1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * https://www.ecma.ch/
15 * https://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 #include <linux/iversion.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67
68 enum {
69 VDS_POS_PRIMARY_VOL_DESC,
70 VDS_POS_UNALLOC_SPACE_DESC,
71 VDS_POS_LOGICAL_VOL_DESC,
72 VDS_POS_IMP_USE_VOL_DESC,
73 VDS_POS_LENGTH
74 };
75
76 #define VSD_FIRST_SECTOR_OFFSET 32768
77 #define VSD_MAX_SECTOR_OFFSET 0x800000
78
79 /*
80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
82 * hopefully don't limit any real use of rewritten inode on write-once media
83 * but avoid looping for too long on corrupted media.
84 */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87
88 enum { UDF_MAX_LINKS = 0xffff };
89 /*
90 * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
91 * more but because the file space is described by a linked list of extents,
92 * each of which can have at most 1GB, the creation and handling of extents
93 * gets unusably slow beyond certain point...
94 */
95 #define UDF_MAX_FILESIZE (1ULL << 42)
96
97 /* These are the "meat" - everything else is stuffing */
98 static int udf_fill_super(struct super_block *, void *, int);
99 static void udf_put_super(struct super_block *);
100 static int udf_sync_fs(struct super_block *, int);
101 static int udf_remount_fs(struct super_block *, int *, char *);
102 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
103 static void udf_open_lvid(struct super_block *);
104 static void udf_close_lvid(struct super_block *);
105 static unsigned int udf_count_free(struct super_block *);
106 static int udf_statfs(struct dentry *, struct kstatfs *);
107 static int udf_show_options(struct seq_file *, struct dentry *);
108
udf_sb_lvidiu(struct super_block * sb)109 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
110 {
111 struct logicalVolIntegrityDesc *lvid;
112 unsigned int partnum;
113 unsigned int offset;
114
115 if (!UDF_SB(sb)->s_lvid_bh)
116 return NULL;
117 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
118 partnum = le32_to_cpu(lvid->numOfPartitions);
119 /* The offset is to skip freeSpaceTable and sizeTable arrays */
120 offset = partnum * 2 * sizeof(uint32_t);
121 return (struct logicalVolIntegrityDescImpUse *)
122 (((uint8_t *)(lvid + 1)) + offset);
123 }
124
125 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)126 static struct dentry *udf_mount(struct file_system_type *fs_type,
127 int flags, const char *dev_name, void *data)
128 {
129 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
130 }
131
132 static struct file_system_type udf_fstype = {
133 .owner = THIS_MODULE,
134 .name = "udf",
135 .mount = udf_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("udf");
140
141 static struct kmem_cache *udf_inode_cachep;
142
udf_alloc_inode(struct super_block * sb)143 static struct inode *udf_alloc_inode(struct super_block *sb)
144 {
145 struct udf_inode_info *ei;
146 ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
147 if (!ei)
148 return NULL;
149
150 ei->i_unique = 0;
151 ei->i_lenExtents = 0;
152 ei->i_lenStreams = 0;
153 ei->i_next_alloc_block = 0;
154 ei->i_next_alloc_goal = 0;
155 ei->i_strat4096 = 0;
156 ei->i_streamdir = 0;
157 ei->i_hidden = 0;
158 init_rwsem(&ei->i_data_sem);
159 ei->cached_extent.lstart = -1;
160 spin_lock_init(&ei->i_extent_cache_lock);
161 inode_set_iversion(&ei->vfs_inode, 1);
162
163 return &ei->vfs_inode;
164 }
165
udf_free_in_core_inode(struct inode * inode)166 static void udf_free_in_core_inode(struct inode *inode)
167 {
168 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
169 }
170
init_once(void * foo)171 static void init_once(void *foo)
172 {
173 struct udf_inode_info *ei = foo;
174
175 ei->i_data = NULL;
176 inode_init_once(&ei->vfs_inode);
177 }
178
init_inodecache(void)179 static int __init init_inodecache(void)
180 {
181 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
182 sizeof(struct udf_inode_info),
183 0, (SLAB_RECLAIM_ACCOUNT |
184 SLAB_MEM_SPREAD |
185 SLAB_ACCOUNT),
186 init_once);
187 if (!udf_inode_cachep)
188 return -ENOMEM;
189 return 0;
190 }
191
destroy_inodecache(void)192 static void destroy_inodecache(void)
193 {
194 /*
195 * Make sure all delayed rcu free inodes are flushed before we
196 * destroy cache.
197 */
198 rcu_barrier();
199 kmem_cache_destroy(udf_inode_cachep);
200 }
201
202 /* Superblock operations */
203 static const struct super_operations udf_sb_ops = {
204 .alloc_inode = udf_alloc_inode,
205 .free_inode = udf_free_in_core_inode,
206 .write_inode = udf_write_inode,
207 .evict_inode = udf_evict_inode,
208 .put_super = udf_put_super,
209 .sync_fs = udf_sync_fs,
210 .statfs = udf_statfs,
211 .remount_fs = udf_remount_fs,
212 .show_options = udf_show_options,
213 };
214
215 struct udf_options {
216 unsigned char novrs;
217 unsigned int blocksize;
218 unsigned int session;
219 unsigned int lastblock;
220 unsigned int anchor;
221 unsigned int flags;
222 umode_t umask;
223 kgid_t gid;
224 kuid_t uid;
225 umode_t fmode;
226 umode_t dmode;
227 struct nls_table *nls_map;
228 };
229
init_udf_fs(void)230 static int __init init_udf_fs(void)
231 {
232 int err;
233
234 err = init_inodecache();
235 if (err)
236 goto out1;
237 err = register_filesystem(&udf_fstype);
238 if (err)
239 goto out;
240
241 return 0;
242
243 out:
244 destroy_inodecache();
245
246 out1:
247 return err;
248 }
249
exit_udf_fs(void)250 static void __exit exit_udf_fs(void)
251 {
252 unregister_filesystem(&udf_fstype);
253 destroy_inodecache();
254 }
255
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)256 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
257 {
258 struct udf_sb_info *sbi = UDF_SB(sb);
259
260 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
261 if (!sbi->s_partmaps) {
262 sbi->s_partitions = 0;
263 return -ENOMEM;
264 }
265
266 sbi->s_partitions = count;
267 return 0;
268 }
269
udf_sb_free_bitmap(struct udf_bitmap * bitmap)270 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
271 {
272 int i;
273 int nr_groups = bitmap->s_nr_groups;
274
275 for (i = 0; i < nr_groups; i++)
276 brelse(bitmap->s_block_bitmap[i]);
277
278 kvfree(bitmap);
279 }
280
udf_free_partition(struct udf_part_map * map)281 static void udf_free_partition(struct udf_part_map *map)
282 {
283 int i;
284 struct udf_meta_data *mdata;
285
286 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
287 iput(map->s_uspace.s_table);
288 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
289 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
290 if (map->s_partition_type == UDF_SPARABLE_MAP15)
291 for (i = 0; i < 4; i++)
292 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
293 else if (map->s_partition_type == UDF_METADATA_MAP25) {
294 mdata = &map->s_type_specific.s_metadata;
295 iput(mdata->s_metadata_fe);
296 mdata->s_metadata_fe = NULL;
297
298 iput(mdata->s_mirror_fe);
299 mdata->s_mirror_fe = NULL;
300
301 iput(mdata->s_bitmap_fe);
302 mdata->s_bitmap_fe = NULL;
303 }
304 }
305
udf_sb_free_partitions(struct super_block * sb)306 static void udf_sb_free_partitions(struct super_block *sb)
307 {
308 struct udf_sb_info *sbi = UDF_SB(sb);
309 int i;
310
311 if (!sbi->s_partmaps)
312 return;
313 for (i = 0; i < sbi->s_partitions; i++)
314 udf_free_partition(&sbi->s_partmaps[i]);
315 kfree(sbi->s_partmaps);
316 sbi->s_partmaps = NULL;
317 }
318
udf_show_options(struct seq_file * seq,struct dentry * root)319 static int udf_show_options(struct seq_file *seq, struct dentry *root)
320 {
321 struct super_block *sb = root->d_sb;
322 struct udf_sb_info *sbi = UDF_SB(sb);
323
324 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
325 seq_puts(seq, ",nostrict");
326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
327 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
328 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
329 seq_puts(seq, ",unhide");
330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
331 seq_puts(seq, ",undelete");
332 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
333 seq_puts(seq, ",noadinicb");
334 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
335 seq_puts(seq, ",shortad");
336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
337 seq_puts(seq, ",uid=forget");
338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
339 seq_puts(seq, ",gid=forget");
340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
341 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
343 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
344 if (sbi->s_umask != 0)
345 seq_printf(seq, ",umask=%ho", sbi->s_umask);
346 if (sbi->s_fmode != UDF_INVALID_MODE)
347 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
348 if (sbi->s_dmode != UDF_INVALID_MODE)
349 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
350 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
351 seq_printf(seq, ",session=%d", sbi->s_session);
352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
353 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
354 if (sbi->s_anchor != 0)
355 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
356 if (sbi->s_nls_map)
357 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
358 else
359 seq_puts(seq, ",iocharset=utf8");
360
361 return 0;
362 }
363
364 /*
365 * udf_parse_options
366 *
367 * PURPOSE
368 * Parse mount options.
369 *
370 * DESCRIPTION
371 * The following mount options are supported:
372 *
373 * gid= Set the default group.
374 * umask= Set the default umask.
375 * mode= Set the default file permissions.
376 * dmode= Set the default directory permissions.
377 * uid= Set the default user.
378 * bs= Set the block size.
379 * unhide Show otherwise hidden files.
380 * undelete Show deleted files in lists.
381 * adinicb Embed data in the inode (default)
382 * noadinicb Don't embed data in the inode
383 * shortad Use short ad's
384 * longad Use long ad's (default)
385 * nostrict Unset strict conformance
386 * iocharset= Set the NLS character set
387 *
388 * The remaining are for debugging and disaster recovery:
389 *
390 * novrs Skip volume sequence recognition
391 *
392 * The following expect a offset from 0.
393 *
394 * session= Set the CDROM session (default= last session)
395 * anchor= Override standard anchor location. (default= 256)
396 * volume= Override the VolumeDesc location. (unused)
397 * partition= Override the PartitionDesc location. (unused)
398 * lastblock= Set the last block of the filesystem/
399 *
400 * The following expect a offset from the partition root.
401 *
402 * fileset= Override the fileset block location. (unused)
403 * rootdir= Override the root directory location. (unused)
404 * WARNING: overriding the rootdir to a non-directory may
405 * yield highly unpredictable results.
406 *
407 * PRE-CONDITIONS
408 * options Pointer to mount options string.
409 * uopts Pointer to mount options variable.
410 *
411 * POST-CONDITIONS
412 * <return> 1 Mount options parsed okay.
413 * <return> 0 Error parsing mount options.
414 *
415 * HISTORY
416 * July 1, 1997 - Andrew E. Mileski
417 * Written, tested, and released.
418 */
419
420 enum {
421 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
422 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
423 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
424 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
425 Opt_rootdir, Opt_utf8, Opt_iocharset,
426 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
427 Opt_fmode, Opt_dmode
428 };
429
430 static const match_table_t tokens = {
431 {Opt_novrs, "novrs"},
432 {Opt_nostrict, "nostrict"},
433 {Opt_bs, "bs=%u"},
434 {Opt_unhide, "unhide"},
435 {Opt_undelete, "undelete"},
436 {Opt_noadinicb, "noadinicb"},
437 {Opt_adinicb, "adinicb"},
438 {Opt_shortad, "shortad"},
439 {Opt_longad, "longad"},
440 {Opt_uforget, "uid=forget"},
441 {Opt_uignore, "uid=ignore"},
442 {Opt_gforget, "gid=forget"},
443 {Opt_gignore, "gid=ignore"},
444 {Opt_gid, "gid=%u"},
445 {Opt_uid, "uid=%u"},
446 {Opt_umask, "umask=%o"},
447 {Opt_session, "session=%u"},
448 {Opt_lastblock, "lastblock=%u"},
449 {Opt_anchor, "anchor=%u"},
450 {Opt_volume, "volume=%u"},
451 {Opt_partition, "partition=%u"},
452 {Opt_fileset, "fileset=%u"},
453 {Opt_rootdir, "rootdir=%u"},
454 {Opt_utf8, "utf8"},
455 {Opt_iocharset, "iocharset=%s"},
456 {Opt_fmode, "mode=%o"},
457 {Opt_dmode, "dmode=%o"},
458 {Opt_err, NULL}
459 };
460
udf_parse_options(char * options,struct udf_options * uopt,bool remount)461 static int udf_parse_options(char *options, struct udf_options *uopt,
462 bool remount)
463 {
464 char *p;
465 int option;
466 unsigned int uv;
467
468 uopt->novrs = 0;
469 uopt->session = 0xFFFFFFFF;
470 uopt->lastblock = 0;
471 uopt->anchor = 0;
472
473 if (!options)
474 return 1;
475
476 while ((p = strsep(&options, ",")) != NULL) {
477 substring_t args[MAX_OPT_ARGS];
478 int token;
479 unsigned n;
480 if (!*p)
481 continue;
482
483 token = match_token(p, tokens, args);
484 switch (token) {
485 case Opt_novrs:
486 uopt->novrs = 1;
487 break;
488 case Opt_bs:
489 if (match_int(&args[0], &option))
490 return 0;
491 n = option;
492 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
493 return 0;
494 uopt->blocksize = n;
495 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
496 break;
497 case Opt_unhide:
498 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
499 break;
500 case Opt_undelete:
501 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
502 break;
503 case Opt_noadinicb:
504 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
505 break;
506 case Opt_adinicb:
507 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
508 break;
509 case Opt_shortad:
510 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
511 break;
512 case Opt_longad:
513 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
514 break;
515 case Opt_gid:
516 if (match_uint(args, &uv))
517 return 0;
518 uopt->gid = make_kgid(current_user_ns(), uv);
519 if (!gid_valid(uopt->gid))
520 return 0;
521 uopt->flags |= (1 << UDF_FLAG_GID_SET);
522 break;
523 case Opt_uid:
524 if (match_uint(args, &uv))
525 return 0;
526 uopt->uid = make_kuid(current_user_ns(), uv);
527 if (!uid_valid(uopt->uid))
528 return 0;
529 uopt->flags |= (1 << UDF_FLAG_UID_SET);
530 break;
531 case Opt_umask:
532 if (match_octal(args, &option))
533 return 0;
534 uopt->umask = option;
535 break;
536 case Opt_nostrict:
537 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
538 break;
539 case Opt_session:
540 if (match_int(args, &option))
541 return 0;
542 uopt->session = option;
543 if (!remount)
544 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
545 break;
546 case Opt_lastblock:
547 if (match_int(args, &option))
548 return 0;
549 uopt->lastblock = option;
550 if (!remount)
551 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
552 break;
553 case Opt_anchor:
554 if (match_int(args, &option))
555 return 0;
556 uopt->anchor = option;
557 break;
558 case Opt_volume:
559 case Opt_partition:
560 case Opt_fileset:
561 case Opt_rootdir:
562 /* Ignored (never implemented properly) */
563 break;
564 case Opt_utf8:
565 if (!remount) {
566 unload_nls(uopt->nls_map);
567 uopt->nls_map = NULL;
568 }
569 break;
570 case Opt_iocharset:
571 if (!remount) {
572 unload_nls(uopt->nls_map);
573 uopt->nls_map = NULL;
574 }
575 /* When nls_map is not loaded then UTF-8 is used */
576 if (!remount && strcmp(args[0].from, "utf8") != 0) {
577 uopt->nls_map = load_nls(args[0].from);
578 if (!uopt->nls_map) {
579 pr_err("iocharset %s not found\n",
580 args[0].from);
581 return 0;
582 }
583 }
584 break;
585 case Opt_uforget:
586 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
587 break;
588 case Opt_uignore:
589 case Opt_gignore:
590 /* These options are superseeded by uid=<number> */
591 break;
592 case Opt_gforget:
593 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
594 break;
595 case Opt_fmode:
596 if (match_octal(args, &option))
597 return 0;
598 uopt->fmode = option & 0777;
599 break;
600 case Opt_dmode:
601 if (match_octal(args, &option))
602 return 0;
603 uopt->dmode = option & 0777;
604 break;
605 default:
606 pr_err("bad mount option \"%s\" or missing value\n", p);
607 return 0;
608 }
609 }
610 return 1;
611 }
612
udf_remount_fs(struct super_block * sb,int * flags,char * options)613 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
614 {
615 struct udf_options uopt;
616 struct udf_sb_info *sbi = UDF_SB(sb);
617 int error = 0;
618
619 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
620 return -EACCES;
621
622 sync_filesystem(sb);
623
624 uopt.flags = sbi->s_flags;
625 uopt.uid = sbi->s_uid;
626 uopt.gid = sbi->s_gid;
627 uopt.umask = sbi->s_umask;
628 uopt.fmode = sbi->s_fmode;
629 uopt.dmode = sbi->s_dmode;
630 uopt.nls_map = NULL;
631
632 if (!udf_parse_options(options, &uopt, true))
633 return -EINVAL;
634
635 write_lock(&sbi->s_cred_lock);
636 sbi->s_flags = uopt.flags;
637 sbi->s_uid = uopt.uid;
638 sbi->s_gid = uopt.gid;
639 sbi->s_umask = uopt.umask;
640 sbi->s_fmode = uopt.fmode;
641 sbi->s_dmode = uopt.dmode;
642 write_unlock(&sbi->s_cred_lock);
643
644 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
645 goto out_unlock;
646
647 if (*flags & SB_RDONLY)
648 udf_close_lvid(sb);
649 else
650 udf_open_lvid(sb);
651
652 out_unlock:
653 return error;
654 }
655
656 /*
657 * Check VSD descriptor. Returns -1 in case we are at the end of volume
658 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
659 * we found one of NSR descriptors we are looking for.
660 */
identify_vsd(const struct volStructDesc * vsd)661 static int identify_vsd(const struct volStructDesc *vsd)
662 {
663 int ret = 0;
664
665 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
666 switch (vsd->structType) {
667 case 0:
668 udf_debug("ISO9660 Boot Record found\n");
669 break;
670 case 1:
671 udf_debug("ISO9660 Primary Volume Descriptor found\n");
672 break;
673 case 2:
674 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
675 break;
676 case 3:
677 udf_debug("ISO9660 Volume Partition Descriptor found\n");
678 break;
679 case 255:
680 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
681 break;
682 default:
683 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
684 break;
685 }
686 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
687 ; /* ret = 0 */
688 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
689 ret = 1;
690 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
691 ret = 1;
692 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
693 ; /* ret = 0 */
694 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
695 ; /* ret = 0 */
696 else {
697 /* TEA01 or invalid id : end of volume recognition area */
698 ret = -1;
699 }
700
701 return ret;
702 }
703
704 /*
705 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
706 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
707 * @return 1 if NSR02 or NSR03 found,
708 * -1 if first sector read error, 0 otherwise
709 */
udf_check_vsd(struct super_block * sb)710 static int udf_check_vsd(struct super_block *sb)
711 {
712 struct volStructDesc *vsd = NULL;
713 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
714 int sectorsize;
715 struct buffer_head *bh = NULL;
716 int nsr = 0;
717 struct udf_sb_info *sbi;
718 loff_t session_offset;
719
720 sbi = UDF_SB(sb);
721 if (sb->s_blocksize < sizeof(struct volStructDesc))
722 sectorsize = sizeof(struct volStructDesc);
723 else
724 sectorsize = sb->s_blocksize;
725
726 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
727 sector += session_offset;
728
729 udf_debug("Starting at sector %u (%lu byte sectors)\n",
730 (unsigned int)(sector >> sb->s_blocksize_bits),
731 sb->s_blocksize);
732 /* Process the sequence (if applicable). The hard limit on the sector
733 * offset is arbitrary, hopefully large enough so that all valid UDF
734 * filesystems will be recognised. There is no mention of an upper
735 * bound to the size of the volume recognition area in the standard.
736 * The limit will prevent the code to read all the sectors of a
737 * specially crafted image (like a bluray disc full of CD001 sectors),
738 * potentially causing minutes or even hours of uninterruptible I/O
739 * activity. This actually happened with uninitialised SSD partitions
740 * (all 0xFF) before the check for the limit and all valid IDs were
741 * added */
742 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
743 /* Read a block */
744 bh = sb_bread(sb, sector >> sb->s_blocksize_bits);
745 if (!bh)
746 break;
747
748 vsd = (struct volStructDesc *)(bh->b_data +
749 (sector & (sb->s_blocksize - 1)));
750 nsr = identify_vsd(vsd);
751 /* Found NSR or end? */
752 if (nsr) {
753 brelse(bh);
754 break;
755 }
756 /*
757 * Special handling for improperly formatted VRS (e.g., Win10)
758 * where components are separated by 2048 bytes even though
759 * sectors are 4K
760 */
761 if (sb->s_blocksize == 4096) {
762 nsr = identify_vsd(vsd + 1);
763 /* Ignore unknown IDs... */
764 if (nsr < 0)
765 nsr = 0;
766 }
767 brelse(bh);
768 }
769
770 if (nsr > 0)
771 return 1;
772 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
773 return -1;
774 else
775 return 0;
776 }
777
udf_verify_domain_identifier(struct super_block * sb,struct regid * ident,char * dname)778 static int udf_verify_domain_identifier(struct super_block *sb,
779 struct regid *ident, char *dname)
780 {
781 struct domainIdentSuffix *suffix;
782
783 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
784 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
785 goto force_ro;
786 }
787 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
788 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
789 dname);
790 goto force_ro;
791 }
792 suffix = (struct domainIdentSuffix *)ident->identSuffix;
793 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
794 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
795 if (!sb_rdonly(sb)) {
796 udf_warn(sb, "Descriptor for %s marked write protected."
797 " Forcing read only mount.\n", dname);
798 }
799 goto force_ro;
800 }
801 return 0;
802
803 force_ro:
804 if (!sb_rdonly(sb))
805 return -EACCES;
806 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
807 return 0;
808 }
809
udf_load_fileset(struct super_block * sb,struct fileSetDesc * fset,struct kernel_lb_addr * root)810 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
811 struct kernel_lb_addr *root)
812 {
813 int ret;
814
815 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
816 if (ret < 0)
817 return ret;
818
819 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
820 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
821
822 udf_debug("Rootdir at block=%u, partition=%u\n",
823 root->logicalBlockNum, root->partitionReferenceNum);
824 return 0;
825 }
826
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)827 static int udf_find_fileset(struct super_block *sb,
828 struct kernel_lb_addr *fileset,
829 struct kernel_lb_addr *root)
830 {
831 struct buffer_head *bh;
832 uint16_t ident;
833 int ret;
834
835 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
836 fileset->partitionReferenceNum == 0xFFFF)
837 return -EINVAL;
838
839 bh = udf_read_ptagged(sb, fileset, 0, &ident);
840 if (!bh)
841 return -EIO;
842 if (ident != TAG_IDENT_FSD) {
843 brelse(bh);
844 return -EINVAL;
845 }
846
847 udf_debug("Fileset at block=%u, partition=%u\n",
848 fileset->logicalBlockNum, fileset->partitionReferenceNum);
849
850 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
851 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
852 brelse(bh);
853 return ret;
854 }
855
856 /*
857 * Load primary Volume Descriptor Sequence
858 *
859 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
860 * should be tried.
861 */
udf_load_pvoldesc(struct super_block * sb,sector_t block)862 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
863 {
864 struct primaryVolDesc *pvoldesc;
865 uint8_t *outstr;
866 struct buffer_head *bh;
867 uint16_t ident;
868 int ret;
869 struct timestamp *ts;
870
871 outstr = kmalloc(128, GFP_NOFS);
872 if (!outstr)
873 return -ENOMEM;
874
875 bh = udf_read_tagged(sb, block, block, &ident);
876 if (!bh) {
877 ret = -EAGAIN;
878 goto out2;
879 }
880
881 if (ident != TAG_IDENT_PVD) {
882 ret = -EIO;
883 goto out_bh;
884 }
885
886 pvoldesc = (struct primaryVolDesc *)bh->b_data;
887
888 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
889 pvoldesc->recordingDateAndTime);
890 ts = &pvoldesc->recordingDateAndTime;
891 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
892 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
893 ts->minute, le16_to_cpu(ts->typeAndTimezone));
894
895 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
896 if (ret < 0) {
897 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
898 pr_warn("incorrect volume identification, setting to "
899 "'InvalidName'\n");
900 } else {
901 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
902 }
903 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
904
905 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
906 if (ret < 0) {
907 ret = 0;
908 goto out_bh;
909 }
910 outstr[ret] = 0;
911 udf_debug("volSetIdent[] = '%s'\n", outstr);
912
913 ret = 0;
914 out_bh:
915 brelse(bh);
916 out2:
917 kfree(outstr);
918 return ret;
919 }
920
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)921 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
922 u32 meta_file_loc, u32 partition_ref)
923 {
924 struct kernel_lb_addr addr;
925 struct inode *metadata_fe;
926
927 addr.logicalBlockNum = meta_file_loc;
928 addr.partitionReferenceNum = partition_ref;
929
930 metadata_fe = udf_iget_special(sb, &addr);
931
932 if (IS_ERR(metadata_fe)) {
933 udf_warn(sb, "metadata inode efe not found\n");
934 return metadata_fe;
935 }
936 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
937 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
938 iput(metadata_fe);
939 return ERR_PTR(-EIO);
940 }
941
942 return metadata_fe;
943 }
944
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)945 static int udf_load_metadata_files(struct super_block *sb, int partition,
946 int type1_index)
947 {
948 struct udf_sb_info *sbi = UDF_SB(sb);
949 struct udf_part_map *map;
950 struct udf_meta_data *mdata;
951 struct kernel_lb_addr addr;
952 struct inode *fe;
953
954 map = &sbi->s_partmaps[partition];
955 mdata = &map->s_type_specific.s_metadata;
956 mdata->s_phys_partition_ref = type1_index;
957
958 /* metadata address */
959 udf_debug("Metadata file location: block = %u part = %u\n",
960 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
961
962 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
963 mdata->s_phys_partition_ref);
964 if (IS_ERR(fe)) {
965 /* mirror file entry */
966 udf_debug("Mirror metadata file location: block = %u part = %u\n",
967 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
968
969 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
970 mdata->s_phys_partition_ref);
971
972 if (IS_ERR(fe)) {
973 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
974 return PTR_ERR(fe);
975 }
976 mdata->s_mirror_fe = fe;
977 } else
978 mdata->s_metadata_fe = fe;
979
980
981 /*
982 * bitmap file entry
983 * Note:
984 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
985 */
986 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
987 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
988 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
989
990 udf_debug("Bitmap file location: block = %u part = %u\n",
991 addr.logicalBlockNum, addr.partitionReferenceNum);
992
993 fe = udf_iget_special(sb, &addr);
994 if (IS_ERR(fe)) {
995 if (sb_rdonly(sb))
996 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
997 else {
998 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
999 return PTR_ERR(fe);
1000 }
1001 } else
1002 mdata->s_bitmap_fe = fe;
1003 }
1004
1005 udf_debug("udf_load_metadata_files Ok\n");
1006 return 0;
1007 }
1008
udf_compute_nr_groups(struct super_block * sb,u32 partition)1009 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1010 {
1011 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1012 return DIV_ROUND_UP(map->s_partition_len +
1013 (sizeof(struct spaceBitmapDesc) << 3),
1014 sb->s_blocksize * 8);
1015 }
1016
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1017 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1018 {
1019 struct udf_bitmap *bitmap;
1020 int nr_groups = udf_compute_nr_groups(sb, index);
1021
1022 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1023 GFP_KERNEL);
1024 if (!bitmap)
1025 return NULL;
1026
1027 bitmap->s_nr_groups = nr_groups;
1028 return bitmap;
1029 }
1030
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)1031 static int check_partition_desc(struct super_block *sb,
1032 struct partitionDesc *p,
1033 struct udf_part_map *map)
1034 {
1035 bool umap, utable, fmap, ftable;
1036 struct partitionHeaderDesc *phd;
1037
1038 switch (le32_to_cpu(p->accessType)) {
1039 case PD_ACCESS_TYPE_READ_ONLY:
1040 case PD_ACCESS_TYPE_WRITE_ONCE:
1041 case PD_ACCESS_TYPE_NONE:
1042 goto force_ro;
1043 }
1044
1045 /* No Partition Header Descriptor? */
1046 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1047 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1048 goto force_ro;
1049
1050 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1051 utable = phd->unallocSpaceTable.extLength;
1052 umap = phd->unallocSpaceBitmap.extLength;
1053 ftable = phd->freedSpaceTable.extLength;
1054 fmap = phd->freedSpaceBitmap.extLength;
1055
1056 /* No allocation info? */
1057 if (!utable && !umap && !ftable && !fmap)
1058 goto force_ro;
1059
1060 /* We don't support blocks that require erasing before overwrite */
1061 if (ftable || fmap)
1062 goto force_ro;
1063 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1064 if (utable && umap)
1065 goto force_ro;
1066
1067 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1068 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1069 map->s_partition_type == UDF_METADATA_MAP25)
1070 goto force_ro;
1071
1072 return 0;
1073 force_ro:
1074 if (!sb_rdonly(sb))
1075 return -EACCES;
1076 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1077 return 0;
1078 }
1079
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1080 static int udf_fill_partdesc_info(struct super_block *sb,
1081 struct partitionDesc *p, int p_index)
1082 {
1083 struct udf_part_map *map;
1084 struct udf_sb_info *sbi = UDF_SB(sb);
1085 struct partitionHeaderDesc *phd;
1086 int err;
1087
1088 map = &sbi->s_partmaps[p_index];
1089
1090 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1091 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1092
1093 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1094 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1095 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1096 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1097 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1098 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1099 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1100 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1101
1102 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1103 p_index, map->s_partition_type,
1104 map->s_partition_root, map->s_partition_len);
1105
1106 err = check_partition_desc(sb, p, map);
1107 if (err)
1108 return err;
1109
1110 /*
1111 * Skip loading allocation info it we cannot ever write to the fs.
1112 * This is a correctness thing as we may have decided to force ro mount
1113 * to avoid allocation info we don't support.
1114 */
1115 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1116 return 0;
1117
1118 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1119 if (phd->unallocSpaceTable.extLength) {
1120 struct kernel_lb_addr loc = {
1121 .logicalBlockNum = le32_to_cpu(
1122 phd->unallocSpaceTable.extPosition),
1123 .partitionReferenceNum = p_index,
1124 };
1125 struct inode *inode;
1126
1127 inode = udf_iget_special(sb, &loc);
1128 if (IS_ERR(inode)) {
1129 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1130 p_index);
1131 return PTR_ERR(inode);
1132 }
1133 map->s_uspace.s_table = inode;
1134 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1135 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1136 p_index, map->s_uspace.s_table->i_ino);
1137 }
1138
1139 if (phd->unallocSpaceBitmap.extLength) {
1140 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1141 if (!bitmap)
1142 return -ENOMEM;
1143 map->s_uspace.s_bitmap = bitmap;
1144 bitmap->s_extPosition = le32_to_cpu(
1145 phd->unallocSpaceBitmap.extPosition);
1146 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1147 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1148 p_index, bitmap->s_extPosition);
1149 }
1150
1151 return 0;
1152 }
1153
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1154 static void udf_find_vat_block(struct super_block *sb, int p_index,
1155 int type1_index, sector_t start_block)
1156 {
1157 struct udf_sb_info *sbi = UDF_SB(sb);
1158 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1159 sector_t vat_block;
1160 struct kernel_lb_addr ino;
1161 struct inode *inode;
1162
1163 /*
1164 * VAT file entry is in the last recorded block. Some broken disks have
1165 * it a few blocks before so try a bit harder...
1166 */
1167 ino.partitionReferenceNum = type1_index;
1168 for (vat_block = start_block;
1169 vat_block >= map->s_partition_root &&
1170 vat_block >= start_block - 3; vat_block--) {
1171 ino.logicalBlockNum = vat_block - map->s_partition_root;
1172 inode = udf_iget_special(sb, &ino);
1173 if (!IS_ERR(inode)) {
1174 sbi->s_vat_inode = inode;
1175 break;
1176 }
1177 }
1178 }
1179
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1180 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1181 {
1182 struct udf_sb_info *sbi = UDF_SB(sb);
1183 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1184 struct buffer_head *bh = NULL;
1185 struct udf_inode_info *vati;
1186 struct virtualAllocationTable20 *vat20;
1187 sector_t blocks = sb_bdev_nr_blocks(sb);
1188
1189 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1190 if (!sbi->s_vat_inode &&
1191 sbi->s_last_block != blocks - 1) {
1192 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1193 (unsigned long)sbi->s_last_block,
1194 (unsigned long)blocks - 1);
1195 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1196 }
1197 if (!sbi->s_vat_inode)
1198 return -EIO;
1199
1200 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1201 map->s_type_specific.s_virtual.s_start_offset = 0;
1202 map->s_type_specific.s_virtual.s_num_entries =
1203 (sbi->s_vat_inode->i_size - 36) >> 2;
1204 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1205 vati = UDF_I(sbi->s_vat_inode);
1206 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1207 int err = 0;
1208
1209 bh = udf_bread(sbi->s_vat_inode, 0, 0, &err);
1210 if (!bh) {
1211 if (!err)
1212 err = -EFSCORRUPTED;
1213 return err;
1214 }
1215 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1216 } else {
1217 vat20 = (struct virtualAllocationTable20 *)
1218 vati->i_data;
1219 }
1220
1221 map->s_type_specific.s_virtual.s_start_offset =
1222 le16_to_cpu(vat20->lengthHeader);
1223 map->s_type_specific.s_virtual.s_num_entries =
1224 (sbi->s_vat_inode->i_size -
1225 map->s_type_specific.s_virtual.
1226 s_start_offset) >> 2;
1227 brelse(bh);
1228 }
1229 return 0;
1230 }
1231
1232 /*
1233 * Load partition descriptor block
1234 *
1235 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1236 * sequence.
1237 */
udf_load_partdesc(struct super_block * sb,sector_t block)1238 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1239 {
1240 struct buffer_head *bh;
1241 struct partitionDesc *p;
1242 struct udf_part_map *map;
1243 struct udf_sb_info *sbi = UDF_SB(sb);
1244 int i, type1_idx;
1245 uint16_t partitionNumber;
1246 uint16_t ident;
1247 int ret;
1248
1249 bh = udf_read_tagged(sb, block, block, &ident);
1250 if (!bh)
1251 return -EAGAIN;
1252 if (ident != TAG_IDENT_PD) {
1253 ret = 0;
1254 goto out_bh;
1255 }
1256
1257 p = (struct partitionDesc *)bh->b_data;
1258 partitionNumber = le16_to_cpu(p->partitionNumber);
1259
1260 /* First scan for TYPE1 and SPARABLE partitions */
1261 for (i = 0; i < sbi->s_partitions; i++) {
1262 map = &sbi->s_partmaps[i];
1263 udf_debug("Searching map: (%u == %u)\n",
1264 map->s_partition_num, partitionNumber);
1265 if (map->s_partition_num == partitionNumber &&
1266 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1267 map->s_partition_type == UDF_SPARABLE_MAP15))
1268 break;
1269 }
1270
1271 if (i >= sbi->s_partitions) {
1272 udf_debug("Partition (%u) not found in partition map\n",
1273 partitionNumber);
1274 ret = 0;
1275 goto out_bh;
1276 }
1277
1278 ret = udf_fill_partdesc_info(sb, p, i);
1279 if (ret < 0)
1280 goto out_bh;
1281
1282 /*
1283 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1284 * PHYSICAL partitions are already set up
1285 */
1286 type1_idx = i;
1287 map = NULL; /* supress 'maybe used uninitialized' warning */
1288 for (i = 0; i < sbi->s_partitions; i++) {
1289 map = &sbi->s_partmaps[i];
1290
1291 if (map->s_partition_num == partitionNumber &&
1292 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1293 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1294 map->s_partition_type == UDF_METADATA_MAP25))
1295 break;
1296 }
1297
1298 if (i >= sbi->s_partitions) {
1299 ret = 0;
1300 goto out_bh;
1301 }
1302
1303 ret = udf_fill_partdesc_info(sb, p, i);
1304 if (ret < 0)
1305 goto out_bh;
1306
1307 if (map->s_partition_type == UDF_METADATA_MAP25) {
1308 ret = udf_load_metadata_files(sb, i, type1_idx);
1309 if (ret < 0) {
1310 udf_err(sb, "error loading MetaData partition map %d\n",
1311 i);
1312 goto out_bh;
1313 }
1314 } else {
1315 /*
1316 * If we have a partition with virtual map, we don't handle
1317 * writing to it (we overwrite blocks instead of relocating
1318 * them).
1319 */
1320 if (!sb_rdonly(sb)) {
1321 ret = -EACCES;
1322 goto out_bh;
1323 }
1324 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1325 ret = udf_load_vat(sb, i, type1_idx);
1326 if (ret < 0)
1327 goto out_bh;
1328 }
1329 ret = 0;
1330 out_bh:
1331 /* In case loading failed, we handle cleanup in udf_fill_super */
1332 brelse(bh);
1333 return ret;
1334 }
1335
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1336 static int udf_load_sparable_map(struct super_block *sb,
1337 struct udf_part_map *map,
1338 struct sparablePartitionMap *spm)
1339 {
1340 uint32_t loc;
1341 uint16_t ident;
1342 struct sparingTable *st;
1343 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1344 int i;
1345 struct buffer_head *bh;
1346
1347 map->s_partition_type = UDF_SPARABLE_MAP15;
1348 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1349 if (!is_power_of_2(sdata->s_packet_len)) {
1350 udf_err(sb, "error loading logical volume descriptor: "
1351 "Invalid packet length %u\n",
1352 (unsigned)sdata->s_packet_len);
1353 return -EIO;
1354 }
1355 if (spm->numSparingTables > 4) {
1356 udf_err(sb, "error loading logical volume descriptor: "
1357 "Too many sparing tables (%d)\n",
1358 (int)spm->numSparingTables);
1359 return -EIO;
1360 }
1361 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1362 udf_err(sb, "error loading logical volume descriptor: "
1363 "Too big sparing table size (%u)\n",
1364 le32_to_cpu(spm->sizeSparingTable));
1365 return -EIO;
1366 }
1367
1368 for (i = 0; i < spm->numSparingTables; i++) {
1369 loc = le32_to_cpu(spm->locSparingTable[i]);
1370 bh = udf_read_tagged(sb, loc, loc, &ident);
1371 if (!bh)
1372 continue;
1373
1374 st = (struct sparingTable *)bh->b_data;
1375 if (ident != 0 ||
1376 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1377 strlen(UDF_ID_SPARING)) ||
1378 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1379 sb->s_blocksize) {
1380 brelse(bh);
1381 continue;
1382 }
1383
1384 sdata->s_spar_map[i] = bh;
1385 }
1386 map->s_partition_func = udf_get_pblock_spar15;
1387 return 0;
1388 }
1389
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1390 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1391 struct kernel_lb_addr *fileset)
1392 {
1393 struct logicalVolDesc *lvd;
1394 int i, offset;
1395 uint8_t type;
1396 struct udf_sb_info *sbi = UDF_SB(sb);
1397 struct genericPartitionMap *gpm;
1398 uint16_t ident;
1399 struct buffer_head *bh;
1400 unsigned int table_len;
1401 int ret;
1402
1403 bh = udf_read_tagged(sb, block, block, &ident);
1404 if (!bh)
1405 return -EAGAIN;
1406 BUG_ON(ident != TAG_IDENT_LVD);
1407 lvd = (struct logicalVolDesc *)bh->b_data;
1408 table_len = le32_to_cpu(lvd->mapTableLength);
1409 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1410 udf_err(sb, "error loading logical volume descriptor: "
1411 "Partition table too long (%u > %lu)\n", table_len,
1412 sb->s_blocksize - sizeof(*lvd));
1413 ret = -EIO;
1414 goto out_bh;
1415 }
1416
1417 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1418 "logical volume");
1419 if (ret)
1420 goto out_bh;
1421 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1422 if (ret)
1423 goto out_bh;
1424
1425 for (i = 0, offset = 0;
1426 i < sbi->s_partitions && offset < table_len;
1427 i++, offset += gpm->partitionMapLength) {
1428 struct udf_part_map *map = &sbi->s_partmaps[i];
1429 gpm = (struct genericPartitionMap *)
1430 &(lvd->partitionMaps[offset]);
1431 type = gpm->partitionMapType;
1432 if (type == 1) {
1433 struct genericPartitionMap1 *gpm1 =
1434 (struct genericPartitionMap1 *)gpm;
1435 map->s_partition_type = UDF_TYPE1_MAP15;
1436 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1437 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1438 map->s_partition_func = NULL;
1439 } else if (type == 2) {
1440 struct udfPartitionMap2 *upm2 =
1441 (struct udfPartitionMap2 *)gpm;
1442 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1443 strlen(UDF_ID_VIRTUAL))) {
1444 u16 suf =
1445 le16_to_cpu(((__le16 *)upm2->partIdent.
1446 identSuffix)[0]);
1447 if (suf < 0x0200) {
1448 map->s_partition_type =
1449 UDF_VIRTUAL_MAP15;
1450 map->s_partition_func =
1451 udf_get_pblock_virt15;
1452 } else {
1453 map->s_partition_type =
1454 UDF_VIRTUAL_MAP20;
1455 map->s_partition_func =
1456 udf_get_pblock_virt20;
1457 }
1458 } else if (!strncmp(upm2->partIdent.ident,
1459 UDF_ID_SPARABLE,
1460 strlen(UDF_ID_SPARABLE))) {
1461 ret = udf_load_sparable_map(sb, map,
1462 (struct sparablePartitionMap *)gpm);
1463 if (ret < 0)
1464 goto out_bh;
1465 } else if (!strncmp(upm2->partIdent.ident,
1466 UDF_ID_METADATA,
1467 strlen(UDF_ID_METADATA))) {
1468 struct udf_meta_data *mdata =
1469 &map->s_type_specific.s_metadata;
1470 struct metadataPartitionMap *mdm =
1471 (struct metadataPartitionMap *)
1472 &(lvd->partitionMaps[offset]);
1473 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1474 i, type, UDF_ID_METADATA);
1475
1476 map->s_partition_type = UDF_METADATA_MAP25;
1477 map->s_partition_func = udf_get_pblock_meta25;
1478
1479 mdata->s_meta_file_loc =
1480 le32_to_cpu(mdm->metadataFileLoc);
1481 mdata->s_mirror_file_loc =
1482 le32_to_cpu(mdm->metadataMirrorFileLoc);
1483 mdata->s_bitmap_file_loc =
1484 le32_to_cpu(mdm->metadataBitmapFileLoc);
1485 mdata->s_alloc_unit_size =
1486 le32_to_cpu(mdm->allocUnitSize);
1487 mdata->s_align_unit_size =
1488 le16_to_cpu(mdm->alignUnitSize);
1489 if (mdm->flags & 0x01)
1490 mdata->s_flags |= MF_DUPLICATE_MD;
1491
1492 udf_debug("Metadata Ident suffix=0x%x\n",
1493 le16_to_cpu(*(__le16 *)
1494 mdm->partIdent.identSuffix));
1495 udf_debug("Metadata part num=%u\n",
1496 le16_to_cpu(mdm->partitionNum));
1497 udf_debug("Metadata part alloc unit size=%u\n",
1498 le32_to_cpu(mdm->allocUnitSize));
1499 udf_debug("Metadata file loc=%u\n",
1500 le32_to_cpu(mdm->metadataFileLoc));
1501 udf_debug("Mirror file loc=%u\n",
1502 le32_to_cpu(mdm->metadataMirrorFileLoc));
1503 udf_debug("Bitmap file loc=%u\n",
1504 le32_to_cpu(mdm->metadataBitmapFileLoc));
1505 udf_debug("Flags: %d %u\n",
1506 mdata->s_flags, mdm->flags);
1507 } else {
1508 udf_debug("Unknown ident: %s\n",
1509 upm2->partIdent.ident);
1510 continue;
1511 }
1512 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1513 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1514 }
1515 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1516 i, map->s_partition_num, type, map->s_volumeseqnum);
1517 }
1518
1519 if (fileset) {
1520 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1521
1522 *fileset = lelb_to_cpu(la->extLocation);
1523 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1524 fileset->logicalBlockNum,
1525 fileset->partitionReferenceNum);
1526 }
1527 if (lvd->integritySeqExt.extLength)
1528 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1529 ret = 0;
1530
1531 if (!sbi->s_lvid_bh) {
1532 /* We can't generate unique IDs without a valid LVID */
1533 if (sb_rdonly(sb)) {
1534 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1535 } else {
1536 udf_warn(sb, "Damaged or missing LVID, forcing "
1537 "readonly mount\n");
1538 ret = -EACCES;
1539 }
1540 }
1541 out_bh:
1542 brelse(bh);
1543 return ret;
1544 }
1545
1546 /*
1547 * Find the prevailing Logical Volume Integrity Descriptor.
1548 */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1549 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1550 {
1551 struct buffer_head *bh, *final_bh;
1552 uint16_t ident;
1553 struct udf_sb_info *sbi = UDF_SB(sb);
1554 struct logicalVolIntegrityDesc *lvid;
1555 int indirections = 0;
1556 u32 parts, impuselen;
1557
1558 while (++indirections <= UDF_MAX_LVID_NESTING) {
1559 final_bh = NULL;
1560 while (loc.extLength > 0 &&
1561 (bh = udf_read_tagged(sb, loc.extLocation,
1562 loc.extLocation, &ident))) {
1563 if (ident != TAG_IDENT_LVID) {
1564 brelse(bh);
1565 break;
1566 }
1567
1568 brelse(final_bh);
1569 final_bh = bh;
1570
1571 loc.extLength -= sb->s_blocksize;
1572 loc.extLocation++;
1573 }
1574
1575 if (!final_bh)
1576 return;
1577
1578 brelse(sbi->s_lvid_bh);
1579 sbi->s_lvid_bh = final_bh;
1580
1581 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1582 if (lvid->nextIntegrityExt.extLength == 0)
1583 goto check;
1584
1585 loc = leea_to_cpu(lvid->nextIntegrityExt);
1586 }
1587
1588 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1589 UDF_MAX_LVID_NESTING);
1590 out_err:
1591 brelse(sbi->s_lvid_bh);
1592 sbi->s_lvid_bh = NULL;
1593 return;
1594 check:
1595 parts = le32_to_cpu(lvid->numOfPartitions);
1596 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1597 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1598 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1599 2 * parts * sizeof(u32) > sb->s_blocksize) {
1600 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1601 "ignoring.\n", parts, impuselen);
1602 goto out_err;
1603 }
1604 }
1605
1606 /*
1607 * Step for reallocation of table of partition descriptor sequence numbers.
1608 * Must be power of 2.
1609 */
1610 #define PART_DESC_ALLOC_STEP 32
1611
1612 struct part_desc_seq_scan_data {
1613 struct udf_vds_record rec;
1614 u32 partnum;
1615 };
1616
1617 struct desc_seq_scan_data {
1618 struct udf_vds_record vds[VDS_POS_LENGTH];
1619 unsigned int size_part_descs;
1620 unsigned int num_part_descs;
1621 struct part_desc_seq_scan_data *part_descs_loc;
1622 };
1623
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1624 static struct udf_vds_record *handle_partition_descriptor(
1625 struct buffer_head *bh,
1626 struct desc_seq_scan_data *data)
1627 {
1628 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1629 int partnum;
1630 int i;
1631
1632 partnum = le16_to_cpu(desc->partitionNumber);
1633 for (i = 0; i < data->num_part_descs; i++)
1634 if (partnum == data->part_descs_loc[i].partnum)
1635 return &(data->part_descs_loc[i].rec);
1636 if (data->num_part_descs >= data->size_part_descs) {
1637 struct part_desc_seq_scan_data *new_loc;
1638 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1639
1640 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1641 if (!new_loc)
1642 return ERR_PTR(-ENOMEM);
1643 memcpy(new_loc, data->part_descs_loc,
1644 data->size_part_descs * sizeof(*new_loc));
1645 kfree(data->part_descs_loc);
1646 data->part_descs_loc = new_loc;
1647 data->size_part_descs = new_size;
1648 }
1649 return &(data->part_descs_loc[data->num_part_descs++].rec);
1650 }
1651
1652
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1653 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1654 struct buffer_head *bh, struct desc_seq_scan_data *data)
1655 {
1656 switch (ident) {
1657 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1658 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1659 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1660 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1661 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1662 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1663 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1664 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1665 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1666 return handle_partition_descriptor(bh, data);
1667 }
1668 return NULL;
1669 }
1670
1671 /*
1672 * Process a main/reserve volume descriptor sequence.
1673 * @block First block of first extent of the sequence.
1674 * @lastblock Lastblock of first extent of the sequence.
1675 * @fileset There we store extent containing root fileset
1676 *
1677 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1678 * sequence
1679 */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1680 static noinline int udf_process_sequence(
1681 struct super_block *sb,
1682 sector_t block, sector_t lastblock,
1683 struct kernel_lb_addr *fileset)
1684 {
1685 struct buffer_head *bh = NULL;
1686 struct udf_vds_record *curr;
1687 struct generic_desc *gd;
1688 struct volDescPtr *vdp;
1689 bool done = false;
1690 uint32_t vdsn;
1691 uint16_t ident;
1692 int ret;
1693 unsigned int indirections = 0;
1694 struct desc_seq_scan_data data;
1695 unsigned int i;
1696
1697 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1698 data.size_part_descs = PART_DESC_ALLOC_STEP;
1699 data.num_part_descs = 0;
1700 data.part_descs_loc = kcalloc(data.size_part_descs,
1701 sizeof(*data.part_descs_loc),
1702 GFP_KERNEL);
1703 if (!data.part_descs_loc)
1704 return -ENOMEM;
1705
1706 /*
1707 * Read the main descriptor sequence and find which descriptors
1708 * are in it.
1709 */
1710 for (; (!done && block <= lastblock); block++) {
1711 bh = udf_read_tagged(sb, block, block, &ident);
1712 if (!bh)
1713 break;
1714
1715 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1716 gd = (struct generic_desc *)bh->b_data;
1717 vdsn = le32_to_cpu(gd->volDescSeqNum);
1718 switch (ident) {
1719 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1720 if (++indirections > UDF_MAX_TD_NESTING) {
1721 udf_err(sb, "too many Volume Descriptor "
1722 "Pointers (max %u supported)\n",
1723 UDF_MAX_TD_NESTING);
1724 brelse(bh);
1725 ret = -EIO;
1726 goto out;
1727 }
1728
1729 vdp = (struct volDescPtr *)bh->b_data;
1730 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1731 lastblock = le32_to_cpu(
1732 vdp->nextVolDescSeqExt.extLength) >>
1733 sb->s_blocksize_bits;
1734 lastblock += block - 1;
1735 /* For loop is going to increment 'block' again */
1736 block--;
1737 break;
1738 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1739 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1740 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1741 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1742 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1743 curr = get_volume_descriptor_record(ident, bh, &data);
1744 if (IS_ERR(curr)) {
1745 brelse(bh);
1746 ret = PTR_ERR(curr);
1747 goto out;
1748 }
1749 /* Descriptor we don't care about? */
1750 if (!curr)
1751 break;
1752 if (vdsn >= curr->volDescSeqNum) {
1753 curr->volDescSeqNum = vdsn;
1754 curr->block = block;
1755 }
1756 break;
1757 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1758 done = true;
1759 break;
1760 }
1761 brelse(bh);
1762 }
1763 /*
1764 * Now read interesting descriptors again and process them
1765 * in a suitable order
1766 */
1767 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1768 udf_err(sb, "Primary Volume Descriptor not found!\n");
1769 ret = -EAGAIN;
1770 goto out;
1771 }
1772 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1773 if (ret < 0)
1774 goto out;
1775
1776 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1777 ret = udf_load_logicalvol(sb,
1778 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1779 fileset);
1780 if (ret < 0)
1781 goto out;
1782 }
1783
1784 /* Now handle prevailing Partition Descriptors */
1785 for (i = 0; i < data.num_part_descs; i++) {
1786 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1787 if (ret < 0)
1788 goto out;
1789 }
1790 ret = 0;
1791 out:
1792 kfree(data.part_descs_loc);
1793 return ret;
1794 }
1795
1796 /*
1797 * Load Volume Descriptor Sequence described by anchor in bh
1798 *
1799 * Returns <0 on error, 0 on success
1800 */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1801 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1802 struct kernel_lb_addr *fileset)
1803 {
1804 struct anchorVolDescPtr *anchor;
1805 sector_t main_s, main_e, reserve_s, reserve_e;
1806 int ret;
1807
1808 anchor = (struct anchorVolDescPtr *)bh->b_data;
1809
1810 /* Locate the main sequence */
1811 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1812 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1813 main_e = main_e >> sb->s_blocksize_bits;
1814 main_e += main_s - 1;
1815
1816 /* Locate the reserve sequence */
1817 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1818 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1819 reserve_e = reserve_e >> sb->s_blocksize_bits;
1820 reserve_e += reserve_s - 1;
1821
1822 /* Process the main & reserve sequences */
1823 /* responsible for finding the PartitionDesc(s) */
1824 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1825 if (ret != -EAGAIN)
1826 return ret;
1827 udf_sb_free_partitions(sb);
1828 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1829 if (ret < 0) {
1830 udf_sb_free_partitions(sb);
1831 /* No sequence was OK, return -EIO */
1832 if (ret == -EAGAIN)
1833 ret = -EIO;
1834 }
1835 return ret;
1836 }
1837
1838 /*
1839 * Check whether there is an anchor block in the given block and
1840 * load Volume Descriptor Sequence if so.
1841 *
1842 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1843 * block
1844 */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1845 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1846 struct kernel_lb_addr *fileset)
1847 {
1848 struct buffer_head *bh;
1849 uint16_t ident;
1850 int ret;
1851
1852 bh = udf_read_tagged(sb, block, block, &ident);
1853 if (!bh)
1854 return -EAGAIN;
1855 if (ident != TAG_IDENT_AVDP) {
1856 brelse(bh);
1857 return -EAGAIN;
1858 }
1859 ret = udf_load_sequence(sb, bh, fileset);
1860 brelse(bh);
1861 return ret;
1862 }
1863
1864 /*
1865 * Search for an anchor volume descriptor pointer.
1866 *
1867 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1868 * of anchors.
1869 */
udf_scan_anchors(struct super_block * sb,udf_pblk_t * lastblock,struct kernel_lb_addr * fileset)1870 static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
1871 struct kernel_lb_addr *fileset)
1872 {
1873 udf_pblk_t last[6];
1874 int i;
1875 struct udf_sb_info *sbi = UDF_SB(sb);
1876 int last_count = 0;
1877 int ret;
1878
1879 /* First try user provided anchor */
1880 if (sbi->s_anchor) {
1881 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1882 if (ret != -EAGAIN)
1883 return ret;
1884 }
1885 /*
1886 * according to spec, anchor is in either:
1887 * block 256
1888 * lastblock-256
1889 * lastblock
1890 * however, if the disc isn't closed, it could be 512.
1891 */
1892 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1893 if (ret != -EAGAIN)
1894 return ret;
1895 /*
1896 * The trouble is which block is the last one. Drives often misreport
1897 * this so we try various possibilities.
1898 */
1899 last[last_count++] = *lastblock;
1900 if (*lastblock >= 1)
1901 last[last_count++] = *lastblock - 1;
1902 last[last_count++] = *lastblock + 1;
1903 if (*lastblock >= 2)
1904 last[last_count++] = *lastblock - 2;
1905 if (*lastblock >= 150)
1906 last[last_count++] = *lastblock - 150;
1907 if (*lastblock >= 152)
1908 last[last_count++] = *lastblock - 152;
1909
1910 for (i = 0; i < last_count; i++) {
1911 if (last[i] >= sb_bdev_nr_blocks(sb))
1912 continue;
1913 ret = udf_check_anchor_block(sb, last[i], fileset);
1914 if (ret != -EAGAIN) {
1915 if (!ret)
1916 *lastblock = last[i];
1917 return ret;
1918 }
1919 if (last[i] < 256)
1920 continue;
1921 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1922 if (ret != -EAGAIN) {
1923 if (!ret)
1924 *lastblock = last[i];
1925 return ret;
1926 }
1927 }
1928
1929 /* Finally try block 512 in case media is open */
1930 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1931 }
1932
1933 /*
1934 * Check Volume Structure Descriptor, find Anchor block and load Volume
1935 * Descriptor Sequence.
1936 *
1937 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1938 * block was not found.
1939 */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1940 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1941 int silent, struct kernel_lb_addr *fileset)
1942 {
1943 struct udf_sb_info *sbi = UDF_SB(sb);
1944 int nsr = 0;
1945 int ret;
1946
1947 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1948 if (!silent)
1949 udf_warn(sb, "Bad block size\n");
1950 return -EINVAL;
1951 }
1952 sbi->s_last_block = uopt->lastblock;
1953 if (!uopt->novrs) {
1954 /* Check that it is NSR02 compliant */
1955 nsr = udf_check_vsd(sb);
1956 if (!nsr) {
1957 if (!silent)
1958 udf_warn(sb, "No VRS found\n");
1959 return -EINVAL;
1960 }
1961 if (nsr == -1)
1962 udf_debug("Failed to read sector at offset %d. "
1963 "Assuming open disc. Skipping validity "
1964 "check\n", VSD_FIRST_SECTOR_OFFSET);
1965 if (!sbi->s_last_block)
1966 sbi->s_last_block = udf_get_last_block(sb);
1967 } else {
1968 udf_debug("Validity check skipped because of novrs option\n");
1969 }
1970
1971 /* Look for anchor block and load Volume Descriptor Sequence */
1972 sbi->s_anchor = uopt->anchor;
1973 ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset);
1974 if (ret < 0) {
1975 if (!silent && ret == -EAGAIN)
1976 udf_warn(sb, "No anchor found\n");
1977 return ret;
1978 }
1979 return 0;
1980 }
1981
udf_finalize_lvid(struct logicalVolIntegrityDesc * lvid)1982 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
1983 {
1984 struct timespec64 ts;
1985
1986 ktime_get_real_ts64(&ts);
1987 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1988 lvid->descTag.descCRC = cpu_to_le16(
1989 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1990 le16_to_cpu(lvid->descTag.descCRCLength)));
1991 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1992 }
1993
udf_open_lvid(struct super_block * sb)1994 static void udf_open_lvid(struct super_block *sb)
1995 {
1996 struct udf_sb_info *sbi = UDF_SB(sb);
1997 struct buffer_head *bh = sbi->s_lvid_bh;
1998 struct logicalVolIntegrityDesc *lvid;
1999 struct logicalVolIntegrityDescImpUse *lvidiu;
2000
2001 if (!bh)
2002 return;
2003 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2004 lvidiu = udf_sb_lvidiu(sb);
2005 if (!lvidiu)
2006 return;
2007
2008 mutex_lock(&sbi->s_alloc_mutex);
2009 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2010 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2011 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2012 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2013 else
2014 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2015
2016 udf_finalize_lvid(lvid);
2017 mark_buffer_dirty(bh);
2018 sbi->s_lvid_dirty = 0;
2019 mutex_unlock(&sbi->s_alloc_mutex);
2020 /* Make opening of filesystem visible on the media immediately */
2021 sync_dirty_buffer(bh);
2022 }
2023
udf_close_lvid(struct super_block * sb)2024 static void udf_close_lvid(struct super_block *sb)
2025 {
2026 struct udf_sb_info *sbi = UDF_SB(sb);
2027 struct buffer_head *bh = sbi->s_lvid_bh;
2028 struct logicalVolIntegrityDesc *lvid;
2029 struct logicalVolIntegrityDescImpUse *lvidiu;
2030
2031 if (!bh)
2032 return;
2033 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2034 lvidiu = udf_sb_lvidiu(sb);
2035 if (!lvidiu)
2036 return;
2037
2038 mutex_lock(&sbi->s_alloc_mutex);
2039 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2040 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2041 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2042 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2043 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2044 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2045 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2046 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2047 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2048 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2049
2050 /*
2051 * We set buffer uptodate unconditionally here to avoid spurious
2052 * warnings from mark_buffer_dirty() when previous EIO has marked
2053 * the buffer as !uptodate
2054 */
2055 set_buffer_uptodate(bh);
2056 udf_finalize_lvid(lvid);
2057 mark_buffer_dirty(bh);
2058 sbi->s_lvid_dirty = 0;
2059 mutex_unlock(&sbi->s_alloc_mutex);
2060 /* Make closing of filesystem visible on the media immediately */
2061 sync_dirty_buffer(bh);
2062 }
2063
lvid_get_unique_id(struct super_block * sb)2064 u64 lvid_get_unique_id(struct super_block *sb)
2065 {
2066 struct buffer_head *bh;
2067 struct udf_sb_info *sbi = UDF_SB(sb);
2068 struct logicalVolIntegrityDesc *lvid;
2069 struct logicalVolHeaderDesc *lvhd;
2070 u64 uniqueID;
2071 u64 ret;
2072
2073 bh = sbi->s_lvid_bh;
2074 if (!bh)
2075 return 0;
2076
2077 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2078 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2079
2080 mutex_lock(&sbi->s_alloc_mutex);
2081 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2082 if (!(++uniqueID & 0xFFFFFFFF))
2083 uniqueID += 16;
2084 lvhd->uniqueID = cpu_to_le64(uniqueID);
2085 udf_updated_lvid(sb);
2086 mutex_unlock(&sbi->s_alloc_mutex);
2087
2088 return ret;
2089 }
2090
udf_fill_super(struct super_block * sb,void * options,int silent)2091 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2092 {
2093 int ret = -EINVAL;
2094 struct inode *inode = NULL;
2095 struct udf_options uopt;
2096 struct kernel_lb_addr rootdir, fileset;
2097 struct udf_sb_info *sbi;
2098 bool lvid_open = false;
2099
2100 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2101 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2102 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2103 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2104 uopt.umask = 0;
2105 uopt.fmode = UDF_INVALID_MODE;
2106 uopt.dmode = UDF_INVALID_MODE;
2107 uopt.nls_map = NULL;
2108
2109 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2110 if (!sbi)
2111 return -ENOMEM;
2112
2113 sb->s_fs_info = sbi;
2114
2115 mutex_init(&sbi->s_alloc_mutex);
2116
2117 if (!udf_parse_options((char *)options, &uopt, false))
2118 goto parse_options_failure;
2119
2120 fileset.logicalBlockNum = 0xFFFFFFFF;
2121 fileset.partitionReferenceNum = 0xFFFF;
2122
2123 sbi->s_flags = uopt.flags;
2124 sbi->s_uid = uopt.uid;
2125 sbi->s_gid = uopt.gid;
2126 sbi->s_umask = uopt.umask;
2127 sbi->s_fmode = uopt.fmode;
2128 sbi->s_dmode = uopt.dmode;
2129 sbi->s_nls_map = uopt.nls_map;
2130 rwlock_init(&sbi->s_cred_lock);
2131
2132 if (uopt.session == 0xFFFFFFFF)
2133 sbi->s_session = udf_get_last_session(sb);
2134 else
2135 sbi->s_session = uopt.session;
2136
2137 udf_debug("Multi-session=%d\n", sbi->s_session);
2138
2139 /* Fill in the rest of the superblock */
2140 sb->s_op = &udf_sb_ops;
2141 sb->s_export_op = &udf_export_ops;
2142
2143 sb->s_magic = UDF_SUPER_MAGIC;
2144 sb->s_time_gran = 1000;
2145
2146 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2147 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2148 } else {
2149 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2150 while (uopt.blocksize <= 4096) {
2151 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2152 if (ret < 0) {
2153 if (!silent && ret != -EACCES) {
2154 pr_notice("Scanning with blocksize %u failed\n",
2155 uopt.blocksize);
2156 }
2157 brelse(sbi->s_lvid_bh);
2158 sbi->s_lvid_bh = NULL;
2159 /*
2160 * EACCES is special - we want to propagate to
2161 * upper layers that we cannot handle RW mount.
2162 */
2163 if (ret == -EACCES)
2164 break;
2165 } else
2166 break;
2167
2168 uopt.blocksize <<= 1;
2169 }
2170 }
2171 if (ret < 0) {
2172 if (ret == -EAGAIN) {
2173 udf_warn(sb, "No partition found (1)\n");
2174 ret = -EINVAL;
2175 }
2176 goto error_out;
2177 }
2178
2179 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2180
2181 if (sbi->s_lvid_bh) {
2182 struct logicalVolIntegrityDescImpUse *lvidiu =
2183 udf_sb_lvidiu(sb);
2184 uint16_t minUDFReadRev;
2185 uint16_t minUDFWriteRev;
2186
2187 if (!lvidiu) {
2188 ret = -EINVAL;
2189 goto error_out;
2190 }
2191 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2192 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2193 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2194 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2195 minUDFReadRev,
2196 UDF_MAX_READ_VERSION);
2197 ret = -EINVAL;
2198 goto error_out;
2199 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2200 if (!sb_rdonly(sb)) {
2201 ret = -EACCES;
2202 goto error_out;
2203 }
2204 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2205 }
2206
2207 sbi->s_udfrev = minUDFWriteRev;
2208
2209 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2210 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2211 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2212 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2213 }
2214
2215 if (!sbi->s_partitions) {
2216 udf_warn(sb, "No partition found (2)\n");
2217 ret = -EINVAL;
2218 goto error_out;
2219 }
2220
2221 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2222 UDF_PART_FLAG_READ_ONLY) {
2223 if (!sb_rdonly(sb)) {
2224 ret = -EACCES;
2225 goto error_out;
2226 }
2227 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2228 }
2229
2230 ret = udf_find_fileset(sb, &fileset, &rootdir);
2231 if (ret < 0) {
2232 udf_warn(sb, "No fileset found\n");
2233 goto error_out;
2234 }
2235
2236 if (!silent) {
2237 struct timestamp ts;
2238 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2239 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2240 sbi->s_volume_ident,
2241 le16_to_cpu(ts.year), ts.month, ts.day,
2242 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2243 }
2244 if (!sb_rdonly(sb)) {
2245 udf_open_lvid(sb);
2246 lvid_open = true;
2247 }
2248
2249 /* Assign the root inode */
2250 /* assign inodes by physical block number */
2251 /* perhaps it's not extensible enough, but for now ... */
2252 inode = udf_iget(sb, &rootdir);
2253 if (IS_ERR(inode)) {
2254 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2255 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2256 ret = PTR_ERR(inode);
2257 goto error_out;
2258 }
2259
2260 /* Allocate a dentry for the root inode */
2261 sb->s_root = d_make_root(inode);
2262 if (!sb->s_root) {
2263 udf_err(sb, "Couldn't allocate root dentry\n");
2264 ret = -ENOMEM;
2265 goto error_out;
2266 }
2267 sb->s_maxbytes = UDF_MAX_FILESIZE;
2268 sb->s_max_links = UDF_MAX_LINKS;
2269 return 0;
2270
2271 error_out:
2272 iput(sbi->s_vat_inode);
2273 parse_options_failure:
2274 unload_nls(uopt.nls_map);
2275 if (lvid_open)
2276 udf_close_lvid(sb);
2277 brelse(sbi->s_lvid_bh);
2278 udf_sb_free_partitions(sb);
2279 kfree(sbi);
2280 sb->s_fs_info = NULL;
2281
2282 return ret;
2283 }
2284
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2285 void _udf_err(struct super_block *sb, const char *function,
2286 const char *fmt, ...)
2287 {
2288 struct va_format vaf;
2289 va_list args;
2290
2291 va_start(args, fmt);
2292
2293 vaf.fmt = fmt;
2294 vaf.va = &args;
2295
2296 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2297
2298 va_end(args);
2299 }
2300
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2301 void _udf_warn(struct super_block *sb, const char *function,
2302 const char *fmt, ...)
2303 {
2304 struct va_format vaf;
2305 va_list args;
2306
2307 va_start(args, fmt);
2308
2309 vaf.fmt = fmt;
2310 vaf.va = &args;
2311
2312 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2313
2314 va_end(args);
2315 }
2316
udf_put_super(struct super_block * sb)2317 static void udf_put_super(struct super_block *sb)
2318 {
2319 struct udf_sb_info *sbi;
2320
2321 sbi = UDF_SB(sb);
2322
2323 iput(sbi->s_vat_inode);
2324 unload_nls(sbi->s_nls_map);
2325 if (!sb_rdonly(sb))
2326 udf_close_lvid(sb);
2327 brelse(sbi->s_lvid_bh);
2328 udf_sb_free_partitions(sb);
2329 mutex_destroy(&sbi->s_alloc_mutex);
2330 kfree(sb->s_fs_info);
2331 sb->s_fs_info = NULL;
2332 }
2333
udf_sync_fs(struct super_block * sb,int wait)2334 static int udf_sync_fs(struct super_block *sb, int wait)
2335 {
2336 struct udf_sb_info *sbi = UDF_SB(sb);
2337
2338 mutex_lock(&sbi->s_alloc_mutex);
2339 if (sbi->s_lvid_dirty) {
2340 struct buffer_head *bh = sbi->s_lvid_bh;
2341 struct logicalVolIntegrityDesc *lvid;
2342
2343 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2344 udf_finalize_lvid(lvid);
2345
2346 /*
2347 * Blockdevice will be synced later so we don't have to submit
2348 * the buffer for IO
2349 */
2350 mark_buffer_dirty(bh);
2351 sbi->s_lvid_dirty = 0;
2352 }
2353 mutex_unlock(&sbi->s_alloc_mutex);
2354
2355 return 0;
2356 }
2357
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2358 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2359 {
2360 struct super_block *sb = dentry->d_sb;
2361 struct udf_sb_info *sbi = UDF_SB(sb);
2362 struct logicalVolIntegrityDescImpUse *lvidiu;
2363 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2364
2365 lvidiu = udf_sb_lvidiu(sb);
2366 buf->f_type = UDF_SUPER_MAGIC;
2367 buf->f_bsize = sb->s_blocksize;
2368 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2369 buf->f_bfree = udf_count_free(sb);
2370 buf->f_bavail = buf->f_bfree;
2371 /*
2372 * Let's pretend each free block is also a free 'inode' since UDF does
2373 * not have separate preallocated table of inodes.
2374 */
2375 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2376 le32_to_cpu(lvidiu->numDirs)) : 0)
2377 + buf->f_bfree;
2378 buf->f_ffree = buf->f_bfree;
2379 buf->f_namelen = UDF_NAME_LEN;
2380 buf->f_fsid = u64_to_fsid(id);
2381
2382 return 0;
2383 }
2384
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2385 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2386 struct udf_bitmap *bitmap)
2387 {
2388 struct buffer_head *bh = NULL;
2389 unsigned int accum = 0;
2390 int index;
2391 udf_pblk_t block = 0, newblock;
2392 struct kernel_lb_addr loc;
2393 uint32_t bytes;
2394 uint8_t *ptr;
2395 uint16_t ident;
2396 struct spaceBitmapDesc *bm;
2397
2398 loc.logicalBlockNum = bitmap->s_extPosition;
2399 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2400 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2401
2402 if (!bh) {
2403 udf_err(sb, "udf_count_free failed\n");
2404 goto out;
2405 } else if (ident != TAG_IDENT_SBD) {
2406 brelse(bh);
2407 udf_err(sb, "udf_count_free failed\n");
2408 goto out;
2409 }
2410
2411 bm = (struct spaceBitmapDesc *)bh->b_data;
2412 bytes = le32_to_cpu(bm->numOfBytes);
2413 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2414 ptr = (uint8_t *)bh->b_data;
2415
2416 while (bytes > 0) {
2417 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2418 accum += bitmap_weight((const unsigned long *)(ptr + index),
2419 cur_bytes * 8);
2420 bytes -= cur_bytes;
2421 if (bytes) {
2422 brelse(bh);
2423 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2424 bh = sb_bread(sb, newblock);
2425 if (!bh) {
2426 udf_debug("read failed\n");
2427 goto out;
2428 }
2429 index = 0;
2430 ptr = (uint8_t *)bh->b_data;
2431 }
2432 }
2433 brelse(bh);
2434 out:
2435 return accum;
2436 }
2437
udf_count_free_table(struct super_block * sb,struct inode * table)2438 static unsigned int udf_count_free_table(struct super_block *sb,
2439 struct inode *table)
2440 {
2441 unsigned int accum = 0;
2442 uint32_t elen;
2443 struct kernel_lb_addr eloc;
2444 struct extent_position epos;
2445
2446 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2447 epos.block = UDF_I(table)->i_location;
2448 epos.offset = sizeof(struct unallocSpaceEntry);
2449 epos.bh = NULL;
2450
2451 while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2452 accum += (elen >> table->i_sb->s_blocksize_bits);
2453
2454 brelse(epos.bh);
2455 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2456
2457 return accum;
2458 }
2459
udf_count_free(struct super_block * sb)2460 static unsigned int udf_count_free(struct super_block *sb)
2461 {
2462 unsigned int accum = 0;
2463 struct udf_sb_info *sbi = UDF_SB(sb);
2464 struct udf_part_map *map;
2465 unsigned int part = sbi->s_partition;
2466 int ptype = sbi->s_partmaps[part].s_partition_type;
2467
2468 if (ptype == UDF_METADATA_MAP25) {
2469 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2470 s_phys_partition_ref;
2471 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2472 /*
2473 * Filesystems with VAT are append-only and we cannot write to
2474 * them. Let's just report 0 here.
2475 */
2476 return 0;
2477 }
2478
2479 if (sbi->s_lvid_bh) {
2480 struct logicalVolIntegrityDesc *lvid =
2481 (struct logicalVolIntegrityDesc *)
2482 sbi->s_lvid_bh->b_data;
2483 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2484 accum = le32_to_cpu(
2485 lvid->freeSpaceTable[part]);
2486 if (accum == 0xFFFFFFFF)
2487 accum = 0;
2488 }
2489 }
2490
2491 if (accum)
2492 return accum;
2493
2494 map = &sbi->s_partmaps[part];
2495 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2496 accum += udf_count_free_bitmap(sb,
2497 map->s_uspace.s_bitmap);
2498 }
2499 if (accum)
2500 return accum;
2501
2502 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2503 accum += udf_count_free_table(sb,
2504 map->s_uspace.s_table);
2505 }
2506 return accum;
2507 }
2508
2509 MODULE_AUTHOR("Ben Fennema");
2510 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2511 MODULE_LICENSE("GPL");
2512 module_init(init_udf_fs)
2513 module_exit(exit_udf_fs)
2514