1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (C) 2012-2014, 2018-2022 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2015-2017 Intel Deutschland GmbH
6 */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12
iwl_mvm_check_pn(struct iwl_mvm * mvm,struct sk_buff * skb,int queue,struct ieee80211_sta * sta)13 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
14 int queue, struct ieee80211_sta *sta)
15 {
16 struct iwl_mvm_sta *mvmsta;
17 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
18 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
19 struct iwl_mvm_key_pn *ptk_pn;
20 int res;
21 u8 tid, keyidx;
22 u8 pn[IEEE80211_CCMP_PN_LEN];
23 u8 *extiv;
24
25 /* do PN checking */
26
27 /* multicast and non-data only arrives on default queue */
28 if (!ieee80211_is_data(hdr->frame_control) ||
29 is_multicast_ether_addr(hdr->addr1))
30 return 0;
31
32 /* do not check PN for open AP */
33 if (!(stats->flag & RX_FLAG_DECRYPTED))
34 return 0;
35
36 /*
37 * avoid checking for default queue - we don't want to replicate
38 * all the logic that's necessary for checking the PN on fragmented
39 * frames, leave that to mac80211
40 */
41 if (queue == 0)
42 return 0;
43
44 /* if we are here - this for sure is either CCMP or GCMP */
45 if (IS_ERR_OR_NULL(sta)) {
46 IWL_DEBUG_DROP(mvm,
47 "expected hw-decrypted unicast frame for station\n");
48 return -1;
49 }
50
51 mvmsta = iwl_mvm_sta_from_mac80211(sta);
52
53 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
54 keyidx = extiv[3] >> 6;
55
56 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
57 if (!ptk_pn)
58 return -1;
59
60 if (ieee80211_is_data_qos(hdr->frame_control))
61 tid = ieee80211_get_tid(hdr);
62 else
63 tid = 0;
64
65 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
66 if (tid >= IWL_MAX_TID_COUNT)
67 return -1;
68
69 /* load pn */
70 pn[0] = extiv[7];
71 pn[1] = extiv[6];
72 pn[2] = extiv[5];
73 pn[3] = extiv[4];
74 pn[4] = extiv[1];
75 pn[5] = extiv[0];
76
77 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
78 if (res < 0)
79 return -1;
80 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
81 return -1;
82
83 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
84 stats->flag |= RX_FLAG_PN_VALIDATED;
85
86 return 0;
87 }
88
89 /* iwl_mvm_create_skb Adds the rxb to a new skb */
iwl_mvm_create_skb(struct iwl_mvm * mvm,struct sk_buff * skb,struct ieee80211_hdr * hdr,u16 len,u8 crypt_len,struct iwl_rx_cmd_buffer * rxb)90 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
91 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
92 struct iwl_rx_cmd_buffer *rxb)
93 {
94 struct iwl_rx_packet *pkt = rxb_addr(rxb);
95 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
96 unsigned int headlen, fraglen, pad_len = 0;
97 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
98 u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
99 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
100
101 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
102 len -= 2;
103 pad_len = 2;
104 }
105
106 /*
107 * For non monitor interface strip the bytes the RADA might not have
108 * removed. As monitor interface cannot exist with other interfaces
109 * this removal is safe.
110 */
111 if (mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) {
112 u32 pkt_flags = le32_to_cpu(pkt->len_n_flags);
113
114 /*
115 * If RADA was not enabled then decryption was not performed so
116 * the MIC cannot be removed.
117 */
118 if (!(pkt_flags & FH_RSCSR_RADA_EN)) {
119 if (WARN_ON(crypt_len > mic_crc_len))
120 return -EINVAL;
121
122 mic_crc_len -= crypt_len;
123 }
124
125 if (WARN_ON(mic_crc_len > len))
126 return -EINVAL;
127
128 len -= mic_crc_len;
129 }
130
131 /* If frame is small enough to fit in skb->head, pull it completely.
132 * If not, only pull ieee80211_hdr (including crypto if present, and
133 * an additional 8 bytes for SNAP/ethertype, see below) so that
134 * splice() or TCP coalesce are more efficient.
135 *
136 * Since, in addition, ieee80211_data_to_8023() always pull in at
137 * least 8 bytes (possibly more for mesh) we can do the same here
138 * to save the cost of doing it later. That still doesn't pull in
139 * the actual IP header since the typical case has a SNAP header.
140 * If the latter changes (there are efforts in the standards group
141 * to do so) we should revisit this and ieee80211_data_to_8023().
142 */
143 headlen = (len <= skb_tailroom(skb)) ? len :
144 hdrlen + crypt_len + 8;
145
146 /* The firmware may align the packet to DWORD.
147 * The padding is inserted after the IV.
148 * After copying the header + IV skip the padding if
149 * present before copying packet data.
150 */
151 hdrlen += crypt_len;
152
153 if (unlikely(headlen < hdrlen))
154 return -EINVAL;
155
156 /* Since data doesn't move data while putting data on skb and that is
157 * the only way we use, data + len is the next place that hdr would be put
158 */
159 skb_set_mac_header(skb, skb->len);
160 skb_put_data(skb, hdr, hdrlen);
161 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
162
163 /*
164 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
165 * certain cases and starts the checksum after the SNAP. Check if
166 * this is the case - it's easier to just bail out to CHECKSUM_NONE
167 * in the cases the hardware didn't handle, since it's rare to see
168 * such packets, even though the hardware did calculate the checksum
169 * in this case, just starting after the MAC header instead.
170 *
171 * Starting from Bz hardware, it calculates starting directly after
172 * the MAC header, so that matches mac80211's expectation.
173 */
174 if (skb->ip_summed == CHECKSUM_COMPLETE &&
175 mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) {
176 struct {
177 u8 hdr[6];
178 __be16 type;
179 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
180
181 if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
182 !ether_addr_equal(shdr->hdr, rfc1042_header) ||
183 (shdr->type != htons(ETH_P_IP) &&
184 shdr->type != htons(ETH_P_ARP) &&
185 shdr->type != htons(ETH_P_IPV6) &&
186 shdr->type != htons(ETH_P_8021Q) &&
187 shdr->type != htons(ETH_P_PAE) &&
188 shdr->type != htons(ETH_P_TDLS))))
189 skb->ip_summed = CHECKSUM_NONE;
190 else
191 /* mac80211 assumes full CSUM including SNAP header */
192 skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
193 }
194
195 fraglen = len - headlen;
196
197 if (fraglen) {
198 int offset = (u8 *)hdr + headlen + pad_len -
199 (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
200
201 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
202 fraglen, rxb->truesize);
203 }
204
205 return 0;
206 }
207
iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm * mvm,struct sk_buff * skb)208 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
209 struct sk_buff *skb)
210 {
211 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
212 struct ieee80211_vendor_radiotap *radiotap;
213 const int size = sizeof(*radiotap) + sizeof(__le16);
214
215 if (!mvm->cur_aid)
216 return;
217
218 /* ensure alignment */
219 BUILD_BUG_ON((size + 2) % 4);
220
221 radiotap = skb_put(skb, size + 2);
222 radiotap->align = 1;
223 /* Intel OUI */
224 radiotap->oui[0] = 0xf6;
225 radiotap->oui[1] = 0x54;
226 radiotap->oui[2] = 0x25;
227 /* radiotap sniffer config sub-namespace */
228 radiotap->subns = 1;
229 radiotap->present = 0x1;
230 radiotap->len = size - sizeof(*radiotap);
231 radiotap->pad = 2;
232
233 /* fill the data now */
234 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
235 /* and clear the padding */
236 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
237
238 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
239 }
240
241 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm * mvm,struct napi_struct * napi,struct sk_buff * skb,int queue,struct ieee80211_sta * sta)242 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
243 struct napi_struct *napi,
244 struct sk_buff *skb, int queue,
245 struct ieee80211_sta *sta)
246 {
247 if (iwl_mvm_check_pn(mvm, skb, queue, sta))
248 kfree_skb(skb);
249 else
250 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
251 }
252
iwl_mvm_get_signal_strength(struct iwl_mvm * mvm,struct ieee80211_rx_status * rx_status,u32 rate_n_flags,int energy_a,int energy_b)253 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
254 struct ieee80211_rx_status *rx_status,
255 u32 rate_n_flags, int energy_a,
256 int energy_b)
257 {
258 int max_energy;
259 u32 rate_flags = rate_n_flags;
260
261 energy_a = energy_a ? -energy_a : S8_MIN;
262 energy_b = energy_b ? -energy_b : S8_MIN;
263 max_energy = max(energy_a, energy_b);
264
265 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
266 energy_a, energy_b, max_energy);
267
268 rx_status->signal = max_energy;
269 rx_status->chains =
270 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
271 rx_status->chain_signal[0] = energy_a;
272 rx_status->chain_signal[1] = energy_b;
273 }
274
iwl_mvm_rx_mgmt_prot(struct ieee80211_sta * sta,struct ieee80211_hdr * hdr,struct iwl_rx_mpdu_desc * desc,u32 status)275 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
276 struct ieee80211_hdr *hdr,
277 struct iwl_rx_mpdu_desc *desc,
278 u32 status)
279 {
280 struct iwl_mvm_sta *mvmsta;
281 struct iwl_mvm_vif *mvmvif;
282 u8 keyid;
283 struct ieee80211_key_conf *key;
284 u32 len = le16_to_cpu(desc->mpdu_len);
285 const u8 *frame = (void *)hdr;
286
287 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
288 return 0;
289
290 /*
291 * For non-beacon, we don't really care. But beacons may
292 * be filtered out, and we thus need the firmware's replay
293 * detection, otherwise beacons the firmware previously
294 * filtered could be replayed, or something like that, and
295 * it can filter a lot - though usually only if nothing has
296 * changed.
297 */
298 if (!ieee80211_is_beacon(hdr->frame_control))
299 return 0;
300
301 /* key mismatch - will also report !MIC_OK but we shouldn't count it */
302 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
303 return -1;
304
305 /* good cases */
306 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
307 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)))
308 return 0;
309
310 if (!sta)
311 return -1;
312
313 mvmsta = iwl_mvm_sta_from_mac80211(sta);
314
315 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
316
317 /*
318 * both keys will have the same cipher and MIC length, use
319 * whichever one is available
320 */
321 key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
322 if (!key) {
323 key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
324 if (!key)
325 return -1;
326 }
327
328 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
329 return -1;
330
331 /* get the real key ID */
332 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
333 /* and if that's the other key, look it up */
334 if (keyid != key->keyidx) {
335 /*
336 * shouldn't happen since firmware checked, but be safe
337 * in case the MIC length is wrong too, for example
338 */
339 if (keyid != 6 && keyid != 7)
340 return -1;
341 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
342 if (!key)
343 return -1;
344 }
345
346 /* Report status to mac80211 */
347 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
348 ieee80211_key_mic_failure(key);
349 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
350 ieee80211_key_replay(key);
351
352 return -1;
353 }
354
iwl_mvm_rx_crypto(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct ieee80211_hdr * hdr,struct ieee80211_rx_status * stats,u16 phy_info,struct iwl_rx_mpdu_desc * desc,u32 pkt_flags,int queue,u8 * crypt_len)355 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
356 struct ieee80211_hdr *hdr,
357 struct ieee80211_rx_status *stats, u16 phy_info,
358 struct iwl_rx_mpdu_desc *desc,
359 u32 pkt_flags, int queue, u8 *crypt_len)
360 {
361 u32 status = le32_to_cpu(desc->status);
362
363 /*
364 * Drop UNKNOWN frames in aggregation, unless in monitor mode
365 * (where we don't have the keys).
366 * We limit this to aggregation because in TKIP this is a valid
367 * scenario, since we may not have the (correct) TTAK (phase 1
368 * key) in the firmware.
369 */
370 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
371 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
372 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
373 return -1;
374
375 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
376 !ieee80211_has_protected(hdr->frame_control)))
377 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status);
378
379 if (!ieee80211_has_protected(hdr->frame_control) ||
380 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
381 IWL_RX_MPDU_STATUS_SEC_NONE)
382 return 0;
383
384 /* TODO: handle packets encrypted with unknown alg */
385
386 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
387 case IWL_RX_MPDU_STATUS_SEC_CCM:
388 case IWL_RX_MPDU_STATUS_SEC_GCM:
389 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
390 /* alg is CCM: check MIC only */
391 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
392 return -1;
393
394 stats->flag |= RX_FLAG_DECRYPTED;
395 if (pkt_flags & FH_RSCSR_RADA_EN)
396 stats->flag |= RX_FLAG_MIC_STRIPPED;
397 *crypt_len = IEEE80211_CCMP_HDR_LEN;
398 return 0;
399 case IWL_RX_MPDU_STATUS_SEC_TKIP:
400 /* Don't drop the frame and decrypt it in SW */
401 if (!fw_has_api(&mvm->fw->ucode_capa,
402 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
403 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
404 return 0;
405
406 if (mvm->trans->trans_cfg->gen2 &&
407 !(status & RX_MPDU_RES_STATUS_MIC_OK))
408 stats->flag |= RX_FLAG_MMIC_ERROR;
409
410 *crypt_len = IEEE80211_TKIP_IV_LEN;
411 fallthrough;
412 case IWL_RX_MPDU_STATUS_SEC_WEP:
413 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
414 return -1;
415
416 stats->flag |= RX_FLAG_DECRYPTED;
417 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
418 IWL_RX_MPDU_STATUS_SEC_WEP)
419 *crypt_len = IEEE80211_WEP_IV_LEN;
420
421 if (pkt_flags & FH_RSCSR_RADA_EN) {
422 stats->flag |= RX_FLAG_ICV_STRIPPED;
423 if (mvm->trans->trans_cfg->gen2)
424 stats->flag |= RX_FLAG_MMIC_STRIPPED;
425 }
426
427 return 0;
428 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
429 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
430 return -1;
431 stats->flag |= RX_FLAG_DECRYPTED;
432 return 0;
433 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
434 break;
435 default:
436 /*
437 * Sometimes we can get frames that were not decrypted
438 * because the firmware didn't have the keys yet. This can
439 * happen after connection where we can get multicast frames
440 * before the GTK is installed.
441 * Silently drop those frames.
442 * Also drop un-decrypted frames in monitor mode.
443 */
444 if (!is_multicast_ether_addr(hdr->addr1) &&
445 !mvm->monitor_on && net_ratelimit())
446 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
447 }
448
449 return 0;
450 }
451
iwl_mvm_rx_csum(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_packet * pkt)452 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
453 struct ieee80211_sta *sta,
454 struct sk_buff *skb,
455 struct iwl_rx_packet *pkt)
456 {
457 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
458
459 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
460 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
461 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
462
463 skb->ip_summed = CHECKSUM_COMPLETE;
464 skb->csum = csum_unfold(~(__force __sum16)hwsum);
465 }
466 } else {
467 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
468 struct iwl_mvm_vif *mvmvif;
469 u16 flags = le16_to_cpu(desc->l3l4_flags);
470 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
471 IWL_RX_L3_PROTO_POS);
472
473 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
474
475 if (mvmvif->features & NETIF_F_RXCSUM &&
476 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
477 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
478 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
479 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
480 skb->ip_summed = CHECKSUM_UNNECESSARY;
481 }
482 }
483
484 /*
485 * returns true if a packet is a duplicate and should be dropped.
486 * Updates AMSDU PN tracking info
487 */
iwl_mvm_is_dup(struct ieee80211_sta * sta,int queue,struct ieee80211_rx_status * rx_status,struct ieee80211_hdr * hdr,struct iwl_rx_mpdu_desc * desc)488 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
489 struct ieee80211_rx_status *rx_status,
490 struct ieee80211_hdr *hdr,
491 struct iwl_rx_mpdu_desc *desc)
492 {
493 struct iwl_mvm_sta *mvm_sta;
494 struct iwl_mvm_rxq_dup_data *dup_data;
495 u8 tid, sub_frame_idx;
496
497 if (WARN_ON(IS_ERR_OR_NULL(sta)))
498 return false;
499
500 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
501 dup_data = &mvm_sta->dup_data[queue];
502
503 /*
504 * Drop duplicate 802.11 retransmissions
505 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
506 */
507 if (ieee80211_is_ctl(hdr->frame_control) ||
508 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
509 is_multicast_ether_addr(hdr->addr1)) {
510 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
511 return false;
512 }
513
514 if (ieee80211_is_data_qos(hdr->frame_control))
515 /* frame has qos control */
516 tid = ieee80211_get_tid(hdr);
517 else
518 tid = IWL_MAX_TID_COUNT;
519
520 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
521 sub_frame_idx = desc->amsdu_info &
522 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
523
524 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
525 dup_data->last_seq[tid] == hdr->seq_ctrl &&
526 dup_data->last_sub_frame[tid] >= sub_frame_idx))
527 return true;
528
529 /* Allow same PN as the first subframe for following sub frames */
530 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
531 sub_frame_idx > dup_data->last_sub_frame[tid] &&
532 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
533 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
534
535 dup_data->last_seq[tid] = hdr->seq_ctrl;
536 dup_data->last_sub_frame[tid] = sub_frame_idx;
537
538 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
539
540 return false;
541 }
542
543 /*
544 * Returns true if sn2 - buffer_size < sn1 < sn2.
545 * To be used only in order to compare reorder buffer head with NSSN.
546 * We fully trust NSSN unless it is behind us due to reorder timeout.
547 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
548 */
iwl_mvm_is_sn_less(u16 sn1,u16 sn2,u16 buffer_size)549 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
550 {
551 return ieee80211_sn_less(sn1, sn2) &&
552 !ieee80211_sn_less(sn1, sn2 - buffer_size);
553 }
554
iwl_mvm_sync_nssn(struct iwl_mvm * mvm,u8 baid,u16 nssn)555 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
556 {
557 if (IWL_MVM_USE_NSSN_SYNC) {
558 struct iwl_mvm_nssn_sync_data notif = {
559 .baid = baid,
560 .nssn = nssn,
561 };
562
563 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
564 ¬if, sizeof(notif));
565 }
566 }
567
568 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
569
570 enum iwl_mvm_release_flags {
571 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
572 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
573 };
574
iwl_mvm_release_frames(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct napi_struct * napi,struct iwl_mvm_baid_data * baid_data,struct iwl_mvm_reorder_buffer * reorder_buf,u16 nssn,u32 flags)575 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
576 struct ieee80211_sta *sta,
577 struct napi_struct *napi,
578 struct iwl_mvm_baid_data *baid_data,
579 struct iwl_mvm_reorder_buffer *reorder_buf,
580 u16 nssn, u32 flags)
581 {
582 struct iwl_mvm_reorder_buf_entry *entries =
583 &baid_data->entries[reorder_buf->queue *
584 baid_data->entries_per_queue];
585 u16 ssn = reorder_buf->head_sn;
586
587 lockdep_assert_held(&reorder_buf->lock);
588
589 /*
590 * We keep the NSSN not too far behind, if we are sync'ing it and it
591 * is more than 2048 ahead of us, it must be behind us. Discard it.
592 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
593 * behind and this queue already processed packets. The next if
594 * would have caught cases where this queue would have processed less
595 * than 64 packets, but it may have processed more than 64 packets.
596 */
597 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
598 ieee80211_sn_less(nssn, ssn))
599 goto set_timer;
600
601 /* ignore nssn smaller than head sn - this can happen due to timeout */
602 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
603 goto set_timer;
604
605 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
606 int index = ssn % reorder_buf->buf_size;
607 struct sk_buff_head *skb_list = &entries[index].e.frames;
608 struct sk_buff *skb;
609
610 ssn = ieee80211_sn_inc(ssn);
611 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
612 (ssn == 2048 || ssn == 0))
613 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
614
615 /*
616 * Empty the list. Will have more than one frame for A-MSDU.
617 * Empty list is valid as well since nssn indicates frames were
618 * received.
619 */
620 while ((skb = __skb_dequeue(skb_list))) {
621 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
622 reorder_buf->queue,
623 sta);
624 reorder_buf->num_stored--;
625 }
626 }
627 reorder_buf->head_sn = nssn;
628
629 set_timer:
630 if (reorder_buf->num_stored && !reorder_buf->removed) {
631 u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
632
633 while (skb_queue_empty(&entries[index].e.frames))
634 index = (index + 1) % reorder_buf->buf_size;
635 /* modify timer to match next frame's expiration time */
636 mod_timer(&reorder_buf->reorder_timer,
637 entries[index].e.reorder_time + 1 +
638 RX_REORDER_BUF_TIMEOUT_MQ);
639 } else {
640 del_timer(&reorder_buf->reorder_timer);
641 }
642 }
643
iwl_mvm_reorder_timer_expired(struct timer_list * t)644 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
645 {
646 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
647 struct iwl_mvm_baid_data *baid_data =
648 iwl_mvm_baid_data_from_reorder_buf(buf);
649 struct iwl_mvm_reorder_buf_entry *entries =
650 &baid_data->entries[buf->queue * baid_data->entries_per_queue];
651 int i;
652 u16 sn = 0, index = 0;
653 bool expired = false;
654 bool cont = false;
655
656 spin_lock(&buf->lock);
657
658 if (!buf->num_stored || buf->removed) {
659 spin_unlock(&buf->lock);
660 return;
661 }
662
663 for (i = 0; i < buf->buf_size ; i++) {
664 index = (buf->head_sn + i) % buf->buf_size;
665
666 if (skb_queue_empty(&entries[index].e.frames)) {
667 /*
668 * If there is a hole and the next frame didn't expire
669 * we want to break and not advance SN
670 */
671 cont = false;
672 continue;
673 }
674 if (!cont &&
675 !time_after(jiffies, entries[index].e.reorder_time +
676 RX_REORDER_BUF_TIMEOUT_MQ))
677 break;
678
679 expired = true;
680 /* continue until next hole after this expired frames */
681 cont = true;
682 sn = ieee80211_sn_add(buf->head_sn, i + 1);
683 }
684
685 if (expired) {
686 struct ieee80211_sta *sta;
687 struct iwl_mvm_sta *mvmsta;
688 u8 sta_id = baid_data->sta_id;
689
690 rcu_read_lock();
691 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
692 mvmsta = iwl_mvm_sta_from_mac80211(sta);
693
694 /* SN is set to the last expired frame + 1 */
695 IWL_DEBUG_HT(buf->mvm,
696 "Releasing expired frames for sta %u, sn %d\n",
697 sta_id, sn);
698 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
699 sta, baid_data->tid);
700 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
701 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
702 rcu_read_unlock();
703 } else {
704 /*
705 * If no frame expired and there are stored frames, index is now
706 * pointing to the first unexpired frame - modify timer
707 * accordingly to this frame.
708 */
709 mod_timer(&buf->reorder_timer,
710 entries[index].e.reorder_time +
711 1 + RX_REORDER_BUF_TIMEOUT_MQ);
712 }
713 spin_unlock(&buf->lock);
714 }
715
iwl_mvm_del_ba(struct iwl_mvm * mvm,int queue,struct iwl_mvm_delba_data * data)716 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
717 struct iwl_mvm_delba_data *data)
718 {
719 struct iwl_mvm_baid_data *ba_data;
720 struct ieee80211_sta *sta;
721 struct iwl_mvm_reorder_buffer *reorder_buf;
722 u8 baid = data->baid;
723
724 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
725 return;
726
727 rcu_read_lock();
728
729 ba_data = rcu_dereference(mvm->baid_map[baid]);
730 if (WARN_ON_ONCE(!ba_data))
731 goto out;
732
733 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
734 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
735 goto out;
736
737 reorder_buf = &ba_data->reorder_buf[queue];
738
739 /* release all frames that are in the reorder buffer to the stack */
740 spin_lock_bh(&reorder_buf->lock);
741 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
742 ieee80211_sn_add(reorder_buf->head_sn,
743 reorder_buf->buf_size),
744 0);
745 spin_unlock_bh(&reorder_buf->lock);
746 del_timer_sync(&reorder_buf->reorder_timer);
747
748 out:
749 rcu_read_unlock();
750 }
751
iwl_mvm_release_frames_from_notif(struct iwl_mvm * mvm,struct napi_struct * napi,u8 baid,u16 nssn,int queue,u32 flags)752 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
753 struct napi_struct *napi,
754 u8 baid, u16 nssn, int queue,
755 u32 flags)
756 {
757 struct ieee80211_sta *sta;
758 struct iwl_mvm_reorder_buffer *reorder_buf;
759 struct iwl_mvm_baid_data *ba_data;
760
761 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
762 baid, nssn);
763
764 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
765 baid >= ARRAY_SIZE(mvm->baid_map)))
766 return;
767
768 rcu_read_lock();
769
770 ba_data = rcu_dereference(mvm->baid_map[baid]);
771 if (!ba_data) {
772 WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC),
773 "BAID %d not found in map\n", baid);
774 goto out;
775 }
776
777 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
778 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
779 goto out;
780
781 reorder_buf = &ba_data->reorder_buf[queue];
782
783 spin_lock_bh(&reorder_buf->lock);
784 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
785 reorder_buf, nssn, flags);
786 spin_unlock_bh(&reorder_buf->lock);
787
788 out:
789 rcu_read_unlock();
790 }
791
iwl_mvm_nssn_sync(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,const struct iwl_mvm_nssn_sync_data * data)792 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
793 struct napi_struct *napi, int queue,
794 const struct iwl_mvm_nssn_sync_data *data)
795 {
796 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
797 data->nssn, queue,
798 IWL_MVM_RELEASE_FROM_RSS_SYNC);
799 }
800
iwl_mvm_rx_queue_notif(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)801 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
802 struct iwl_rx_cmd_buffer *rxb, int queue)
803 {
804 struct iwl_rx_packet *pkt = rxb_addr(rxb);
805 struct iwl_rxq_sync_notification *notif;
806 struct iwl_mvm_internal_rxq_notif *internal_notif;
807 u32 len = iwl_rx_packet_payload_len(pkt);
808
809 notif = (void *)pkt->data;
810 internal_notif = (void *)notif->payload;
811
812 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
813 "invalid notification size %d (%d)",
814 len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
815 return;
816 len -= sizeof(*notif) + sizeof(*internal_notif);
817
818 if (internal_notif->sync &&
819 mvm->queue_sync_cookie != internal_notif->cookie) {
820 WARN_ONCE(1, "Received expired RX queue sync message\n");
821 return;
822 }
823
824 switch (internal_notif->type) {
825 case IWL_MVM_RXQ_EMPTY:
826 WARN_ONCE(len, "invalid empty notification size %d", len);
827 break;
828 case IWL_MVM_RXQ_NOTIF_DEL_BA:
829 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
830 "invalid delba notification size %d (%d)",
831 len, (int)sizeof(struct iwl_mvm_delba_data)))
832 break;
833 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
834 break;
835 case IWL_MVM_RXQ_NSSN_SYNC:
836 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
837 "invalid nssn sync notification size %d (%d)",
838 len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
839 break;
840 iwl_mvm_nssn_sync(mvm, napi, queue,
841 (void *)internal_notif->data);
842 break;
843 default:
844 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
845 }
846
847 if (internal_notif->sync) {
848 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
849 "queue sync: queue %d responded a second time!\n",
850 queue);
851 if (READ_ONCE(mvm->queue_sync_state) == 0)
852 wake_up(&mvm->rx_sync_waitq);
853 }
854 }
855
iwl_mvm_oldsn_workaround(struct iwl_mvm * mvm,struct ieee80211_sta * sta,int tid,struct iwl_mvm_reorder_buffer * buffer,u32 reorder,u32 gp2,int queue)856 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
857 struct ieee80211_sta *sta, int tid,
858 struct iwl_mvm_reorder_buffer *buffer,
859 u32 reorder, u32 gp2, int queue)
860 {
861 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
862
863 if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
864 /* we have a new (A-)MPDU ... */
865
866 /*
867 * reset counter to 0 if we didn't have any oldsn in
868 * the last A-MPDU (as detected by GP2 being identical)
869 */
870 if (!buffer->consec_oldsn_prev_drop)
871 buffer->consec_oldsn_drops = 0;
872
873 /* either way, update our tracking state */
874 buffer->consec_oldsn_ampdu_gp2 = gp2;
875 } else if (buffer->consec_oldsn_prev_drop) {
876 /*
877 * tracking state didn't change, and we had an old SN
878 * indication before - do nothing in this case, we
879 * already noted this one down and are waiting for the
880 * next A-MPDU (by GP2)
881 */
882 return;
883 }
884
885 /* return unless this MPDU has old SN */
886 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
887 return;
888
889 /* update state */
890 buffer->consec_oldsn_prev_drop = 1;
891 buffer->consec_oldsn_drops++;
892
893 /* if limit is reached, send del BA and reset state */
894 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
895 IWL_WARN(mvm,
896 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
897 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
898 sta->addr, queue, tid);
899 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
900 buffer->consec_oldsn_prev_drop = 0;
901 buffer->consec_oldsn_drops = 0;
902 }
903 }
904
905 /*
906 * Returns true if the MPDU was buffered\dropped, false if it should be passed
907 * to upper layer.
908 */
iwl_mvm_reorder(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_mpdu_desc * desc)909 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
910 struct napi_struct *napi,
911 int queue,
912 struct ieee80211_sta *sta,
913 struct sk_buff *skb,
914 struct iwl_rx_mpdu_desc *desc)
915 {
916 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
917 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
918 struct iwl_mvm_sta *mvm_sta;
919 struct iwl_mvm_baid_data *baid_data;
920 struct iwl_mvm_reorder_buffer *buffer;
921 struct sk_buff *tail;
922 u32 reorder = le32_to_cpu(desc->reorder_data);
923 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
924 bool last_subframe =
925 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
926 u8 tid = ieee80211_get_tid(hdr);
927 u8 sub_frame_idx = desc->amsdu_info &
928 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
929 struct iwl_mvm_reorder_buf_entry *entries;
930 int index;
931 u16 nssn, sn;
932 u8 baid;
933
934 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
935 IWL_RX_MPDU_REORDER_BAID_SHIFT;
936
937 /*
938 * This also covers the case of receiving a Block Ack Request
939 * outside a BA session; we'll pass it to mac80211 and that
940 * then sends a delBA action frame.
941 * This also covers pure monitor mode, in which case we won't
942 * have any BA sessions.
943 */
944 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
945 return false;
946
947 /* no sta yet */
948 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
949 "Got valid BAID without a valid station assigned\n"))
950 return false;
951
952 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
953
954 /* not a data packet or a bar */
955 if (!ieee80211_is_back_req(hdr->frame_control) &&
956 (!ieee80211_is_data_qos(hdr->frame_control) ||
957 is_multicast_ether_addr(hdr->addr1)))
958 return false;
959
960 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
961 return false;
962
963 baid_data = rcu_dereference(mvm->baid_map[baid]);
964 if (!baid_data) {
965 IWL_DEBUG_RX(mvm,
966 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
967 baid, reorder);
968 return false;
969 }
970
971 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
972 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
973 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
974 tid))
975 return false;
976
977 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
978 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
979 IWL_RX_MPDU_REORDER_SN_SHIFT;
980
981 buffer = &baid_data->reorder_buf[queue];
982 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
983
984 spin_lock_bh(&buffer->lock);
985
986 if (!buffer->valid) {
987 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
988 spin_unlock_bh(&buffer->lock);
989 return false;
990 }
991 buffer->valid = true;
992 }
993
994 if (ieee80211_is_back_req(hdr->frame_control)) {
995 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
996 buffer, nssn, 0);
997 goto drop;
998 }
999
1000 /*
1001 * If there was a significant jump in the nssn - adjust.
1002 * If the SN is smaller than the NSSN it might need to first go into
1003 * the reorder buffer, in which case we just release up to it and the
1004 * rest of the function will take care of storing it and releasing up to
1005 * the nssn.
1006 * This should not happen. This queue has been lagging and it should
1007 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1008 * and update the other queues.
1009 */
1010 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1011 buffer->buf_size) ||
1012 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1013 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1014
1015 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1016 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1017 }
1018
1019 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1020 rx_status->device_timestamp, queue);
1021
1022 /* drop any oudated packets */
1023 if (ieee80211_sn_less(sn, buffer->head_sn))
1024 goto drop;
1025
1026 /* release immediately if allowed by nssn and no stored frames */
1027 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1028 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1029 buffer->buf_size) &&
1030 (!amsdu || last_subframe)) {
1031 /*
1032 * If we crossed the 2048 or 0 SN, notify all the
1033 * queues. This is done in order to avoid having a
1034 * head_sn that lags behind for too long. When that
1035 * happens, we can get to a situation where the head_sn
1036 * is within the interval [nssn - buf_size : nssn]
1037 * which will make us think that the nssn is a packet
1038 * that we already freed because of the reordering
1039 * buffer and we will ignore it. So maintain the
1040 * head_sn somewhat updated across all the queues:
1041 * when it crosses 0 and 2048.
1042 */
1043 if (sn == 2048 || sn == 0)
1044 iwl_mvm_sync_nssn(mvm, baid, sn);
1045 buffer->head_sn = nssn;
1046 }
1047 /* No need to update AMSDU last SN - we are moving the head */
1048 spin_unlock_bh(&buffer->lock);
1049 return false;
1050 }
1051
1052 /*
1053 * release immediately if there are no stored frames, and the sn is
1054 * equal to the head.
1055 * This can happen due to reorder timer, where NSSN is behind head_sn.
1056 * When we released everything, and we got the next frame in the
1057 * sequence, according to the NSSN we can't release immediately,
1058 * while technically there is no hole and we can move forward.
1059 */
1060 if (!buffer->num_stored && sn == buffer->head_sn) {
1061 if (!amsdu || last_subframe) {
1062 if (sn == 2048 || sn == 0)
1063 iwl_mvm_sync_nssn(mvm, baid, sn);
1064 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1065 }
1066 /* No need to update AMSDU last SN - we are moving the head */
1067 spin_unlock_bh(&buffer->lock);
1068 return false;
1069 }
1070
1071 index = sn % buffer->buf_size;
1072
1073 /*
1074 * Check if we already stored this frame
1075 * As AMSDU is either received or not as whole, logic is simple:
1076 * If we have frames in that position in the buffer and the last frame
1077 * originated from AMSDU had a different SN then it is a retransmission.
1078 * If it is the same SN then if the subframe index is incrementing it
1079 * is the same AMSDU - otherwise it is a retransmission.
1080 */
1081 tail = skb_peek_tail(&entries[index].e.frames);
1082 if (tail && !amsdu)
1083 goto drop;
1084 else if (tail && (sn != buffer->last_amsdu ||
1085 buffer->last_sub_index >= sub_frame_idx))
1086 goto drop;
1087
1088 /* put in reorder buffer */
1089 __skb_queue_tail(&entries[index].e.frames, skb);
1090 buffer->num_stored++;
1091 entries[index].e.reorder_time = jiffies;
1092
1093 if (amsdu) {
1094 buffer->last_amsdu = sn;
1095 buffer->last_sub_index = sub_frame_idx;
1096 }
1097
1098 /*
1099 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1100 * The reason is that NSSN advances on the first sub-frame, and may
1101 * cause the reorder buffer to advance before all the sub-frames arrive.
1102 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1103 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1104 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1105 * already ahead and it will be dropped.
1106 * If the last sub-frame is not on this queue - we will get frame
1107 * release notification with up to date NSSN.
1108 */
1109 if (!amsdu || last_subframe)
1110 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1111 buffer, nssn,
1112 IWL_MVM_RELEASE_SEND_RSS_SYNC);
1113
1114 spin_unlock_bh(&buffer->lock);
1115 return true;
1116
1117 drop:
1118 kfree_skb(skb);
1119 spin_unlock_bh(&buffer->lock);
1120 return true;
1121 }
1122
iwl_mvm_agg_rx_received(struct iwl_mvm * mvm,u32 reorder_data,u8 baid)1123 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1124 u32 reorder_data, u8 baid)
1125 {
1126 unsigned long now = jiffies;
1127 unsigned long timeout;
1128 struct iwl_mvm_baid_data *data;
1129
1130 rcu_read_lock();
1131
1132 data = rcu_dereference(mvm->baid_map[baid]);
1133 if (!data) {
1134 IWL_DEBUG_RX(mvm,
1135 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1136 baid, reorder_data);
1137 goto out;
1138 }
1139
1140 if (!data->timeout)
1141 goto out;
1142
1143 timeout = data->timeout;
1144 /*
1145 * Do not update last rx all the time to avoid cache bouncing
1146 * between the rx queues.
1147 * Update it every timeout. Worst case is the session will
1148 * expire after ~ 2 * timeout, which doesn't matter that much.
1149 */
1150 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1151 /* Update is atomic */
1152 data->last_rx = now;
1153
1154 out:
1155 rcu_read_unlock();
1156 }
1157
iwl_mvm_flip_address(u8 * addr)1158 static void iwl_mvm_flip_address(u8 *addr)
1159 {
1160 int i;
1161 u8 mac_addr[ETH_ALEN];
1162
1163 for (i = 0; i < ETH_ALEN; i++)
1164 mac_addr[i] = addr[ETH_ALEN - i - 1];
1165 ether_addr_copy(addr, mac_addr);
1166 }
1167
1168 struct iwl_mvm_rx_phy_data {
1169 enum iwl_rx_phy_info_type info_type;
1170 __le32 d0, d1, d2, d3;
1171 __le16 d4;
1172
1173 u32 rate_n_flags;
1174 u32 gp2_on_air_rise;
1175 u16 phy_info;
1176 u8 energy_a, energy_b;
1177 u8 channel;
1178 };
1179
iwl_mvm_decode_he_mu_ext(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he_mu * he_mu)1180 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1181 struct iwl_mvm_rx_phy_data *phy_data,
1182 struct ieee80211_radiotap_he_mu *he_mu)
1183 {
1184 u32 phy_data2 = le32_to_cpu(phy_data->d2);
1185 u32 phy_data3 = le32_to_cpu(phy_data->d3);
1186 u16 phy_data4 = le16_to_cpu(phy_data->d4);
1187 u32 rate_n_flags = phy_data->rate_n_flags;
1188
1189 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1190 he_mu->flags1 |=
1191 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1192 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1193
1194 he_mu->flags1 |=
1195 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1196 phy_data4),
1197 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1198
1199 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1200 phy_data2);
1201 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1202 phy_data3);
1203 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1204 phy_data2);
1205 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1206 phy_data3);
1207 }
1208
1209 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1210 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
1211 he_mu->flags1 |=
1212 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1213 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1214
1215 he_mu->flags2 |=
1216 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1217 phy_data4),
1218 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1219
1220 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1221 phy_data2);
1222 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1223 phy_data3);
1224 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1225 phy_data2);
1226 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1227 phy_data3);
1228 }
1229 }
1230
1231 static void
iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status)1232 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1233 struct ieee80211_radiotap_he *he,
1234 struct ieee80211_radiotap_he_mu *he_mu,
1235 struct ieee80211_rx_status *rx_status)
1236 {
1237 /*
1238 * Unfortunately, we have to leave the mac80211 data
1239 * incorrect for the case that we receive an HE-MU
1240 * transmission and *don't* have the HE phy data (due
1241 * to the bits being used for TSF). This shouldn't
1242 * happen though as management frames where we need
1243 * the TSF/timers are not be transmitted in HE-MU.
1244 */
1245 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1246 u32 rate_n_flags = phy_data->rate_n_flags;
1247 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1248 u8 offs = 0;
1249
1250 rx_status->bw = RATE_INFO_BW_HE_RU;
1251
1252 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1253
1254 switch (ru) {
1255 case 0 ... 36:
1256 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1257 offs = ru;
1258 break;
1259 case 37 ... 52:
1260 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1261 offs = ru - 37;
1262 break;
1263 case 53 ... 60:
1264 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1265 offs = ru - 53;
1266 break;
1267 case 61 ... 64:
1268 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1269 offs = ru - 61;
1270 break;
1271 case 65 ... 66:
1272 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1273 offs = ru - 65;
1274 break;
1275 case 67:
1276 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1277 break;
1278 case 68:
1279 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1280 break;
1281 }
1282 he->data2 |= le16_encode_bits(offs,
1283 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1284 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1285 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1286 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1287 he->data2 |=
1288 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1289
1290 #define CHECK_BW(bw) \
1291 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1292 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1293 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1294 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1295 CHECK_BW(20);
1296 CHECK_BW(40);
1297 CHECK_BW(80);
1298 CHECK_BW(160);
1299
1300 if (he_mu)
1301 he_mu->flags2 |=
1302 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1303 rate_n_flags),
1304 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1305 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1306 he->data6 |=
1307 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1308 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1309 rate_n_flags),
1310 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1311 }
1312
iwl_mvm_decode_he_phy_data(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status,int queue)1313 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1314 struct iwl_mvm_rx_phy_data *phy_data,
1315 struct ieee80211_radiotap_he *he,
1316 struct ieee80211_radiotap_he_mu *he_mu,
1317 struct ieee80211_rx_status *rx_status,
1318 int queue)
1319 {
1320 switch (phy_data->info_type) {
1321 case IWL_RX_PHY_INFO_TYPE_NONE:
1322 case IWL_RX_PHY_INFO_TYPE_CCK:
1323 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1324 case IWL_RX_PHY_INFO_TYPE_HT:
1325 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1326 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1327 case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1328 case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1329 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1330 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1331 return;
1332 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1333 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1334 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1335 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1336 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1337 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1338 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1339 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1340 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1341 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1342 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1343 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1344 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1345 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1346 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1347 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1348 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1349 fallthrough;
1350 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1351 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1352 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1353 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1354 /* HE common */
1355 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1356 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1357 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1358 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1359 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1360 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1361 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1362 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1363 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1364 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1365 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1366 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1367 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1368 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1369 IWL_RX_PHY_DATA0_HE_UPLINK),
1370 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1371 }
1372 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1373 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1374 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1375 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1376 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1377 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1378 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1379 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1380 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1381 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1382 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1383 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1384 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1385 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1386 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1387 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1388 IWL_RX_PHY_DATA0_HE_DOPPLER),
1389 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1390 break;
1391 }
1392
1393 switch (phy_data->info_type) {
1394 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1395 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1396 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1397 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1398 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1399 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1400 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1401 break;
1402 default:
1403 /* nothing here */
1404 break;
1405 }
1406
1407 switch (phy_data->info_type) {
1408 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1409 he_mu->flags1 |=
1410 le16_encode_bits(le16_get_bits(phy_data->d4,
1411 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1412 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1413 he_mu->flags1 |=
1414 le16_encode_bits(le16_get_bits(phy_data->d4,
1415 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1416 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1417 he_mu->flags2 |=
1418 le16_encode_bits(le16_get_bits(phy_data->d4,
1419 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1420 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1421 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1422 fallthrough;
1423 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1424 he_mu->flags2 |=
1425 le16_encode_bits(le32_get_bits(phy_data->d1,
1426 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1427 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1428 he_mu->flags2 |=
1429 le16_encode_bits(le32_get_bits(phy_data->d1,
1430 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1431 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1432 fallthrough;
1433 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1434 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1435 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1436 break;
1437 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1438 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1439 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1440 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1441 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1442 break;
1443 default:
1444 /* nothing */
1445 break;
1446 }
1447 }
1448
iwl_mvm_rx_he(struct iwl_mvm * mvm,struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data,int queue)1449 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1450 struct iwl_mvm_rx_phy_data *phy_data,
1451 int queue)
1452 {
1453 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1454 struct ieee80211_radiotap_he *he = NULL;
1455 struct ieee80211_radiotap_he_mu *he_mu = NULL;
1456 u32 rate_n_flags = phy_data->rate_n_flags;
1457 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1458 u8 ltf;
1459 static const struct ieee80211_radiotap_he known = {
1460 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1461 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1462 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1463 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1464 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1465 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1466 };
1467 static const struct ieee80211_radiotap_he_mu mu_known = {
1468 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1469 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1470 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1471 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1472 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1473 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1474 };
1475 u16 phy_info = phy_data->phy_info;
1476
1477 he = skb_put_data(skb, &known, sizeof(known));
1478 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1479
1480 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1481 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1482 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1483 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1484 }
1485
1486 /* report the AMPDU-EOF bit on single frames */
1487 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1488 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1489 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1490 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1491 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1492 }
1493
1494 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1495 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1496 queue);
1497
1498 /* update aggregation data for monitor sake on default queue */
1499 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1500 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1501 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1502
1503 /* toggle is switched whenever new aggregation starts */
1504 if (toggle_bit != mvm->ampdu_toggle) {
1505 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1506 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1507 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1508 }
1509 }
1510
1511 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1512 rate_n_flags & RATE_MCS_HE_106T_MSK) {
1513 rx_status->bw = RATE_INFO_BW_HE_RU;
1514 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1515 }
1516
1517 /* actually data is filled in mac80211 */
1518 if (he_type == RATE_MCS_HE_TYPE_SU ||
1519 he_type == RATE_MCS_HE_TYPE_EXT_SU)
1520 he->data1 |=
1521 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1522
1523 #define CHECK_TYPE(F) \
1524 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1525 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1526
1527 CHECK_TYPE(SU);
1528 CHECK_TYPE(EXT_SU);
1529 CHECK_TYPE(MU);
1530 CHECK_TYPE(TRIG);
1531
1532 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1533
1534 if (rate_n_flags & RATE_MCS_BF_MSK)
1535 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1536
1537 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1538 RATE_MCS_HE_GI_LTF_POS) {
1539 case 0:
1540 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1541 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1542 else
1543 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1544 if (he_type == RATE_MCS_HE_TYPE_MU)
1545 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1546 else
1547 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1548 break;
1549 case 1:
1550 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1551 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1552 else
1553 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1554 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1555 break;
1556 case 2:
1557 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1558 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1559 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1560 } else {
1561 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1562 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1563 }
1564 break;
1565 case 3:
1566 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1567 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1568 break;
1569 case 4:
1570 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1571 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1572 break;
1573 default:
1574 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1575 }
1576
1577 he->data5 |= le16_encode_bits(ltf,
1578 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1579 }
1580
iwl_mvm_decode_lsig(struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data)1581 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1582 struct iwl_mvm_rx_phy_data *phy_data)
1583 {
1584 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1585 struct ieee80211_radiotap_lsig *lsig;
1586
1587 switch (phy_data->info_type) {
1588 case IWL_RX_PHY_INFO_TYPE_HT:
1589 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1590 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1591 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1592 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1593 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1594 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1595 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1596 lsig = skb_put(skb, sizeof(*lsig));
1597 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1598 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1599 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1600 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1601 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1602 break;
1603 default:
1604 break;
1605 }
1606 }
1607
iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)1608 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1609 {
1610 switch (phy_band) {
1611 case PHY_BAND_24:
1612 return NL80211_BAND_2GHZ;
1613 case PHY_BAND_5:
1614 return NL80211_BAND_5GHZ;
1615 case PHY_BAND_6:
1616 return NL80211_BAND_6GHZ;
1617 default:
1618 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1619 return NL80211_BAND_5GHZ;
1620 }
1621 }
1622
1623 struct iwl_rx_sta_csa {
1624 bool all_sta_unblocked;
1625 struct ieee80211_vif *vif;
1626 };
1627
iwl_mvm_rx_get_sta_block_tx(void * data,struct ieee80211_sta * sta)1628 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1629 {
1630 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1631 struct iwl_rx_sta_csa *rx_sta_csa = data;
1632
1633 if (mvmsta->vif != rx_sta_csa->vif)
1634 return;
1635
1636 if (mvmsta->disable_tx)
1637 rx_sta_csa->all_sta_unblocked = false;
1638 }
1639
1640 /*
1641 * Note: requires also rx_status->band to be prefilled, as well
1642 * as phy_data (apart from phy_data->info_type)
1643 */
iwl_mvm_rx_fill_status(struct iwl_mvm * mvm,struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data,int queue)1644 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
1645 struct sk_buff *skb,
1646 struct iwl_mvm_rx_phy_data *phy_data,
1647 int queue)
1648 {
1649 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1650 u32 rate_n_flags = phy_data->rate_n_flags;
1651 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1652 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1653 bool is_sgi;
1654
1655 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1656
1657 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1658 phy_data->info_type =
1659 le32_get_bits(phy_data->d1,
1660 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1661
1662 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1663 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1664 case RATE_MCS_CHAN_WIDTH_20:
1665 break;
1666 case RATE_MCS_CHAN_WIDTH_40:
1667 rx_status->bw = RATE_INFO_BW_40;
1668 break;
1669 case RATE_MCS_CHAN_WIDTH_80:
1670 rx_status->bw = RATE_INFO_BW_80;
1671 break;
1672 case RATE_MCS_CHAN_WIDTH_160:
1673 rx_status->bw = RATE_INFO_BW_160;
1674 break;
1675 case RATE_MCS_CHAN_WIDTH_320:
1676 rx_status->bw = RATE_INFO_BW_320;
1677 break;
1678 }
1679
1680 /* must be before L-SIG data */
1681 if (format == RATE_MCS_HE_MSK)
1682 iwl_mvm_rx_he(mvm, skb, phy_data, queue);
1683
1684 iwl_mvm_decode_lsig(skb, phy_data);
1685
1686 rx_status->device_timestamp = phy_data->gp2_on_air_rise;
1687 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
1688 rx_status->band);
1689 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
1690 phy_data->energy_a, phy_data->energy_b);
1691
1692 if (unlikely(mvm->monitor_on))
1693 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1694
1695 is_sgi = format == RATE_MCS_HE_MSK ?
1696 iwl_he_is_sgi(rate_n_flags) :
1697 rate_n_flags & RATE_MCS_SGI_MSK;
1698
1699 if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
1700 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1701
1702 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1703 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1704
1705 switch (format) {
1706 case RATE_MCS_VHT_MSK:
1707 rx_status->encoding = RX_ENC_VHT;
1708 break;
1709 case RATE_MCS_HE_MSK:
1710 rx_status->encoding = RX_ENC_HE;
1711 rx_status->he_dcm =
1712 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1713 break;
1714 case RATE_MCS_EHT_MSK:
1715 rx_status->encoding = RX_ENC_EHT;
1716 break;
1717 }
1718
1719 switch (format) {
1720 case RATE_MCS_HT_MSK:
1721 rx_status->encoding = RX_ENC_HT;
1722 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
1723 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1724 break;
1725 case RATE_MCS_VHT_MSK:
1726 case RATE_MCS_HE_MSK:
1727 case RATE_MCS_EHT_MSK:
1728 rx_status->nss =
1729 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
1730 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
1731 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1732 break;
1733 default: {
1734 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
1735 rx_status->band);
1736
1737 rx_status->rate_idx = rate;
1738
1739 if ((rate < 0 || rate > 0xFF)) {
1740 rx_status->rate_idx = 0;
1741 if (net_ratelimit())
1742 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
1743 rate_n_flags, rx_status->band);
1744 }
1745
1746 break;
1747 }
1748 }
1749 }
1750
iwl_mvm_rx_mpdu_mq(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)1751 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1752 struct iwl_rx_cmd_buffer *rxb, int queue)
1753 {
1754 struct ieee80211_rx_status *rx_status;
1755 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1756 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1757 struct ieee80211_hdr *hdr;
1758 u32 len;
1759 u32 pkt_len = iwl_rx_packet_payload_len(pkt);
1760 struct ieee80211_sta *sta = NULL;
1761 struct sk_buff *skb;
1762 u8 crypt_len = 0;
1763 size_t desc_size;
1764 struct iwl_mvm_rx_phy_data phy_data = {};
1765 u32 format;
1766
1767 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1768 return;
1769
1770 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1771 desc_size = sizeof(*desc);
1772 else
1773 desc_size = IWL_RX_DESC_SIZE_V1;
1774
1775 if (unlikely(pkt_len < desc_size)) {
1776 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
1777 return;
1778 }
1779
1780 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1781 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1782 phy_data.channel = desc->v3.channel;
1783 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1784 phy_data.energy_a = desc->v3.energy_a;
1785 phy_data.energy_b = desc->v3.energy_b;
1786
1787 phy_data.d0 = desc->v3.phy_data0;
1788 phy_data.d1 = desc->v3.phy_data1;
1789 phy_data.d2 = desc->v3.phy_data2;
1790 phy_data.d3 = desc->v3.phy_data3;
1791 } else {
1792 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1793 phy_data.channel = desc->v1.channel;
1794 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1795 phy_data.energy_a = desc->v1.energy_a;
1796 phy_data.energy_b = desc->v1.energy_b;
1797
1798 phy_data.d0 = desc->v1.phy_data0;
1799 phy_data.d1 = desc->v1.phy_data1;
1800 phy_data.d2 = desc->v1.phy_data2;
1801 phy_data.d3 = desc->v1.phy_data3;
1802 }
1803
1804 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
1805 REPLY_RX_MPDU_CMD, 0) < 4) {
1806 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
1807 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
1808 phy_data.rate_n_flags);
1809 }
1810
1811 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1812
1813 len = le16_to_cpu(desc->mpdu_len);
1814
1815 if (unlikely(len + desc_size > pkt_len)) {
1816 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
1817 return;
1818 }
1819
1820 phy_data.phy_info = le16_to_cpu(desc->phy_info);
1821 phy_data.d4 = desc->phy_data4;
1822
1823 hdr = (void *)(pkt->data + desc_size);
1824 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1825 * ieee80211_hdr pulled.
1826 */
1827 skb = alloc_skb(128, GFP_ATOMIC);
1828 if (!skb) {
1829 IWL_ERR(mvm, "alloc_skb failed\n");
1830 return;
1831 }
1832
1833 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1834 /*
1835 * If the device inserted padding it means that (it thought)
1836 * the 802.11 header wasn't a multiple of 4 bytes long. In
1837 * this case, reserve two bytes at the start of the SKB to
1838 * align the payload properly in case we end up copying it.
1839 */
1840 skb_reserve(skb, 2);
1841 }
1842
1843 rx_status = IEEE80211_SKB_RXCB(skb);
1844
1845 /*
1846 * Keep packets with CRC errors (and with overrun) for monitor mode
1847 * (otherwise the firmware discards them) but mark them as bad.
1848 */
1849 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1850 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1851 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1852 le32_to_cpu(desc->status));
1853 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1854 }
1855
1856 /* set the preamble flag if appropriate */
1857 if (format == RATE_MCS_CCK_MSK &&
1858 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1859 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1860
1861 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1862 u64 tsf_on_air_rise;
1863
1864 if (mvm->trans->trans_cfg->device_family >=
1865 IWL_DEVICE_FAMILY_AX210)
1866 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1867 else
1868 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1869
1870 rx_status->mactime = tsf_on_air_rise;
1871 /* TSF as indicated by the firmware is at INA time */
1872 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1873 }
1874
1875 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1876 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1877
1878 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1879 } else {
1880 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
1881 NL80211_BAND_2GHZ;
1882 }
1883
1884 /* update aggregation data for monitor sake on default queue */
1885 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1886 bool toggle_bit;
1887
1888 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1889 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1890 /*
1891 * Toggle is switched whenever new aggregation starts. Make
1892 * sure ampdu_reference is never 0 so we can later use it to
1893 * see if the frame was really part of an A-MPDU or not.
1894 */
1895 if (toggle_bit != mvm->ampdu_toggle) {
1896 mvm->ampdu_ref++;
1897 if (mvm->ampdu_ref == 0)
1898 mvm->ampdu_ref++;
1899 mvm->ampdu_toggle = toggle_bit;
1900 }
1901 rx_status->ampdu_reference = mvm->ampdu_ref;
1902 }
1903
1904 rcu_read_lock();
1905
1906 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1907 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
1908
1909 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
1910 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1911 if (IS_ERR(sta))
1912 sta = NULL;
1913 }
1914 } else if (!is_multicast_ether_addr(hdr->addr2)) {
1915 /*
1916 * This is fine since we prevent two stations with the same
1917 * address from being added.
1918 */
1919 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1920 }
1921
1922 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
1923 le32_to_cpu(pkt->len_n_flags), queue,
1924 &crypt_len)) {
1925 kfree_skb(skb);
1926 goto out;
1927 }
1928
1929 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
1930
1931 if (sta) {
1932 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1933 struct ieee80211_vif *tx_blocked_vif =
1934 rcu_dereference(mvm->csa_tx_blocked_vif);
1935 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1936 IWL_RX_MPDU_REORDER_BAID_MASK) >>
1937 IWL_RX_MPDU_REORDER_BAID_SHIFT);
1938 struct iwl_fw_dbg_trigger_tlv *trig;
1939 struct ieee80211_vif *vif = mvmsta->vif;
1940
1941 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1942 !is_multicast_ether_addr(hdr->addr1) &&
1943 ieee80211_is_data(hdr->frame_control) &&
1944 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1945 schedule_delayed_work(&mvm->tcm.work, 0);
1946
1947 /*
1948 * We have tx blocked stations (with CS bit). If we heard
1949 * frames from a blocked station on a new channel we can
1950 * TX to it again.
1951 */
1952 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1953 struct iwl_mvm_vif *mvmvif =
1954 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1955 struct iwl_rx_sta_csa rx_sta_csa = {
1956 .all_sta_unblocked = true,
1957 .vif = tx_blocked_vif,
1958 };
1959
1960 if (mvmvif->csa_target_freq == rx_status->freq)
1961 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1962 false);
1963 ieee80211_iterate_stations_atomic(mvm->hw,
1964 iwl_mvm_rx_get_sta_block_tx,
1965 &rx_sta_csa);
1966
1967 if (rx_sta_csa.all_sta_unblocked) {
1968 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
1969 /* Unblock BCAST / MCAST station */
1970 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
1971 cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork);
1972 }
1973 }
1974
1975 rs_update_last_rssi(mvm, mvmsta, rx_status);
1976
1977 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1978 ieee80211_vif_to_wdev(vif),
1979 FW_DBG_TRIGGER_RSSI);
1980
1981 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1982 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1983 s32 rssi;
1984
1985 rssi_trig = (void *)trig->data;
1986 rssi = le32_to_cpu(rssi_trig->rssi);
1987
1988 if (rx_status->signal < rssi)
1989 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1990 NULL);
1991 }
1992
1993 if (ieee80211_is_data(hdr->frame_control))
1994 iwl_mvm_rx_csum(mvm, sta, skb, pkt);
1995
1996 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1997 kfree_skb(skb);
1998 goto out;
1999 }
2000
2001 /*
2002 * Our hardware de-aggregates AMSDUs but copies the mac header
2003 * as it to the de-aggregated MPDUs. We need to turn off the
2004 * AMSDU bit in the QoS control ourselves.
2005 * In addition, HW reverses addr3 and addr4 - reverse it back.
2006 */
2007 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2008 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2009 u8 *qc = ieee80211_get_qos_ctl(hdr);
2010
2011 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2012
2013 if (mvm->trans->trans_cfg->device_family ==
2014 IWL_DEVICE_FAMILY_9000) {
2015 iwl_mvm_flip_address(hdr->addr3);
2016
2017 if (ieee80211_has_a4(hdr->frame_control))
2018 iwl_mvm_flip_address(hdr->addr4);
2019 }
2020 }
2021 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2022 u32 reorder_data = le32_to_cpu(desc->reorder_data);
2023
2024 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2025 }
2026 }
2027
2028 /* management stuff on default queue */
2029 if (!queue) {
2030 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2031 ieee80211_is_probe_resp(hdr->frame_control)) &&
2032 mvm->sched_scan_pass_all ==
2033 SCHED_SCAN_PASS_ALL_ENABLED))
2034 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2035
2036 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2037 ieee80211_is_probe_resp(hdr->frame_control)))
2038 rx_status->boottime_ns = ktime_get_boottime_ns();
2039 }
2040
2041 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2042 kfree_skb(skb);
2043 goto out;
2044 }
2045
2046 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
2047 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
2048 sta);
2049 out:
2050 rcu_read_unlock();
2051 }
2052
iwl_mvm_rx_monitor_no_data(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2053 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2054 struct iwl_rx_cmd_buffer *rxb, int queue)
2055 {
2056 struct ieee80211_rx_status *rx_status;
2057 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2058 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2059 u32 rssi;
2060 u32 info_type;
2061 struct ieee80211_sta *sta = NULL;
2062 struct sk_buff *skb;
2063 struct iwl_mvm_rx_phy_data phy_data;
2064 u32 format;
2065
2066 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2067 return;
2068
2069 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2070 return;
2071
2072 rssi = le32_to_cpu(desc->rssi);
2073 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2074 phy_data.d0 = desc->phy_info[0];
2075 phy_data.d1 = desc->phy_info[1];
2076 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2077 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2078 phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2079 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2080 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2081 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2082
2083 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2084 RX_NO_DATA_NOTIF, 0) < 2) {
2085 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2086 phy_data.rate_n_flags);
2087 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2088 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2089 phy_data.rate_n_flags);
2090 }
2091
2092 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2093
2094 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2095 RX_NO_DATA_NOTIF, 0) >= 3) {
2096 if (unlikely(iwl_rx_packet_payload_len(pkt) <
2097 sizeof(struct iwl_rx_no_data_ver_3)))
2098 /* invalid len for ver 3 */
2099 return;
2100 } else {
2101 if (format == RATE_MCS_EHT_MSK)
2102 /* no support for EHT before version 3 API */
2103 return;
2104 }
2105
2106 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2107 * ieee80211_hdr pulled.
2108 */
2109 skb = alloc_skb(128, GFP_ATOMIC);
2110 if (!skb) {
2111 IWL_ERR(mvm, "alloc_skb failed\n");
2112 return;
2113 }
2114
2115 rx_status = IEEE80211_SKB_RXCB(skb);
2116
2117 /* 0-length PSDU */
2118 rx_status->flag |= RX_FLAG_NO_PSDU;
2119
2120 switch (info_type) {
2121 case RX_NO_DATA_INFO_TYPE_NDP:
2122 rx_status->zero_length_psdu_type =
2123 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2124 break;
2125 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2126 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
2127 rx_status->zero_length_psdu_type =
2128 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2129 break;
2130 default:
2131 rx_status->zero_length_psdu_type =
2132 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2133 break;
2134 }
2135
2136 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2137 NL80211_BAND_2GHZ;
2138
2139 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2140
2141 /* no more radio tap info should be put after this point.
2142 *
2143 * We mark it as mac header, for upper layers to know where
2144 * all radio tap header ends.
2145 *
2146 * Since data doesn't move data while putting data on skb and that is
2147 * the only way we use, data + len is the next place that hdr would be put
2148 */
2149 skb_set_mac_header(skb, skb->len);
2150
2151 /*
2152 * Override the nss from the rx_vec since the rate_n_flags has
2153 * only 2 bits for the nss which gives a max of 4 ss but there
2154 * may be up to 8 spatial streams.
2155 */
2156 switch (format) {
2157 case RATE_MCS_VHT_MSK:
2158 rx_status->nss =
2159 le32_get_bits(desc->rx_vec[0],
2160 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2161 break;
2162 case RATE_MCS_HE_MSK:
2163 rx_status->nss =
2164 le32_get_bits(desc->rx_vec[0],
2165 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2166 break;
2167 case RATE_MCS_EHT_MSK:
2168 rx_status->nss =
2169 le32_get_bits(desc->rx_vec[2],
2170 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2171 }
2172
2173 rcu_read_lock();
2174 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2175 rcu_read_unlock();
2176 }
2177
iwl_mvm_rx_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2178 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2179 struct iwl_rx_cmd_buffer *rxb, int queue)
2180 {
2181 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2182 struct iwl_frame_release *release = (void *)pkt->data;
2183
2184 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2185 return;
2186
2187 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2188 le16_to_cpu(release->nssn),
2189 queue, 0);
2190 }
2191
iwl_mvm_rx_bar_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2192 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2193 struct iwl_rx_cmd_buffer *rxb, int queue)
2194 {
2195 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2196 struct iwl_bar_frame_release *release = (void *)pkt->data;
2197 unsigned int baid = le32_get_bits(release->ba_info,
2198 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2199 unsigned int nssn = le32_get_bits(release->ba_info,
2200 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2201 unsigned int sta_id = le32_get_bits(release->sta_tid,
2202 IWL_BAR_FRAME_RELEASE_STA_MASK);
2203 unsigned int tid = le32_get_bits(release->sta_tid,
2204 IWL_BAR_FRAME_RELEASE_TID_MASK);
2205 struct iwl_mvm_baid_data *baid_data;
2206
2207 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2208 return;
2209
2210 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2211 baid >= ARRAY_SIZE(mvm->baid_map)))
2212 return;
2213
2214 rcu_read_lock();
2215 baid_data = rcu_dereference(mvm->baid_map[baid]);
2216 if (!baid_data) {
2217 IWL_DEBUG_RX(mvm,
2218 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2219 baid);
2220 goto out;
2221 }
2222
2223 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2224 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2225 baid, baid_data->sta_id, baid_data->tid, sta_id,
2226 tid))
2227 goto out;
2228
2229 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2230 out:
2231 rcu_read_unlock();
2232 }
2233