psr.enabled) {
2282 mutex_unlock(&intel_dp->psr.lock);
2283 continue;
2284 }
2285
2286 pipe_frontbuffer_bits &=
2287 INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
2288 intel_dp->psr.busy_frontbuffer_bits |= pipe_frontbuffer_bits;
2289
2290 if (pipe_frontbuffer_bits)
2291 _psr_invalidate_handle(intel_dp);
2292
2293 mutex_unlock(&intel_dp->psr.lock);
2294 }
2295 }
2296 /*
2297 * When we will be completely rely on PSR2 S/W tracking in future,
2298 * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
2299 * event also therefore tgl_dc3co_flush_locked() require to be changed
2300 * accordingly in future.
2301 */
2302 static void
tgl_dc3co_flush_locked(struct intel_dp * intel_dp,unsigned int frontbuffer_bits,enum fb_op_origin origin)2303 tgl_dc3co_flush_locked(struct intel_dp *intel_dp, unsigned int frontbuffer_bits,
2304 enum fb_op_origin origin)
2305 {
2306 if (!intel_dp->psr.dc3co_exitline || !intel_dp->psr.psr2_enabled ||
2307 !intel_dp->psr.active)
2308 return;
2309
2310 /*
2311 * At every frontbuffer flush flip event modified delay of delayed work,
2312 * when delayed work schedules that means display has been idle.
2313 */
2314 if (!(frontbuffer_bits &
2315 INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe)))
2316 return;
2317
2318 tgl_psr2_enable_dc3co(intel_dp);
2319 mod_delayed_work(system_wq, &intel_dp->psr.dc3co_work,
2320 intel_dp->psr.dc3co_exit_delay);
2321 }
2322
_psr_flush_handle(struct intel_dp * intel_dp)2323 static void _psr_flush_handle(struct intel_dp *intel_dp)
2324 {
2325 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2326
2327 if (intel_dp->psr.psr2_sel_fetch_enabled) {
2328 if (intel_dp->psr.psr2_sel_fetch_cff_enabled) {
2329 /* can we turn CFF off? */
2330 if (intel_dp->psr.busy_frontbuffer_bits == 0) {
2331 u32 val = man_trk_ctl_enable_bit_get(dev_priv) |
2332 man_trk_ctl_partial_frame_bit_get(dev_priv) |
2333 man_trk_ctl_single_full_frame_bit_get(dev_priv) |
2334 man_trk_ctl_continuos_full_frame(dev_priv);
2335
2336 /*
2337 * Set psr2_sel_fetch_cff_enabled as false to allow selective
2338 * updates. Still keep cff bit enabled as we don't have proper
2339 * SU configuration in case update is sent for any reason after
2340 * sff bit gets cleared by the HW on next vblank.
2341 */
2342 intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder),
2343 val);
2344 intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
2345 intel_dp->psr.psr2_sel_fetch_cff_enabled = false;
2346 }
2347 } else {
2348 /*
2349 * continuous full frame is disabled, only a single full
2350 * frame is required
2351 */
2352 psr_force_hw_tracking_exit(intel_dp);
2353 }
2354 } else {
2355 psr_force_hw_tracking_exit(intel_dp);
2356
2357 if (!intel_dp->psr.active && !intel_dp->psr.busy_frontbuffer_bits)
2358 schedule_work(&intel_dp->psr.work);
2359 }
2360 }
2361
2362 /**
2363 * intel_psr_flush - Flush PSR
2364 * @dev_priv: i915 device
2365 * @frontbuffer_bits: frontbuffer plane tracking bits
2366 * @origin: which operation caused the flush
2367 *
2368 * Since the hardware frontbuffer tracking has gaps we need to integrate
2369 * with the software frontbuffer tracking. This function gets called every
2370 * time frontbuffer rendering has completed and flushed out to memory. PSR
2371 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
2372 *
2373 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
2374 */
intel_psr_flush(struct drm_i915_private * dev_priv,unsigned frontbuffer_bits,enum fb_op_origin origin)2375 void intel_psr_flush(struct drm_i915_private *dev_priv,
2376 unsigned frontbuffer_bits, enum fb_op_origin origin)
2377 {
2378 struct intel_encoder *encoder;
2379
2380 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2381 unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
2382 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2383
2384 mutex_lock(&intel_dp->psr.lock);
2385 if (!intel_dp->psr.enabled) {
2386 mutex_unlock(&intel_dp->psr.lock);
2387 continue;
2388 }
2389
2390 pipe_frontbuffer_bits &=
2391 INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
2392 intel_dp->psr.busy_frontbuffer_bits &= ~pipe_frontbuffer_bits;
2393
2394 /*
2395 * If the PSR is paused by an explicit intel_psr_paused() call,
2396 * we have to ensure that the PSR is not activated until
2397 * intel_psr_resume() is called.
2398 */
2399 if (intel_dp->psr.paused)
2400 goto unlock;
2401
2402 if (origin == ORIGIN_FLIP ||
2403 (origin == ORIGIN_CURSOR_UPDATE &&
2404 !intel_dp->psr.psr2_sel_fetch_enabled)) {
2405 tgl_dc3co_flush_locked(intel_dp, frontbuffer_bits, origin);
2406 goto unlock;
2407 }
2408
2409 if (pipe_frontbuffer_bits == 0)
2410 goto unlock;
2411
2412 /* By definition flush = invalidate + flush */
2413 _psr_flush_handle(intel_dp);
2414 unlock:
2415 mutex_unlock(&intel_dp->psr.lock);
2416 }
2417 }
2418
2419 /**
2420 * intel_psr_init - Init basic PSR work and mutex.
2421 * @intel_dp: Intel DP
2422 *
2423 * This function is called after the initializing connector.
2424 * (the initializing of connector treats the handling of connector capabilities)
2425 * And it initializes basic PSR stuff for each DP Encoder.
2426 */
intel_psr_init(struct intel_dp * intel_dp)2427 void intel_psr_init(struct intel_dp *intel_dp)
2428 {
2429 struct intel_connector *connector = intel_dp->attached_connector;
2430 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2431 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2432
2433 if (!HAS_PSR(dev_priv))
2434 return;
2435
2436 /*
2437 * HSW spec explicitly says PSR is tied to port A.
2438 * BDW+ platforms have a instance of PSR registers per transcoder but
2439 * BDW, GEN9 and GEN11 are not validated by HW team in other transcoder
2440 * than eDP one.
2441 * For now it only supports one instance of PSR for BDW, GEN9 and GEN11.
2442 * So lets keep it hardcoded to PORT_A for BDW, GEN9 and GEN11.
2443 * But GEN12 supports a instance of PSR registers per transcoder.
2444 */
2445 if (DISPLAY_VER(dev_priv) < 12 && dig_port->base.port != PORT_A) {
2446 drm_dbg_kms(&dev_priv->drm,
2447 "PSR condition failed: Port not supported\n");
2448 return;
2449 }
2450
2451 intel_dp->psr.source_support = true;
2452
2453 /* Set link_standby x link_off defaults */
2454 if (DISPLAY_VER(dev_priv) < 12)
2455 /* For new platforms up to TGL let's respect VBT back again */
2456 intel_dp->psr.link_standby = connector->panel.vbt.psr.full_link;
2457
2458 INIT_WORK(&intel_dp->psr.work, intel_psr_work);
2459 INIT_DELAYED_WORK(&intel_dp->psr.dc3co_work, tgl_dc3co_disable_work);
2460 mutex_init(&intel_dp->psr.lock);
2461 }
2462
psr_get_status_and_error_status(struct intel_dp * intel_dp,u8 * status,u8 * error_status)2463 static int psr_get_status_and_error_status(struct intel_dp *intel_dp,
2464 u8 *status, u8 *error_status)
2465 {
2466 struct drm_dp_aux *aux = &intel_dp->aux;
2467 int ret;
2468
2469 ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status);
2470 if (ret != 1)
2471 return ret;
2472
2473 ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status);
2474 if (ret != 1)
2475 return ret;
2476
2477 *status = *status & DP_PSR_SINK_STATE_MASK;
2478
2479 return 0;
2480 }
2481
psr_alpm_check(struct intel_dp * intel_dp)2482 static void psr_alpm_check(struct intel_dp *intel_dp)
2483 {
2484 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2485 struct drm_dp_aux *aux = &intel_dp->aux;
2486 struct intel_psr *psr = &intel_dp->psr;
2487 u8 val;
2488 int r;
2489
2490 if (!psr->psr2_enabled)
2491 return;
2492
2493 r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
2494 if (r != 1) {
2495 drm_err(&dev_priv->drm, "Error reading ALPM status\n");
2496 return;
2497 }
2498
2499 if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
2500 intel_psr_disable_locked(intel_dp);
2501 psr->sink_not_reliable = true;
2502 drm_dbg_kms(&dev_priv->drm,
2503 "ALPM lock timeout error, disabling PSR\n");
2504
2505 /* Clearing error */
2506 drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
2507 }
2508 }
2509
psr_capability_changed_check(struct intel_dp * intel_dp)2510 static void psr_capability_changed_check(struct intel_dp *intel_dp)
2511 {
2512 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2513 struct intel_psr *psr = &intel_dp->psr;
2514 u8 val;
2515 int r;
2516
2517 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val);
2518 if (r != 1) {
2519 drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n");
2520 return;
2521 }
2522
2523 if (val & DP_PSR_CAPS_CHANGE) {
2524 intel_psr_disable_locked(intel_dp);
2525 psr->sink_not_reliable = true;
2526 drm_dbg_kms(&dev_priv->drm,
2527 "Sink PSR capability changed, disabling PSR\n");
2528
2529 /* Clearing it */
2530 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val);
2531 }
2532 }
2533
intel_psr_short_pulse(struct intel_dp * intel_dp)2534 void intel_psr_short_pulse(struct intel_dp *intel_dp)
2535 {
2536 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2537 struct intel_psr *psr = &intel_dp->psr;
2538 u8 status, error_status;
2539 const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
2540 DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
2541 DP_PSR_LINK_CRC_ERROR;
2542
2543 if (!CAN_PSR(intel_dp))
2544 return;
2545
2546 mutex_lock(&psr->lock);
2547
2548 if (!psr->enabled)
2549 goto exit;
2550
2551 if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) {
2552 drm_err(&dev_priv->drm,
2553 "Error reading PSR status or error status\n");
2554 goto exit;
2555 }
2556
2557 if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) {
2558 intel_psr_disable_locked(intel_dp);
2559 psr->sink_not_reliable = true;
2560 }
2561
2562 if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status)
2563 drm_dbg_kms(&dev_priv->drm,
2564 "PSR sink internal error, disabling PSR\n");
2565 if (error_status & DP_PSR_RFB_STORAGE_ERROR)
2566 drm_dbg_kms(&dev_priv->drm,
2567 "PSR RFB storage error, disabling PSR\n");
2568 if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
2569 drm_dbg_kms(&dev_priv->drm,
2570 "PSR VSC SDP uncorrectable error, disabling PSR\n");
2571 if (error_status & DP_PSR_LINK_CRC_ERROR)
2572 drm_dbg_kms(&dev_priv->drm,
2573 "PSR Link CRC error, disabling PSR\n");
2574
2575 if (error_status & ~errors)
2576 drm_err(&dev_priv->drm,
2577 "PSR_ERROR_STATUS unhandled errors %x\n",
2578 error_status & ~errors);
2579 /* clear status register */
2580 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status);
2581
2582 psr_alpm_check(intel_dp);
2583 psr_capability_changed_check(intel_dp);
2584
2585 exit:
2586 mutex_unlock(&psr->lock);
2587 }
2588
intel_psr_enabled(struct intel_dp * intel_dp)2589 bool intel_psr_enabled(struct intel_dp *intel_dp)
2590 {
2591 bool ret;
2592
2593 if (!CAN_PSR(intel_dp))
2594 return false;
2595
2596 mutex_lock(&intel_dp->psr.lock);
2597 ret = intel_dp->psr.enabled;
2598 mutex_unlock(&intel_dp->psr.lock);
2599
2600 return ret;
2601 }
2602
2603 /**
2604 * intel_psr_lock - grab PSR lock
2605 * @crtc_state: the crtc state
2606 *
2607 * This is initially meant to be used by around CRTC update, when
2608 * vblank sensitive registers are updated and we need grab the lock
2609 * before it to avoid vblank evasion.
2610 */
intel_psr_lock(const struct intel_crtc_state * crtc_state)2611 void intel_psr_lock(const struct intel_crtc_state *crtc_state)
2612 {
2613 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2614 struct intel_encoder *encoder;
2615
2616 if (!crtc_state->has_psr)
2617 return;
2618
2619 for_each_intel_encoder_mask_with_psr(&i915->drm, encoder,
2620 crtc_state->uapi.encoder_mask) {
2621 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2622
2623 mutex_lock(&intel_dp->psr.lock);
2624 break;
2625 }
2626 }
2627
2628 /**
2629 * intel_psr_unlock - release PSR lock
2630 * @crtc_state: the crtc state
2631 *
2632 * Release the PSR lock that was held during pipe update.
2633 */
intel_psr_unlock(const struct intel_crtc_state * crtc_state)2634 void intel_psr_unlock(const struct intel_crtc_state *crtc_state)
2635 {
2636 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2637 struct intel_encoder *encoder;
2638
2639 if (!crtc_state->has_psr)
2640 return;
2641
2642 for_each_intel_encoder_mask_with_psr(&i915->drm, encoder,
2643 crtc_state->uapi.encoder_mask) {
2644 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2645
2646 mutex_unlock(&intel_dp->psr.lock);
2647 break;
2648 }
2649 }
2650