1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16
17 #define PIPE_PARANOIA /* for now */
18
19 /* covers ubuf and kbuf alike */
20 #define iterate_buf(i, n, base, len, off, __p, STEP) { \
21 size_t __maybe_unused off = 0; \
22 len = n; \
23 base = __p + i->iov_offset; \
24 len -= (STEP); \
25 i->iov_offset += len; \
26 n = len; \
27 }
28
29 /* covers iovec and kvec alike */
30 #define iterate_iovec(i, n, base, len, off, __p, STEP) { \
31 size_t off = 0; \
32 size_t skip = i->iov_offset; \
33 do { \
34 len = min(n, __p->iov_len - skip); \
35 if (likely(len)) { \
36 base = __p->iov_base + skip; \
37 len -= (STEP); \
38 off += len; \
39 skip += len; \
40 n -= len; \
41 if (skip < __p->iov_len) \
42 break; \
43 } \
44 __p++; \
45 skip = 0; \
46 } while (n); \
47 i->iov_offset = skip; \
48 n = off; \
49 }
50
51 #define iterate_bvec(i, n, base, len, off, p, STEP) { \
52 size_t off = 0; \
53 unsigned skip = i->iov_offset; \
54 while (n) { \
55 unsigned offset = p->bv_offset + skip; \
56 unsigned left; \
57 void *kaddr = kmap_local_page(p->bv_page + \
58 offset / PAGE_SIZE); \
59 base = kaddr + offset % PAGE_SIZE; \
60 len = min(min(n, (size_t)(p->bv_len - skip)), \
61 (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
62 left = (STEP); \
63 kunmap_local(kaddr); \
64 len -= left; \
65 off += len; \
66 skip += len; \
67 if (skip == p->bv_len) { \
68 skip = 0; \
69 p++; \
70 } \
71 n -= len; \
72 if (left) \
73 break; \
74 } \
75 i->iov_offset = skip; \
76 n = off; \
77 }
78
79 #define iterate_xarray(i, n, base, len, __off, STEP) { \
80 __label__ __out; \
81 size_t __off = 0; \
82 struct folio *folio; \
83 loff_t start = i->xarray_start + i->iov_offset; \
84 pgoff_t index = start / PAGE_SIZE; \
85 XA_STATE(xas, i->xarray, index); \
86 \
87 len = PAGE_SIZE - offset_in_page(start); \
88 rcu_read_lock(); \
89 xas_for_each(&xas, folio, ULONG_MAX) { \
90 unsigned left; \
91 size_t offset; \
92 if (xas_retry(&xas, folio)) \
93 continue; \
94 if (WARN_ON(xa_is_value(folio))) \
95 break; \
96 if (WARN_ON(folio_test_hugetlb(folio))) \
97 break; \
98 offset = offset_in_folio(folio, start + __off); \
99 while (offset < folio_size(folio)) { \
100 base = kmap_local_folio(folio, offset); \
101 len = min(n, len); \
102 left = (STEP); \
103 kunmap_local(base); \
104 len -= left; \
105 __off += len; \
106 n -= len; \
107 if (left || n == 0) \
108 goto __out; \
109 offset += len; \
110 len = PAGE_SIZE; \
111 } \
112 } \
113 __out: \
114 rcu_read_unlock(); \
115 i->iov_offset += __off; \
116 n = __off; \
117 }
118
119 #define __iterate_and_advance(i, n, base, len, off, I, K) { \
120 if (unlikely(i->count < n)) \
121 n = i->count; \
122 if (likely(n)) { \
123 if (likely(iter_is_ubuf(i))) { \
124 void __user *base; \
125 size_t len; \
126 iterate_buf(i, n, base, len, off, \
127 i->ubuf, (I)) \
128 } else if (likely(iter_is_iovec(i))) { \
129 const struct iovec *iov = i->iov; \
130 void __user *base; \
131 size_t len; \
132 iterate_iovec(i, n, base, len, off, \
133 iov, (I)) \
134 i->nr_segs -= iov - i->iov; \
135 i->iov = iov; \
136 } else if (iov_iter_is_bvec(i)) { \
137 const struct bio_vec *bvec = i->bvec; \
138 void *base; \
139 size_t len; \
140 iterate_bvec(i, n, base, len, off, \
141 bvec, (K)) \
142 i->nr_segs -= bvec - i->bvec; \
143 i->bvec = bvec; \
144 } else if (iov_iter_is_kvec(i)) { \
145 const struct kvec *kvec = i->kvec; \
146 void *base; \
147 size_t len; \
148 iterate_iovec(i, n, base, len, off, \
149 kvec, (K)) \
150 i->nr_segs -= kvec - i->kvec; \
151 i->kvec = kvec; \
152 } else if (iov_iter_is_xarray(i)) { \
153 void *base; \
154 size_t len; \
155 iterate_xarray(i, n, base, len, off, \
156 (K)) \
157 } \
158 i->count -= n; \
159 } \
160 }
161 #define iterate_and_advance(i, n, base, len, off, I, K) \
162 __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
163
copyout(void __user * to,const void * from,size_t n)164 static int copyout(void __user *to, const void *from, size_t n)
165 {
166 if (should_fail_usercopy())
167 return n;
168 if (access_ok(to, n)) {
169 instrument_copy_to_user(to, from, n);
170 n = raw_copy_to_user(to, from, n);
171 }
172 return n;
173 }
174
copyin(void * to,const void __user * from,size_t n)175 static int copyin(void *to, const void __user *from, size_t n)
176 {
177 size_t res = n;
178
179 if (should_fail_usercopy())
180 return n;
181 if (access_ok(from, n)) {
182 instrument_copy_from_user_before(to, from, n);
183 res = raw_copy_from_user(to, from, n);
184 instrument_copy_from_user_after(to, from, n, res);
185 }
186 return res;
187 }
188
189 #ifdef PIPE_PARANOIA
sanity(const struct iov_iter * i)190 static bool sanity(const struct iov_iter *i)
191 {
192 struct pipe_inode_info *pipe = i->pipe;
193 unsigned int p_head = pipe->head;
194 unsigned int p_tail = pipe->tail;
195 unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
196 unsigned int i_head = i->head;
197 unsigned int idx;
198
199 if (i->last_offset) {
200 struct pipe_buffer *p;
201 if (unlikely(p_occupancy == 0))
202 goto Bad; // pipe must be non-empty
203 if (unlikely(i_head != p_head - 1))
204 goto Bad; // must be at the last buffer...
205
206 p = pipe_buf(pipe, i_head);
207 if (unlikely(p->offset + p->len != abs(i->last_offset)))
208 goto Bad; // ... at the end of segment
209 } else {
210 if (i_head != p_head)
211 goto Bad; // must be right after the last buffer
212 }
213 return true;
214 Bad:
215 printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset);
216 printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
217 p_head, p_tail, pipe->ring_size);
218 for (idx = 0; idx < pipe->ring_size; idx++)
219 printk(KERN_ERR "[%p %p %d %d]\n",
220 pipe->bufs[idx].ops,
221 pipe->bufs[idx].page,
222 pipe->bufs[idx].offset,
223 pipe->bufs[idx].len);
224 WARN_ON(1);
225 return false;
226 }
227 #else
228 #define sanity(i) true
229 #endif
230
push_anon(struct pipe_inode_info * pipe,unsigned size)231 static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
232 {
233 struct page *page = alloc_page(GFP_USER);
234 if (page) {
235 struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
236 *buf = (struct pipe_buffer) {
237 .ops = &default_pipe_buf_ops,
238 .page = page,
239 .offset = 0,
240 .len = size
241 };
242 }
243 return page;
244 }
245
push_page(struct pipe_inode_info * pipe,struct page * page,unsigned int offset,unsigned int size)246 static void push_page(struct pipe_inode_info *pipe, struct page *page,
247 unsigned int offset, unsigned int size)
248 {
249 struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
250 *buf = (struct pipe_buffer) {
251 .ops = &page_cache_pipe_buf_ops,
252 .page = page,
253 .offset = offset,
254 .len = size
255 };
256 get_page(page);
257 }
258
last_offset(const struct pipe_buffer * buf)259 static inline int last_offset(const struct pipe_buffer *buf)
260 {
261 if (buf->ops == &default_pipe_buf_ops)
262 return buf->len; // buf->offset is 0 for those
263 else
264 return -(buf->offset + buf->len);
265 }
266
append_pipe(struct iov_iter * i,size_t size,unsigned int * off)267 static struct page *append_pipe(struct iov_iter *i, size_t size,
268 unsigned int *off)
269 {
270 struct pipe_inode_info *pipe = i->pipe;
271 int offset = i->last_offset;
272 struct pipe_buffer *buf;
273 struct page *page;
274
275 if (offset > 0 && offset < PAGE_SIZE) {
276 // some space in the last buffer; add to it
277 buf = pipe_buf(pipe, pipe->head - 1);
278 size = min_t(size_t, size, PAGE_SIZE - offset);
279 buf->len += size;
280 i->last_offset += size;
281 i->count -= size;
282 *off = offset;
283 return buf->page;
284 }
285 // OK, we need a new buffer
286 *off = 0;
287 size = min_t(size_t, size, PAGE_SIZE);
288 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
289 return NULL;
290 page = push_anon(pipe, size);
291 if (!page)
292 return NULL;
293 i->head = pipe->head - 1;
294 i->last_offset = size;
295 i->count -= size;
296 return page;
297 }
298
copy_page_to_iter_pipe(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)299 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
300 struct iov_iter *i)
301 {
302 struct pipe_inode_info *pipe = i->pipe;
303 unsigned int head = pipe->head;
304
305 if (unlikely(bytes > i->count))
306 bytes = i->count;
307
308 if (unlikely(!bytes))
309 return 0;
310
311 if (!sanity(i))
312 return 0;
313
314 if (offset && i->last_offset == -offset) { // could we merge it?
315 struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
316 if (buf->page == page) {
317 buf->len += bytes;
318 i->last_offset -= bytes;
319 i->count -= bytes;
320 return bytes;
321 }
322 }
323 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
324 return 0;
325
326 push_page(pipe, page, offset, bytes);
327 i->last_offset = -(offset + bytes);
328 i->head = head;
329 i->count -= bytes;
330 return bytes;
331 }
332
333 /*
334 * fault_in_iov_iter_readable - fault in iov iterator for reading
335 * @i: iterator
336 * @size: maximum length
337 *
338 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
339 * @size. For each iovec, fault in each page that constitutes the iovec.
340 *
341 * Returns the number of bytes not faulted in (like copy_to_user() and
342 * copy_from_user()).
343 *
344 * Always returns 0 for non-userspace iterators.
345 */
fault_in_iov_iter_readable(const struct iov_iter * i,size_t size)346 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
347 {
348 if (iter_is_ubuf(i)) {
349 size_t n = min(size, iov_iter_count(i));
350 n -= fault_in_readable(i->ubuf + i->iov_offset, n);
351 return size - n;
352 } else if (iter_is_iovec(i)) {
353 size_t count = min(size, iov_iter_count(i));
354 const struct iovec *p;
355 size_t skip;
356
357 size -= count;
358 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
359 size_t len = min(count, p->iov_len - skip);
360 size_t ret;
361
362 if (unlikely(!len))
363 continue;
364 ret = fault_in_readable(p->iov_base + skip, len);
365 count -= len - ret;
366 if (ret)
367 break;
368 }
369 return count + size;
370 }
371 return 0;
372 }
373 EXPORT_SYMBOL(fault_in_iov_iter_readable);
374
375 /*
376 * fault_in_iov_iter_writeable - fault in iov iterator for writing
377 * @i: iterator
378 * @size: maximum length
379 *
380 * Faults in the iterator using get_user_pages(), i.e., without triggering
381 * hardware page faults. This is primarily useful when we already know that
382 * some or all of the pages in @i aren't in memory.
383 *
384 * Returns the number of bytes not faulted in, like copy_to_user() and
385 * copy_from_user().
386 *
387 * Always returns 0 for non-user-space iterators.
388 */
fault_in_iov_iter_writeable(const struct iov_iter * i,size_t size)389 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
390 {
391 if (iter_is_ubuf(i)) {
392 size_t n = min(size, iov_iter_count(i));
393 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
394 return size - n;
395 } else if (iter_is_iovec(i)) {
396 size_t count = min(size, iov_iter_count(i));
397 const struct iovec *p;
398 size_t skip;
399
400 size -= count;
401 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
402 size_t len = min(count, p->iov_len - skip);
403 size_t ret;
404
405 if (unlikely(!len))
406 continue;
407 ret = fault_in_safe_writeable(p->iov_base + skip, len);
408 count -= len - ret;
409 if (ret)
410 break;
411 }
412 return count + size;
413 }
414 return 0;
415 }
416 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
417
iov_iter_init(struct iov_iter * i,unsigned int direction,const struct iovec * iov,unsigned long nr_segs,size_t count)418 void iov_iter_init(struct iov_iter *i, unsigned int direction,
419 const struct iovec *iov, unsigned long nr_segs,
420 size_t count)
421 {
422 WARN_ON(direction & ~(READ | WRITE));
423 *i = (struct iov_iter) {
424 .iter_type = ITER_IOVEC,
425 .nofault = false,
426 .user_backed = true,
427 .data_source = direction,
428 .iov = iov,
429 .nr_segs = nr_segs,
430 .iov_offset = 0,
431 .count = count
432 };
433 }
434 EXPORT_SYMBOL(iov_iter_init);
435
436 // returns the offset in partial buffer (if any)
pipe_npages(const struct iov_iter * i,int * npages)437 static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages)
438 {
439 struct pipe_inode_info *pipe = i->pipe;
440 int used = pipe->head - pipe->tail;
441 int off = i->last_offset;
442
443 *npages = max((int)pipe->max_usage - used, 0);
444
445 if (off > 0 && off < PAGE_SIZE) { // anon and not full
446 (*npages)++;
447 return off;
448 }
449 return 0;
450 }
451
copy_pipe_to_iter(const void * addr,size_t bytes,struct iov_iter * i)452 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
453 struct iov_iter *i)
454 {
455 unsigned int off, chunk;
456
457 if (unlikely(bytes > i->count))
458 bytes = i->count;
459 if (unlikely(!bytes))
460 return 0;
461
462 if (!sanity(i))
463 return 0;
464
465 for (size_t n = bytes; n; n -= chunk) {
466 struct page *page = append_pipe(i, n, &off);
467 chunk = min_t(size_t, n, PAGE_SIZE - off);
468 if (!page)
469 return bytes - n;
470 memcpy_to_page(page, off, addr, chunk);
471 addr += chunk;
472 }
473 return bytes;
474 }
475
csum_and_memcpy(void * to,const void * from,size_t len,__wsum sum,size_t off)476 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
477 __wsum sum, size_t off)
478 {
479 __wsum next = csum_partial_copy_nocheck(from, to, len);
480 return csum_block_add(sum, next, off);
481 }
482
csum_and_copy_to_pipe_iter(const void * addr,size_t bytes,struct iov_iter * i,__wsum * sump)483 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
484 struct iov_iter *i, __wsum *sump)
485 {
486 __wsum sum = *sump;
487 size_t off = 0;
488 unsigned int chunk, r;
489
490 if (unlikely(bytes > i->count))
491 bytes = i->count;
492 if (unlikely(!bytes))
493 return 0;
494
495 if (!sanity(i))
496 return 0;
497
498 while (bytes) {
499 struct page *page = append_pipe(i, bytes, &r);
500 char *p;
501
502 if (!page)
503 break;
504 chunk = min_t(size_t, bytes, PAGE_SIZE - r);
505 p = kmap_local_page(page);
506 sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
507 kunmap_local(p);
508 off += chunk;
509 bytes -= chunk;
510 }
511 *sump = sum;
512 return off;
513 }
514
_copy_to_iter(const void * addr,size_t bytes,struct iov_iter * i)515 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
516 {
517 if (WARN_ON_ONCE(i->data_source))
518 return 0;
519 if (unlikely(iov_iter_is_pipe(i)))
520 return copy_pipe_to_iter(addr, bytes, i);
521 if (user_backed_iter(i))
522 might_fault();
523 iterate_and_advance(i, bytes, base, len, off,
524 copyout(base, addr + off, len),
525 memcpy(base, addr + off, len)
526 )
527
528 return bytes;
529 }
530 EXPORT_SYMBOL(_copy_to_iter);
531
532 #ifdef CONFIG_ARCH_HAS_COPY_MC
copyout_mc(void __user * to,const void * from,size_t n)533 static int copyout_mc(void __user *to, const void *from, size_t n)
534 {
535 if (access_ok(to, n)) {
536 instrument_copy_to_user(to, from, n);
537 n = copy_mc_to_user((__force void *) to, from, n);
538 }
539 return n;
540 }
541
copy_mc_pipe_to_iter(const void * addr,size_t bytes,struct iov_iter * i)542 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
543 struct iov_iter *i)
544 {
545 size_t xfer = 0;
546 unsigned int off, chunk;
547
548 if (unlikely(bytes > i->count))
549 bytes = i->count;
550 if (unlikely(!bytes))
551 return 0;
552
553 if (!sanity(i))
554 return 0;
555
556 while (bytes) {
557 struct page *page = append_pipe(i, bytes, &off);
558 unsigned long rem;
559 char *p;
560
561 if (!page)
562 break;
563 chunk = min_t(size_t, bytes, PAGE_SIZE - off);
564 p = kmap_local_page(page);
565 rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
566 chunk -= rem;
567 kunmap_local(p);
568 xfer += chunk;
569 bytes -= chunk;
570 if (rem) {
571 iov_iter_revert(i, rem);
572 break;
573 }
574 }
575 return xfer;
576 }
577
578 /**
579 * _copy_mc_to_iter - copy to iter with source memory error exception handling
580 * @addr: source kernel address
581 * @bytes: total transfer length
582 * @i: destination iterator
583 *
584 * The pmem driver deploys this for the dax operation
585 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
586 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
587 * successfully copied.
588 *
589 * The main differences between this and typical _copy_to_iter().
590 *
591 * * Typical tail/residue handling after a fault retries the copy
592 * byte-by-byte until the fault happens again. Re-triggering machine
593 * checks is potentially fatal so the implementation uses source
594 * alignment and poison alignment assumptions to avoid re-triggering
595 * hardware exceptions.
596 *
597 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
598 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return
599 * a short copy.
600 *
601 * Return: number of bytes copied (may be %0)
602 */
_copy_mc_to_iter(const void * addr,size_t bytes,struct iov_iter * i)603 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
604 {
605 if (WARN_ON_ONCE(i->data_source))
606 return 0;
607 if (unlikely(iov_iter_is_pipe(i)))
608 return copy_mc_pipe_to_iter(addr, bytes, i);
609 if (user_backed_iter(i))
610 might_fault();
611 __iterate_and_advance(i, bytes, base, len, off,
612 copyout_mc(base, addr + off, len),
613 copy_mc_to_kernel(base, addr + off, len)
614 )
615
616 return bytes;
617 }
618 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
619 #endif /* CONFIG_ARCH_HAS_COPY_MC */
620
_copy_from_iter(void * addr,size_t bytes,struct iov_iter * i)621 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
622 {
623 if (WARN_ON_ONCE(!i->data_source))
624 return 0;
625
626 if (user_backed_iter(i))
627 might_fault();
628 iterate_and_advance(i, bytes, base, len, off,
629 copyin(addr + off, base, len),
630 memcpy(addr + off, base, len)
631 )
632
633 return bytes;
634 }
635 EXPORT_SYMBOL(_copy_from_iter);
636
_copy_from_iter_nocache(void * addr,size_t bytes,struct iov_iter * i)637 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
638 {
639 if (WARN_ON_ONCE(!i->data_source))
640 return 0;
641
642 iterate_and_advance(i, bytes, base, len, off,
643 __copy_from_user_inatomic_nocache(addr + off, base, len),
644 memcpy(addr + off, base, len)
645 )
646
647 return bytes;
648 }
649 EXPORT_SYMBOL(_copy_from_iter_nocache);
650
651 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
652 /**
653 * _copy_from_iter_flushcache - write destination through cpu cache
654 * @addr: destination kernel address
655 * @bytes: total transfer length
656 * @i: source iterator
657 *
658 * The pmem driver arranges for filesystem-dax to use this facility via
659 * dax_copy_from_iter() for ensuring that writes to persistent memory
660 * are flushed through the CPU cache. It is differentiated from
661 * _copy_from_iter_nocache() in that guarantees all data is flushed for
662 * all iterator types. The _copy_from_iter_nocache() only attempts to
663 * bypass the cache for the ITER_IOVEC case, and on some archs may use
664 * instructions that strand dirty-data in the cache.
665 *
666 * Return: number of bytes copied (may be %0)
667 */
_copy_from_iter_flushcache(void * addr,size_t bytes,struct iov_iter * i)668 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
669 {
670 if (WARN_ON_ONCE(!i->data_source))
671 return 0;
672
673 iterate_and_advance(i, bytes, base, len, off,
674 __copy_from_user_flushcache(addr + off, base, len),
675 memcpy_flushcache(addr + off, base, len)
676 )
677
678 return bytes;
679 }
680 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
681 #endif
682
page_copy_sane(struct page * page,size_t offset,size_t n)683 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
684 {
685 struct page *head;
686 size_t v = n + offset;
687
688 /*
689 * The general case needs to access the page order in order
690 * to compute the page size.
691 * However, we mostly deal with order-0 pages and thus can
692 * avoid a possible cache line miss for requests that fit all
693 * page orders.
694 */
695 if (n <= v && v <= PAGE_SIZE)
696 return true;
697
698 head = compound_head(page);
699 v += (page - head) << PAGE_SHIFT;
700
701 if (WARN_ON(n > v || v > page_size(head)))
702 return false;
703 return true;
704 }
705
copy_page_to_iter(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)706 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
707 struct iov_iter *i)
708 {
709 size_t res = 0;
710 if (!page_copy_sane(page, offset, bytes))
711 return 0;
712 if (WARN_ON_ONCE(i->data_source))
713 return 0;
714 if (unlikely(iov_iter_is_pipe(i)))
715 return copy_page_to_iter_pipe(page, offset, bytes, i);
716 page += offset / PAGE_SIZE; // first subpage
717 offset %= PAGE_SIZE;
718 while (1) {
719 void *kaddr = kmap_local_page(page);
720 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
721 n = _copy_to_iter(kaddr + offset, n, i);
722 kunmap_local(kaddr);
723 res += n;
724 bytes -= n;
725 if (!bytes || !n)
726 break;
727 offset += n;
728 if (offset == PAGE_SIZE) {
729 page++;
730 offset = 0;
731 }
732 }
733 return res;
734 }
735 EXPORT_SYMBOL(copy_page_to_iter);
736
copy_page_from_iter(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)737 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
738 struct iov_iter *i)
739 {
740 size_t res = 0;
741 if (!page_copy_sane(page, offset, bytes))
742 return 0;
743 page += offset / PAGE_SIZE; // first subpage
744 offset %= PAGE_SIZE;
745 while (1) {
746 void *kaddr = kmap_local_page(page);
747 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
748 n = _copy_from_iter(kaddr + offset, n, i);
749 kunmap_local(kaddr);
750 res += n;
751 bytes -= n;
752 if (!bytes || !n)
753 break;
754 offset += n;
755 if (offset == PAGE_SIZE) {
756 page++;
757 offset = 0;
758 }
759 }
760 return res;
761 }
762 EXPORT_SYMBOL(copy_page_from_iter);
763
pipe_zero(size_t bytes,struct iov_iter * i)764 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
765 {
766 unsigned int chunk, off;
767
768 if (unlikely(bytes > i->count))
769 bytes = i->count;
770 if (unlikely(!bytes))
771 return 0;
772
773 if (!sanity(i))
774 return 0;
775
776 for (size_t n = bytes; n; n -= chunk) {
777 struct page *page = append_pipe(i, n, &off);
778 char *p;
779
780 if (!page)
781 return bytes - n;
782 chunk = min_t(size_t, n, PAGE_SIZE - off);
783 p = kmap_local_page(page);
784 memset(p + off, 0, chunk);
785 kunmap_local(p);
786 }
787 return bytes;
788 }
789
iov_iter_zero(size_t bytes,struct iov_iter * i)790 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
791 {
792 if (unlikely(iov_iter_is_pipe(i)))
793 return pipe_zero(bytes, i);
794 iterate_and_advance(i, bytes, base, len, count,
795 clear_user(base, len),
796 memset(base, 0, len)
797 )
798
799 return bytes;
800 }
801 EXPORT_SYMBOL(iov_iter_zero);
802
copy_page_from_iter_atomic(struct page * page,unsigned offset,size_t bytes,struct iov_iter * i)803 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
804 struct iov_iter *i)
805 {
806 char *kaddr = kmap_atomic(page), *p = kaddr + offset;
807 if (!page_copy_sane(page, offset, bytes)) {
808 kunmap_atomic(kaddr);
809 return 0;
810 }
811 if (WARN_ON_ONCE(!i->data_source)) {
812 kunmap_atomic(kaddr);
813 return 0;
814 }
815 iterate_and_advance(i, bytes, base, len, off,
816 copyin(p + off, base, len),
817 memcpy(p + off, base, len)
818 )
819 kunmap_atomic(kaddr);
820 return bytes;
821 }
822 EXPORT_SYMBOL(copy_page_from_iter_atomic);
823
pipe_advance(struct iov_iter * i,size_t size)824 static void pipe_advance(struct iov_iter *i, size_t size)
825 {
826 struct pipe_inode_info *pipe = i->pipe;
827 int off = i->last_offset;
828
829 if (!off && !size) {
830 pipe_discard_from(pipe, i->start_head); // discard everything
831 return;
832 }
833 i->count -= size;
834 while (1) {
835 struct pipe_buffer *buf = pipe_buf(pipe, i->head);
836 if (off) /* make it relative to the beginning of buffer */
837 size += abs(off) - buf->offset;
838 if (size <= buf->len) {
839 buf->len = size;
840 i->last_offset = last_offset(buf);
841 break;
842 }
843 size -= buf->len;
844 i->head++;
845 off = 0;
846 }
847 pipe_discard_from(pipe, i->head + 1); // discard everything past this one
848 }
849
iov_iter_bvec_advance(struct iov_iter * i,size_t size)850 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
851 {
852 const struct bio_vec *bvec, *end;
853
854 if (!i->count)
855 return;
856 i->count -= size;
857
858 size += i->iov_offset;
859
860 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
861 if (likely(size < bvec->bv_len))
862 break;
863 size -= bvec->bv_len;
864 }
865 i->iov_offset = size;
866 i->nr_segs -= bvec - i->bvec;
867 i->bvec = bvec;
868 }
869
iov_iter_iovec_advance(struct iov_iter * i,size_t size)870 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
871 {
872 const struct iovec *iov, *end;
873
874 if (!i->count)
875 return;
876 i->count -= size;
877
878 size += i->iov_offset; // from beginning of current segment
879 for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
880 if (likely(size < iov->iov_len))
881 break;
882 size -= iov->iov_len;
883 }
884 i->iov_offset = size;
885 i->nr_segs -= iov - i->iov;
886 i->iov = iov;
887 }
888
iov_iter_advance(struct iov_iter * i,size_t size)889 void iov_iter_advance(struct iov_iter *i, size_t size)
890 {
891 if (unlikely(i->count < size))
892 size = i->count;
893 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
894 i->iov_offset += size;
895 i->count -= size;
896 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
897 /* iovec and kvec have identical layouts */
898 iov_iter_iovec_advance(i, size);
899 } else if (iov_iter_is_bvec(i)) {
900 iov_iter_bvec_advance(i, size);
901 } else if (iov_iter_is_pipe(i)) {
902 pipe_advance(i, size);
903 } else if (iov_iter_is_discard(i)) {
904 i->count -= size;
905 }
906 }
907 EXPORT_SYMBOL(iov_iter_advance);
908
iov_iter_revert(struct iov_iter * i,size_t unroll)909 void iov_iter_revert(struct iov_iter *i, size_t unroll)
910 {
911 if (!unroll)
912 return;
913 if (WARN_ON(unroll > MAX_RW_COUNT))
914 return;
915 i->count += unroll;
916 if (unlikely(iov_iter_is_pipe(i))) {
917 struct pipe_inode_info *pipe = i->pipe;
918 unsigned int head = pipe->head;
919
920 while (head > i->start_head) {
921 struct pipe_buffer *b = pipe_buf(pipe, --head);
922 if (unroll < b->len) {
923 b->len -= unroll;
924 i->last_offset = last_offset(b);
925 i->head = head;
926 return;
927 }
928 unroll -= b->len;
929 pipe_buf_release(pipe, b);
930 pipe->head--;
931 }
932 i->last_offset = 0;
933 i->head = head;
934 return;
935 }
936 if (unlikely(iov_iter_is_discard(i)))
937 return;
938 if (unroll <= i->iov_offset) {
939 i->iov_offset -= unroll;
940 return;
941 }
942 unroll -= i->iov_offset;
943 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
944 BUG(); /* We should never go beyond the start of the specified
945 * range since we might then be straying into pages that
946 * aren't pinned.
947 */
948 } else if (iov_iter_is_bvec(i)) {
949 const struct bio_vec *bvec = i->bvec;
950 while (1) {
951 size_t n = (--bvec)->bv_len;
952 i->nr_segs++;
953 if (unroll <= n) {
954 i->bvec = bvec;
955 i->iov_offset = n - unroll;
956 return;
957 }
958 unroll -= n;
959 }
960 } else { /* same logics for iovec and kvec */
961 const struct iovec *iov = i->iov;
962 while (1) {
963 size_t n = (--iov)->iov_len;
964 i->nr_segs++;
965 if (unroll <= n) {
966 i->iov = iov;
967 i->iov_offset = n - unroll;
968 return;
969 }
970 unroll -= n;
971 }
972 }
973 }
974 EXPORT_SYMBOL(iov_iter_revert);
975
976 /*
977 * Return the count of just the current iov_iter segment.
978 */
iov_iter_single_seg_count(const struct iov_iter * i)979 size_t iov_iter_single_seg_count(const struct iov_iter *i)
980 {
981 if (i->nr_segs > 1) {
982 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
983 return min(i->count, i->iov->iov_len - i->iov_offset);
984 if (iov_iter_is_bvec(i))
985 return min(i->count, i->bvec->bv_len - i->iov_offset);
986 }
987 return i->count;
988 }
989 EXPORT_SYMBOL(iov_iter_single_seg_count);
990
iov_iter_kvec(struct iov_iter * i,unsigned int direction,const struct kvec * kvec,unsigned long nr_segs,size_t count)991 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
992 const struct kvec *kvec, unsigned long nr_segs,
993 size_t count)
994 {
995 WARN_ON(direction & ~(READ | WRITE));
996 *i = (struct iov_iter){
997 .iter_type = ITER_KVEC,
998 .data_source = direction,
999 .kvec = kvec,
1000 .nr_segs = nr_segs,
1001 .iov_offset = 0,
1002 .count = count
1003 };
1004 }
1005 EXPORT_SYMBOL(iov_iter_kvec);
1006
iov_iter_bvec(struct iov_iter * i,unsigned int direction,const struct bio_vec * bvec,unsigned long nr_segs,size_t count)1007 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1008 const struct bio_vec *bvec, unsigned long nr_segs,
1009 size_t count)
1010 {
1011 WARN_ON(direction & ~(READ | WRITE));
1012 *i = (struct iov_iter){
1013 .iter_type = ITER_BVEC,
1014 .data_source = direction,
1015 .bvec = bvec,
1016 .nr_segs = nr_segs,
1017 .iov_offset = 0,
1018 .count = count
1019 };
1020 }
1021 EXPORT_SYMBOL(iov_iter_bvec);
1022
iov_iter_pipe(struct iov_iter * i,unsigned int direction,struct pipe_inode_info * pipe,size_t count)1023 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1024 struct pipe_inode_info *pipe,
1025 size_t count)
1026 {
1027 BUG_ON(direction != READ);
1028 WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1029 *i = (struct iov_iter){
1030 .iter_type = ITER_PIPE,
1031 .data_source = false,
1032 .pipe = pipe,
1033 .head = pipe->head,
1034 .start_head = pipe->head,
1035 .last_offset = 0,
1036 .count = count
1037 };
1038 }
1039 EXPORT_SYMBOL(iov_iter_pipe);
1040
1041 /**
1042 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1043 * @i: The iterator to initialise.
1044 * @direction: The direction of the transfer.
1045 * @xarray: The xarray to access.
1046 * @start: The start file position.
1047 * @count: The size of the I/O buffer in bytes.
1048 *
1049 * Set up an I/O iterator to either draw data out of the pages attached to an
1050 * inode or to inject data into those pages. The pages *must* be prevented
1051 * from evaporation, either by taking a ref on them or locking them by the
1052 * caller.
1053 */
iov_iter_xarray(struct iov_iter * i,unsigned int direction,struct xarray * xarray,loff_t start,size_t count)1054 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1055 struct xarray *xarray, loff_t start, size_t count)
1056 {
1057 BUG_ON(direction & ~1);
1058 *i = (struct iov_iter) {
1059 .iter_type = ITER_XARRAY,
1060 .data_source = direction,
1061 .xarray = xarray,
1062 .xarray_start = start,
1063 .count = count,
1064 .iov_offset = 0
1065 };
1066 }
1067 EXPORT_SYMBOL(iov_iter_xarray);
1068
1069 /**
1070 * iov_iter_discard - Initialise an I/O iterator that discards data
1071 * @i: The iterator to initialise.
1072 * @direction: The direction of the transfer.
1073 * @count: The size of the I/O buffer in bytes.
1074 *
1075 * Set up an I/O iterator that just discards everything that's written to it.
1076 * It's only available as a READ iterator.
1077 */
iov_iter_discard(struct iov_iter * i,unsigned int direction,size_t count)1078 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1079 {
1080 BUG_ON(direction != READ);
1081 *i = (struct iov_iter){
1082 .iter_type = ITER_DISCARD,
1083 .data_source = false,
1084 .count = count,
1085 .iov_offset = 0
1086 };
1087 }
1088 EXPORT_SYMBOL(iov_iter_discard);
1089
iov_iter_aligned_iovec(const struct iov_iter * i,unsigned addr_mask,unsigned len_mask)1090 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1091 unsigned len_mask)
1092 {
1093 size_t size = i->count;
1094 size_t skip = i->iov_offset;
1095 unsigned k;
1096
1097 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1098 size_t len = i->iov[k].iov_len - skip;
1099
1100 if (len > size)
1101 len = size;
1102 if (len & len_mask)
1103 return false;
1104 if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1105 return false;
1106
1107 size -= len;
1108 if (!size)
1109 break;
1110 }
1111 return true;
1112 }
1113
iov_iter_aligned_bvec(const struct iov_iter * i,unsigned addr_mask,unsigned len_mask)1114 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1115 unsigned len_mask)
1116 {
1117 size_t size = i->count;
1118 unsigned skip = i->iov_offset;
1119 unsigned k;
1120
1121 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1122 size_t len = i->bvec[k].bv_len - skip;
1123
1124 if (len > size)
1125 len = size;
1126 if (len & len_mask)
1127 return false;
1128 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1129 return false;
1130
1131 size -= len;
1132 if (!size)
1133 break;
1134 }
1135 return true;
1136 }
1137
1138 /**
1139 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1140 * are aligned to the parameters.
1141 *
1142 * @i: &struct iov_iter to restore
1143 * @addr_mask: bit mask to check against the iov element's addresses
1144 * @len_mask: bit mask to check against the iov element's lengths
1145 *
1146 * Return: false if any addresses or lengths intersect with the provided masks
1147 */
iov_iter_is_aligned(const struct iov_iter * i,unsigned addr_mask,unsigned len_mask)1148 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1149 unsigned len_mask)
1150 {
1151 if (likely(iter_is_ubuf(i))) {
1152 if (i->count & len_mask)
1153 return false;
1154 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
1155 return false;
1156 return true;
1157 }
1158
1159 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1160 return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1161
1162 if (iov_iter_is_bvec(i))
1163 return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1164
1165 if (iov_iter_is_pipe(i)) {
1166 size_t size = i->count;
1167
1168 if (size & len_mask)
1169 return false;
1170 if (size && i->last_offset > 0) {
1171 if (i->last_offset & addr_mask)
1172 return false;
1173 }
1174
1175 return true;
1176 }
1177
1178 if (iov_iter_is_xarray(i)) {
1179 if (i->count & len_mask)
1180 return false;
1181 if ((i->xarray_start + i->iov_offset) & addr_mask)
1182 return false;
1183 }
1184
1185 return true;
1186 }
1187 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1188
iov_iter_alignment_iovec(const struct iov_iter * i)1189 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1190 {
1191 unsigned long res = 0;
1192 size_t size = i->count;
1193 size_t skip = i->iov_offset;
1194 unsigned k;
1195
1196 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1197 size_t len = i->iov[k].iov_len - skip;
1198 if (len) {
1199 res |= (unsigned long)i->iov[k].iov_base + skip;
1200 if (len > size)
1201 len = size;
1202 res |= len;
1203 size -= len;
1204 if (!size)
1205 break;
1206 }
1207 }
1208 return res;
1209 }
1210
iov_iter_alignment_bvec(const struct iov_iter * i)1211 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1212 {
1213 unsigned res = 0;
1214 size_t size = i->count;
1215 unsigned skip = i->iov_offset;
1216 unsigned k;
1217
1218 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1219 size_t len = i->bvec[k].bv_len - skip;
1220 res |= (unsigned long)i->bvec[k].bv_offset + skip;
1221 if (len > size)
1222 len = size;
1223 res |= len;
1224 size -= len;
1225 if (!size)
1226 break;
1227 }
1228 return res;
1229 }
1230
iov_iter_alignment(const struct iov_iter * i)1231 unsigned long iov_iter_alignment(const struct iov_iter *i)
1232 {
1233 if (likely(iter_is_ubuf(i))) {
1234 size_t size = i->count;
1235 if (size)
1236 return ((unsigned long)i->ubuf + i->iov_offset) | size;
1237 return 0;
1238 }
1239
1240 /* iovec and kvec have identical layouts */
1241 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1242 return iov_iter_alignment_iovec(i);
1243
1244 if (iov_iter_is_bvec(i))
1245 return iov_iter_alignment_bvec(i);
1246
1247 if (iov_iter_is_pipe(i)) {
1248 size_t size = i->count;
1249
1250 if (size && i->last_offset > 0)
1251 return size | i->last_offset;
1252 return size;
1253 }
1254
1255 if (iov_iter_is_xarray(i))
1256 return (i->xarray_start + i->iov_offset) | i->count;
1257
1258 return 0;
1259 }
1260 EXPORT_SYMBOL(iov_iter_alignment);
1261
iov_iter_gap_alignment(const struct iov_iter * i)1262 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1263 {
1264 unsigned long res = 0;
1265 unsigned long v = 0;
1266 size_t size = i->count;
1267 unsigned k;
1268
1269 if (iter_is_ubuf(i))
1270 return 0;
1271
1272 if (WARN_ON(!iter_is_iovec(i)))
1273 return ~0U;
1274
1275 for (k = 0; k < i->nr_segs; k++) {
1276 if (i->iov[k].iov_len) {
1277 unsigned long base = (unsigned long)i->iov[k].iov_base;
1278 if (v) // if not the first one
1279 res |= base | v; // this start | previous end
1280 v = base + i->iov[k].iov_len;
1281 if (size <= i->iov[k].iov_len)
1282 break;
1283 size -= i->iov[k].iov_len;
1284 }
1285 }
1286 return res;
1287 }
1288 EXPORT_SYMBOL(iov_iter_gap_alignment);
1289
want_pages_array(struct page *** res,size_t size,size_t start,unsigned int maxpages)1290 static int want_pages_array(struct page ***res, size_t size,
1291 size_t start, unsigned int maxpages)
1292 {
1293 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
1294
1295 if (count > maxpages)
1296 count = maxpages;
1297 WARN_ON(!count); // caller should've prevented that
1298 if (!*res) {
1299 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
1300 if (!*res)
1301 return 0;
1302 }
1303 return count;
1304 }
1305
pipe_get_pages(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned maxpages,size_t * start)1306 static ssize_t pipe_get_pages(struct iov_iter *i,
1307 struct page ***pages, size_t maxsize, unsigned maxpages,
1308 size_t *start)
1309 {
1310 unsigned int npages, count, off, chunk;
1311 struct page **p;
1312 size_t left;
1313
1314 if (!sanity(i))
1315 return -EFAULT;
1316
1317 *start = off = pipe_npages(i, &npages);
1318 if (!npages)
1319 return -EFAULT;
1320 count = want_pages_array(pages, maxsize, off, min(npages, maxpages));
1321 if (!count)
1322 return -ENOMEM;
1323 p = *pages;
1324 for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) {
1325 struct page *page = append_pipe(i, left, &off);
1326 if (!page)
1327 break;
1328 chunk = min_t(size_t, left, PAGE_SIZE - off);
1329 get_page(*p++ = page);
1330 }
1331 if (!npages)
1332 return -EFAULT;
1333 return maxsize - left;
1334 }
1335
iter_xarray_populate_pages(struct page ** pages,struct xarray * xa,pgoff_t index,unsigned int nr_pages)1336 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1337 pgoff_t index, unsigned int nr_pages)
1338 {
1339 XA_STATE(xas, xa, index);
1340 struct page *page;
1341 unsigned int ret = 0;
1342
1343 rcu_read_lock();
1344 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1345 if (xas_retry(&xas, page))
1346 continue;
1347
1348 /* Has the page moved or been split? */
1349 if (unlikely(page != xas_reload(&xas))) {
1350 xas_reset(&xas);
1351 continue;
1352 }
1353
1354 pages[ret] = find_subpage(page, xas.xa_index);
1355 get_page(pages[ret]);
1356 if (++ret == nr_pages)
1357 break;
1358 }
1359 rcu_read_unlock();
1360 return ret;
1361 }
1362
iter_xarray_get_pages(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned maxpages,size_t * _start_offset)1363 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1364 struct page ***pages, size_t maxsize,
1365 unsigned maxpages, size_t *_start_offset)
1366 {
1367 unsigned nr, offset, count;
1368 pgoff_t index;
1369 loff_t pos;
1370
1371 pos = i->xarray_start + i->iov_offset;
1372 index = pos >> PAGE_SHIFT;
1373 offset = pos & ~PAGE_MASK;
1374 *_start_offset = offset;
1375
1376 count = want_pages_array(pages, maxsize, offset, maxpages);
1377 if (!count)
1378 return -ENOMEM;
1379 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1380 if (nr == 0)
1381 return 0;
1382
1383 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1384 i->iov_offset += maxsize;
1385 i->count -= maxsize;
1386 return maxsize;
1387 }
1388
1389 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
first_iovec_segment(const struct iov_iter * i,size_t * size)1390 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1391 {
1392 size_t skip;
1393 long k;
1394
1395 if (iter_is_ubuf(i))
1396 return (unsigned long)i->ubuf + i->iov_offset;
1397
1398 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1399 size_t len = i->iov[k].iov_len - skip;
1400
1401 if (unlikely(!len))
1402 continue;
1403 if (*size > len)
1404 *size = len;
1405 return (unsigned long)i->iov[k].iov_base + skip;
1406 }
1407 BUG(); // if it had been empty, we wouldn't get called
1408 }
1409
1410 /* must be done on non-empty ITER_BVEC one */
first_bvec_segment(const struct iov_iter * i,size_t * size,size_t * start)1411 static struct page *first_bvec_segment(const struct iov_iter *i,
1412 size_t *size, size_t *start)
1413 {
1414 struct page *page;
1415 size_t skip = i->iov_offset, len;
1416
1417 len = i->bvec->bv_len - skip;
1418 if (*size > len)
1419 *size = len;
1420 skip += i->bvec->bv_offset;
1421 page = i->bvec->bv_page + skip / PAGE_SIZE;
1422 *start = skip % PAGE_SIZE;
1423 return page;
1424 }
1425
__iov_iter_get_pages_alloc(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned int maxpages,size_t * start,iov_iter_extraction_t extraction_flags)1426 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1427 struct page ***pages, size_t maxsize,
1428 unsigned int maxpages, size_t *start,
1429 iov_iter_extraction_t extraction_flags)
1430 {
1431 unsigned int n, gup_flags = 0;
1432
1433 if (maxsize > i->count)
1434 maxsize = i->count;
1435 if (!maxsize)
1436 return 0;
1437 if (maxsize > MAX_RW_COUNT)
1438 maxsize = MAX_RW_COUNT;
1439 if (extraction_flags & ITER_ALLOW_P2PDMA)
1440 gup_flags |= FOLL_PCI_P2PDMA;
1441
1442 if (likely(user_backed_iter(i))) {
1443 unsigned long addr;
1444 int res;
1445
1446 if (iov_iter_rw(i) != WRITE)
1447 gup_flags |= FOLL_WRITE;
1448 if (i->nofault)
1449 gup_flags |= FOLL_NOFAULT;
1450
1451 addr = first_iovec_segment(i, &maxsize);
1452 *start = addr % PAGE_SIZE;
1453 addr &= PAGE_MASK;
1454 n = want_pages_array(pages, maxsize, *start, maxpages);
1455 if (!n)
1456 return -ENOMEM;
1457 res = get_user_pages_fast(addr, n, gup_flags, *pages);
1458 if (unlikely(res <= 0))
1459 return res;
1460 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1461 iov_iter_advance(i, maxsize);
1462 return maxsize;
1463 }
1464 if (iov_iter_is_bvec(i)) {
1465 struct page **p;
1466 struct page *page;
1467
1468 page = first_bvec_segment(i, &maxsize, start);
1469 n = want_pages_array(pages, maxsize, *start, maxpages);
1470 if (!n)
1471 return -ENOMEM;
1472 p = *pages;
1473 for (int k = 0; k < n; k++)
1474 get_page(p[k] = page + k);
1475 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1476 i->count -= maxsize;
1477 i->iov_offset += maxsize;
1478 if (i->iov_offset == i->bvec->bv_len) {
1479 i->iov_offset = 0;
1480 i->bvec++;
1481 i->nr_segs--;
1482 }
1483 return maxsize;
1484 }
1485 if (iov_iter_is_pipe(i))
1486 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1487 if (iov_iter_is_xarray(i))
1488 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1489 return -EFAULT;
1490 }
1491
iov_iter_get_pages(struct iov_iter * i,struct page ** pages,size_t maxsize,unsigned maxpages,size_t * start,iov_iter_extraction_t extraction_flags)1492 ssize_t iov_iter_get_pages(struct iov_iter *i,
1493 struct page **pages, size_t maxsize, unsigned maxpages,
1494 size_t *start, iov_iter_extraction_t extraction_flags)
1495 {
1496 if (!maxpages)
1497 return 0;
1498 BUG_ON(!pages);
1499
1500 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages,
1501 start, extraction_flags);
1502 }
1503 EXPORT_SYMBOL_GPL(iov_iter_get_pages);
1504
iov_iter_get_pages2(struct iov_iter * i,struct page ** pages,size_t maxsize,unsigned maxpages,size_t * start)1505 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1506 size_t maxsize, unsigned maxpages, size_t *start)
1507 {
1508 return iov_iter_get_pages(i, pages, maxsize, maxpages, start, 0);
1509 }
1510 EXPORT_SYMBOL(iov_iter_get_pages2);
1511
iov_iter_get_pages_alloc(struct iov_iter * i,struct page *** pages,size_t maxsize,size_t * start,iov_iter_extraction_t extraction_flags)1512 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1513 struct page ***pages, size_t maxsize,
1514 size_t *start, iov_iter_extraction_t extraction_flags)
1515 {
1516 ssize_t len;
1517
1518 *pages = NULL;
1519
1520 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start,
1521 extraction_flags);
1522 if (len <= 0) {
1523 kvfree(*pages);
1524 *pages = NULL;
1525 }
1526 return len;
1527 }
1528 EXPORT_SYMBOL_GPL(iov_iter_get_pages_alloc);
1529
iov_iter_get_pages_alloc2(struct iov_iter * i,struct page *** pages,size_t maxsize,size_t * start)1530 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1531 struct page ***pages, size_t maxsize, size_t *start)
1532 {
1533 return iov_iter_get_pages_alloc(i, pages, maxsize, start, 0);
1534 }
1535 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1536
csum_and_copy_from_iter(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)1537 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1538 struct iov_iter *i)
1539 {
1540 __wsum sum, next;
1541 sum = *csum;
1542 if (WARN_ON_ONCE(!i->data_source))
1543 return 0;
1544
1545 iterate_and_advance(i, bytes, base, len, off, ({
1546 next = csum_and_copy_from_user(base, addr + off, len);
1547 sum = csum_block_add(sum, next, off);
1548 next ? 0 : len;
1549 }), ({
1550 sum = csum_and_memcpy(addr + off, base, len, sum, off);
1551 })
1552 )
1553 *csum = sum;
1554 return bytes;
1555 }
1556 EXPORT_SYMBOL(csum_and_copy_from_iter);
1557
csum_and_copy_to_iter(const void * addr,size_t bytes,void * _csstate,struct iov_iter * i)1558 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1559 struct iov_iter *i)
1560 {
1561 struct csum_state *csstate = _csstate;
1562 __wsum sum, next;
1563
1564 if (WARN_ON_ONCE(i->data_source))
1565 return 0;
1566 if (unlikely(iov_iter_is_discard(i))) {
1567 // can't use csum_memcpy() for that one - data is not copied
1568 csstate->csum = csum_block_add(csstate->csum,
1569 csum_partial(addr, bytes, 0),
1570 csstate->off);
1571 csstate->off += bytes;
1572 return bytes;
1573 }
1574
1575 sum = csum_shift(csstate->csum, csstate->off);
1576 if (unlikely(iov_iter_is_pipe(i)))
1577 bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1578 else iterate_and_advance(i, bytes, base, len, off, ({
1579 next = csum_and_copy_to_user(addr + off, base, len);
1580 sum = csum_block_add(sum, next, off);
1581 next ? 0 : len;
1582 }), ({
1583 sum = csum_and_memcpy(base, addr + off, len, sum, off);
1584 })
1585 )
1586 csstate->csum = csum_shift(sum, csstate->off);
1587 csstate->off += bytes;
1588 return bytes;
1589 }
1590 EXPORT_SYMBOL(csum_and_copy_to_iter);
1591
hash_and_copy_to_iter(const void * addr,size_t bytes,void * hashp,struct iov_iter * i)1592 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1593 struct iov_iter *i)
1594 {
1595 #ifdef CONFIG_CRYPTO_HASH
1596 struct ahash_request *hash = hashp;
1597 struct scatterlist sg;
1598 size_t copied;
1599
1600 copied = copy_to_iter(addr, bytes, i);
1601 sg_init_one(&sg, addr, copied);
1602 ahash_request_set_crypt(hash, &sg, NULL, copied);
1603 crypto_ahash_update(hash);
1604 return copied;
1605 #else
1606 return 0;
1607 #endif
1608 }
1609 EXPORT_SYMBOL(hash_and_copy_to_iter);
1610
iov_npages(const struct iov_iter * i,int maxpages)1611 static int iov_npages(const struct iov_iter *i, int maxpages)
1612 {
1613 size_t skip = i->iov_offset, size = i->count;
1614 const struct iovec *p;
1615 int npages = 0;
1616
1617 for (p = i->iov; size; skip = 0, p++) {
1618 unsigned offs = offset_in_page(p->iov_base + skip);
1619 size_t len = min(p->iov_len - skip, size);
1620
1621 if (len) {
1622 size -= len;
1623 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1624 if (unlikely(npages > maxpages))
1625 return maxpages;
1626 }
1627 }
1628 return npages;
1629 }
1630
bvec_npages(const struct iov_iter * i,int maxpages)1631 static int bvec_npages(const struct iov_iter *i, int maxpages)
1632 {
1633 size_t skip = i->iov_offset, size = i->count;
1634 const struct bio_vec *p;
1635 int npages = 0;
1636
1637 for (p = i->bvec; size; skip = 0, p++) {
1638 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1639 size_t len = min(p->bv_len - skip, size);
1640
1641 size -= len;
1642 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1643 if (unlikely(npages > maxpages))
1644 return maxpages;
1645 }
1646 return npages;
1647 }
1648
iov_iter_npages(const struct iov_iter * i,int maxpages)1649 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1650 {
1651 if (unlikely(!i->count))
1652 return 0;
1653 if (likely(iter_is_ubuf(i))) {
1654 unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1655 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1656 return min(npages, maxpages);
1657 }
1658 /* iovec and kvec have identical layouts */
1659 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1660 return iov_npages(i, maxpages);
1661 if (iov_iter_is_bvec(i))
1662 return bvec_npages(i, maxpages);
1663 if (iov_iter_is_pipe(i)) {
1664 int npages;
1665
1666 if (!sanity(i))
1667 return 0;
1668
1669 pipe_npages(i, &npages);
1670 return min(npages, maxpages);
1671 }
1672 if (iov_iter_is_xarray(i)) {
1673 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1674 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1675 return min(npages, maxpages);
1676 }
1677 return 0;
1678 }
1679 EXPORT_SYMBOL(iov_iter_npages);
1680
dup_iter(struct iov_iter * new,struct iov_iter * old,gfp_t flags)1681 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1682 {
1683 *new = *old;
1684 if (unlikely(iov_iter_is_pipe(new))) {
1685 WARN_ON(1);
1686 return NULL;
1687 }
1688 if (iov_iter_is_bvec(new))
1689 return new->bvec = kmemdup(new->bvec,
1690 new->nr_segs * sizeof(struct bio_vec),
1691 flags);
1692 else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1693 /* iovec and kvec have identical layout */
1694 return new->iov = kmemdup(new->iov,
1695 new->nr_segs * sizeof(struct iovec),
1696 flags);
1697 return NULL;
1698 }
1699 EXPORT_SYMBOL(dup_iter);
1700
copy_compat_iovec_from_user(struct iovec * iov,const struct iovec __user * uvec,unsigned long nr_segs)1701 static int copy_compat_iovec_from_user(struct iovec *iov,
1702 const struct iovec __user *uvec, unsigned long nr_segs)
1703 {
1704 const struct compat_iovec __user *uiov =
1705 (const struct compat_iovec __user *)uvec;
1706 int ret = -EFAULT, i;
1707
1708 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1709 return -EFAULT;
1710
1711 for (i = 0; i < nr_segs; i++) {
1712 compat_uptr_t buf;
1713 compat_ssize_t len;
1714
1715 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1716 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1717
1718 /* check for compat_size_t not fitting in compat_ssize_t .. */
1719 if (len < 0) {
1720 ret = -EINVAL;
1721 goto uaccess_end;
1722 }
1723 iov[i].iov_base = compat_ptr(buf);
1724 iov[i].iov_len = len;
1725 }
1726
1727 ret = 0;
1728 uaccess_end:
1729 user_access_end();
1730 return ret;
1731 }
1732
copy_iovec_from_user(struct iovec * iov,const struct iovec __user * uvec,unsigned long nr_segs)1733 static int copy_iovec_from_user(struct iovec *iov,
1734 const struct iovec __user *uvec, unsigned long nr_segs)
1735 {
1736 unsigned long seg;
1737
1738 if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1739 return -EFAULT;
1740 for (seg = 0; seg < nr_segs; seg++) {
1741 if ((ssize_t)iov[seg].iov_len < 0)
1742 return -EINVAL;
1743 }
1744
1745 return 0;
1746 }
1747
iovec_from_user(const struct iovec __user * uvec,unsigned long nr_segs,unsigned long fast_segs,struct iovec * fast_iov,bool compat)1748 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1749 unsigned long nr_segs, unsigned long fast_segs,
1750 struct iovec *fast_iov, bool compat)
1751 {
1752 struct iovec *iov = fast_iov;
1753 int ret;
1754
1755 /*
1756 * SuS says "The readv() function *may* fail if the iovcnt argument was
1757 * less than or equal to 0, or greater than {IOV_MAX}. Linux has
1758 * traditionally returned zero for zero segments, so...
1759 */
1760 if (nr_segs == 0)
1761 return iov;
1762 if (nr_segs > UIO_MAXIOV)
1763 return ERR_PTR(-EINVAL);
1764 if (nr_segs > fast_segs) {
1765 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1766 if (!iov)
1767 return ERR_PTR(-ENOMEM);
1768 }
1769
1770 if (compat)
1771 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1772 else
1773 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1774 if (ret) {
1775 if (iov != fast_iov)
1776 kfree(iov);
1777 return ERR_PTR(ret);
1778 }
1779
1780 return iov;
1781 }
1782
__import_iovec(int type,const struct iovec __user * uvec,unsigned nr_segs,unsigned fast_segs,struct iovec ** iovp,struct iov_iter * i,bool compat)1783 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1784 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1785 struct iov_iter *i, bool compat)
1786 {
1787 ssize_t total_len = 0;
1788 unsigned long seg;
1789 struct iovec *iov;
1790
1791 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1792 if (IS_ERR(iov)) {
1793 *iovp = NULL;
1794 return PTR_ERR(iov);
1795 }
1796
1797 /*
1798 * According to the Single Unix Specification we should return EINVAL if
1799 * an element length is < 0 when cast to ssize_t or if the total length
1800 * would overflow the ssize_t return value of the system call.
1801 *
1802 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1803 * overflow case.
1804 */
1805 for (seg = 0; seg < nr_segs; seg++) {
1806 ssize_t len = (ssize_t)iov[seg].iov_len;
1807
1808 if (!access_ok(iov[seg].iov_base, len)) {
1809 if (iov != *iovp)
1810 kfree(iov);
1811 *iovp = NULL;
1812 return -EFAULT;
1813 }
1814
1815 if (len > MAX_RW_COUNT - total_len) {
1816 len = MAX_RW_COUNT - total_len;
1817 iov[seg].iov_len = len;
1818 }
1819 total_len += len;
1820 }
1821
1822 iov_iter_init(i, type, iov, nr_segs, total_len);
1823 if (iov == *iovp)
1824 *iovp = NULL;
1825 else
1826 *iovp = iov;
1827 return total_len;
1828 }
1829
1830 /**
1831 * import_iovec() - Copy an array of &struct iovec from userspace
1832 * into the kernel, check that it is valid, and initialize a new
1833 * &struct iov_iter iterator to access it.
1834 *
1835 * @type: One of %READ or %WRITE.
1836 * @uvec: Pointer to the userspace array.
1837 * @nr_segs: Number of elements in userspace array.
1838 * @fast_segs: Number of elements in @iov.
1839 * @iovp: (input and output parameter) Pointer to pointer to (usually small
1840 * on-stack) kernel array.
1841 * @i: Pointer to iterator that will be initialized on success.
1842 *
1843 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1844 * then this function places %NULL in *@iov on return. Otherwise, a new
1845 * array will be allocated and the result placed in *@iov. This means that
1846 * the caller may call kfree() on *@iov regardless of whether the small
1847 * on-stack array was used or not (and regardless of whether this function
1848 * returns an error or not).
1849 *
1850 * Return: Negative error code on error, bytes imported on success
1851 */
import_iovec(int type,const struct iovec __user * uvec,unsigned nr_segs,unsigned fast_segs,struct iovec ** iovp,struct iov_iter * i)1852 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1853 unsigned nr_segs, unsigned fast_segs,
1854 struct iovec **iovp, struct iov_iter *i)
1855 {
1856 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1857 in_compat_syscall());
1858 }
1859 EXPORT_SYMBOL(import_iovec);
1860
import_single_range(int rw,void __user * buf,size_t len,struct iovec * iov,struct iov_iter * i)1861 int import_single_range(int rw, void __user *buf, size_t len,
1862 struct iovec *iov, struct iov_iter *i)
1863 {
1864 if (len > MAX_RW_COUNT)
1865 len = MAX_RW_COUNT;
1866 if (unlikely(!access_ok(buf, len)))
1867 return -EFAULT;
1868
1869 iov->iov_base = buf;
1870 iov->iov_len = len;
1871 iov_iter_init(i, rw, iov, 1, len);
1872 return 0;
1873 }
1874 EXPORT_SYMBOL(import_single_range);
1875
import_ubuf(int rw,void __user * buf,size_t len,struct iov_iter * i)1876 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1877 {
1878 if (len > MAX_RW_COUNT)
1879 len = MAX_RW_COUNT;
1880 if (unlikely(!access_ok(buf, len)))
1881 return -EFAULT;
1882
1883 iov_iter_ubuf(i, rw, buf, len);
1884 return 0;
1885 }
1886
1887 /**
1888 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1889 * iov_iter_save_state() was called.
1890 *
1891 * @i: &struct iov_iter to restore
1892 * @state: state to restore from
1893 *
1894 * Used after iov_iter_save_state() to bring restore @i, if operations may
1895 * have advanced it.
1896 *
1897 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1898 */
iov_iter_restore(struct iov_iter * i,struct iov_iter_state * state)1899 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1900 {
1901 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1902 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1903 return;
1904 i->iov_offset = state->iov_offset;
1905 i->count = state->count;
1906 if (iter_is_ubuf(i))
1907 return;
1908 /*
1909 * For the *vec iters, nr_segs + iov is constant - if we increment
1910 * the vec, then we also decrement the nr_segs count. Hence we don't
1911 * need to track both of these, just one is enough and we can deduct
1912 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1913 * size, so we can just increment the iov pointer as they are unionzed.
1914 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1915 * not. Be safe and handle it separately.
1916 */
1917 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1918 if (iov_iter_is_bvec(i))
1919 i->bvec -= state->nr_segs - i->nr_segs;
1920 else
1921 i->iov -= state->nr_segs - i->nr_segs;
1922 i->nr_segs = state->nr_segs;
1923 }
1924
1925 /*
1926 * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not
1927 * get references on the pages, nor does it get a pin on them.
1928 */
iov_iter_extract_xarray_pages(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned int maxpages,iov_iter_extraction_t extraction_flags,size_t * offset0)1929 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1930 struct page ***pages, size_t maxsize,
1931 unsigned int maxpages,
1932 iov_iter_extraction_t extraction_flags,
1933 size_t *offset0)
1934 {
1935 struct page *page, **p;
1936 unsigned int nr = 0, offset;
1937 loff_t pos = i->xarray_start + i->iov_offset;
1938 pgoff_t index = pos >> PAGE_SHIFT;
1939 XA_STATE(xas, i->xarray, index);
1940
1941 offset = pos & ~PAGE_MASK;
1942 *offset0 = offset;
1943
1944 maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1945 if (!maxpages)
1946 return -ENOMEM;
1947 p = *pages;
1948
1949 rcu_read_lock();
1950 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1951 if (xas_retry(&xas, page))
1952 continue;
1953
1954 /* Has the page moved or been split? */
1955 if (unlikely(page != xas_reload(&xas))) {
1956 xas_reset(&xas);
1957 continue;
1958 }
1959
1960 p[nr++] = find_subpage(page, xas.xa_index);
1961 if (nr == maxpages)
1962 break;
1963 }
1964 rcu_read_unlock();
1965
1966 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1967 iov_iter_advance(i, maxsize);
1968 return maxsize;
1969 }
1970
1971 /*
1972 * Extract a list of contiguous pages from an ITER_BVEC iterator. This does
1973 * not get references on the pages, nor does it get a pin on them.
1974 */
iov_iter_extract_bvec_pages(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned int maxpages,iov_iter_extraction_t extraction_flags,size_t * offset0)1975 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1976 struct page ***pages, size_t maxsize,
1977 unsigned int maxpages,
1978 iov_iter_extraction_t extraction_flags,
1979 size_t *offset0)
1980 {
1981 struct page **p, *page;
1982 size_t skip = i->iov_offset, offset;
1983 int k;
1984
1985 for (;;) {
1986 if (i->nr_segs == 0)
1987 return 0;
1988 maxsize = min(maxsize, i->bvec->bv_len - skip);
1989 if (maxsize)
1990 break;
1991 i->iov_offset = 0;
1992 i->nr_segs--;
1993 i->bvec++;
1994 skip = 0;
1995 }
1996
1997 skip += i->bvec->bv_offset;
1998 page = i->bvec->bv_page + skip / PAGE_SIZE;
1999 offset = skip % PAGE_SIZE;
2000 *offset0 = offset;
2001
2002 maxpages = want_pages_array(pages, maxsize, offset, maxpages);
2003 if (!maxpages)
2004 return -ENOMEM;
2005 p = *pages;
2006 for (k = 0; k < maxpages; k++)
2007 p[k] = page + k;
2008
2009 maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
2010 iov_iter_advance(i, maxsize);
2011 return maxsize;
2012 }
2013
2014 /*
2015 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
2016 * This does not get references on the pages, nor does it get a pin on them.
2017 */
iov_iter_extract_kvec_pages(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned int maxpages,iov_iter_extraction_t extraction_flags,size_t * offset0)2018 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
2019 struct page ***pages, size_t maxsize,
2020 unsigned int maxpages,
2021 iov_iter_extraction_t extraction_flags,
2022 size_t *offset0)
2023 {
2024 struct page **p, *page;
2025 const void *kaddr;
2026 size_t skip = i->iov_offset, offset, len;
2027 int k;
2028
2029 for (;;) {
2030 if (i->nr_segs == 0)
2031 return 0;
2032 maxsize = min(maxsize, i->kvec->iov_len - skip);
2033 if (maxsize)
2034 break;
2035 i->iov_offset = 0;
2036 i->nr_segs--;
2037 i->kvec++;
2038 skip = 0;
2039 }
2040
2041 kaddr = i->kvec->iov_base + skip;
2042 offset = (unsigned long)kaddr & ~PAGE_MASK;
2043 *offset0 = offset;
2044
2045 maxpages = want_pages_array(pages, maxsize, offset, maxpages);
2046 if (!maxpages)
2047 return -ENOMEM;
2048 p = *pages;
2049
2050 kaddr -= offset;
2051 len = offset + maxsize;
2052 for (k = 0; k < maxpages; k++) {
2053 size_t seg = min_t(size_t, len, PAGE_SIZE);
2054
2055 if (is_vmalloc_or_module_addr(kaddr))
2056 page = vmalloc_to_page(kaddr);
2057 else
2058 page = virt_to_page(kaddr);
2059
2060 p[k] = page;
2061 len -= seg;
2062 kaddr += PAGE_SIZE;
2063 }
2064
2065 maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
2066 iov_iter_advance(i, maxsize);
2067 return maxsize;
2068 }
2069
2070 /*
2071 * Extract a list of contiguous pages from a user iterator and get a pin on
2072 * each of them. This should only be used if the iterator is user-backed
2073 * (IOBUF/UBUF).
2074 *
2075 * It does not get refs on the pages, but the pages must be unpinned by the
2076 * caller once the transfer is complete.
2077 *
2078 * This is safe to be used where background IO/DMA *is* going to be modifying
2079 * the buffer; using a pin rather than a ref makes forces fork() to give the
2080 * child a copy of the page.
2081 */
iov_iter_extract_user_pages(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned int maxpages,iov_iter_extraction_t extraction_flags,size_t * offset0)2082 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
2083 struct page ***pages,
2084 size_t maxsize,
2085 unsigned int maxpages,
2086 iov_iter_extraction_t extraction_flags,
2087 size_t *offset0)
2088 {
2089 unsigned long addr;
2090 unsigned int gup_flags = 0;
2091 size_t offset;
2092 int res;
2093
2094 if (i->data_source == ITER_DEST)
2095 gup_flags |= FOLL_WRITE;
2096 if (extraction_flags & ITER_ALLOW_P2PDMA)
2097 gup_flags |= FOLL_PCI_P2PDMA;
2098 if (i->nofault)
2099 gup_flags |= FOLL_NOFAULT;
2100
2101 addr = first_iovec_segment(i, &maxsize);
2102 *offset0 = offset = addr % PAGE_SIZE;
2103 addr &= PAGE_MASK;
2104 maxpages = want_pages_array(pages, maxsize, offset, maxpages);
2105 if (!maxpages)
2106 return -ENOMEM;
2107 res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
2108 if (unlikely(res <= 0))
2109 return res;
2110 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
2111 iov_iter_advance(i, maxsize);
2112 return maxsize;
2113 }
2114
2115 /**
2116 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
2117 * @i: The iterator to extract from
2118 * @pages: Where to return the list of pages
2119 * @maxsize: The maximum amount of iterator to extract
2120 * @maxpages: The maximum size of the list of pages
2121 * @extraction_flags: Flags to qualify request
2122 * @offset0: Where to return the starting offset into (*@pages)[0]
2123 *
2124 * Extract a list of contiguous pages from the current point of the iterator,
2125 * advancing the iterator. The maximum number of pages and the maximum amount
2126 * of page contents can be set.
2127 *
2128 * If *@pages is NULL, a page list will be allocated to the required size and
2129 * *@pages will be set to its base. If *@pages is not NULL, it will be assumed
2130 * that the caller allocated a page list at least @maxpages in size and this
2131 * will be filled in.
2132 *
2133 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
2134 * be allowed on the pages extracted.
2135 *
2136 * The iov_iter_extract_will_pin() function can be used to query how cleanup
2137 * should be performed.
2138 *
2139 * Extra refs or pins on the pages may be obtained as follows:
2140 *
2141 * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
2142 * added to the pages, but refs will not be taken.
2143 * iov_iter_extract_will_pin() will return true.
2144 *
2145 * (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
2146 * merely listed; no extra refs or pins are obtained.
2147 * iov_iter_extract_will_pin() will return 0.
2148 *
2149 * Note also:
2150 *
2151 * (*) Use with ITER_DISCARD is not supported as that has no content.
2152 *
2153 * On success, the function sets *@pages to the new pagelist, if allocated, and
2154 * sets *offset0 to the offset into the first page.
2155 *
2156 * It may also return -ENOMEM and -EFAULT.
2157 */
iov_iter_extract_pages(struct iov_iter * i,struct page *** pages,size_t maxsize,unsigned int maxpages,iov_iter_extraction_t extraction_flags,size_t * offset0)2158 ssize_t iov_iter_extract_pages(struct iov_iter *i,
2159 struct page ***pages,
2160 size_t maxsize,
2161 unsigned int maxpages,
2162 iov_iter_extraction_t extraction_flags,
2163 size_t *offset0)
2164 {
2165 maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
2166 if (!maxsize)
2167 return 0;
2168
2169 if (likely(user_backed_iter(i)))
2170 return iov_iter_extract_user_pages(i, pages, maxsize,
2171 maxpages, extraction_flags,
2172 offset0);
2173 if (iov_iter_is_kvec(i))
2174 return iov_iter_extract_kvec_pages(i, pages, maxsize,
2175 maxpages, extraction_flags,
2176 offset0);
2177 if (iov_iter_is_bvec(i))
2178 return iov_iter_extract_bvec_pages(i, pages, maxsize,
2179 maxpages, extraction_flags,
2180 offset0);
2181 if (iov_iter_is_xarray(i))
2182 return iov_iter_extract_xarray_pages(i, pages, maxsize,
2183 maxpages, extraction_flags,
2184 offset0);
2185 return -EFAULT;
2186 }
2187 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
2188