1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block driver for media (i.e., flash cards)
4 *
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
7 *
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
11 *
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 *
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 *
18 * Author: Andrew Christian
19 * 28 May 2002
20 */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49
50 #include <linux/uaccess.h>
51
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68
69 /*
70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72 * second software timer to timeout the whole request, so 10 seconds should be
73 * ample.
74 */
75 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78
79 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
80 (rq_data_dir(req) == WRITE))
81 static DEFINE_MUTEX(block_mutex);
82
83 /*
84 * The defaults come from config options but can be overriden by module
85 * or bootarg options.
86 */
87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88
89 /*
90 * We've only got one major, so number of mmcblk devices is
91 * limited to (1 << 20) / number of minors per device. It is also
92 * limited by the MAX_DEVICES below.
93 */
94 static int max_devices;
95
96 #define MAX_DEVICES 256
97
98 static DEFINE_IDA(mmc_blk_ida);
99 static DEFINE_IDA(mmc_rpmb_ida);
100
101 struct mmc_blk_busy_data {
102 struct mmc_card *card;
103 u32 status;
104 };
105
106 /*
107 * There is one mmc_blk_data per slot.
108 */
109 struct mmc_blk_data {
110 struct device *parent;
111 struct gendisk *disk;
112 struct mmc_queue queue;
113 struct list_head part;
114 struct list_head rpmbs;
115
116 unsigned int flags;
117 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
118 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
119
120 struct kref kref;
121 unsigned int read_only;
122 unsigned int part_type;
123 unsigned int reset_done;
124 #define MMC_BLK_READ BIT(0)
125 #define MMC_BLK_WRITE BIT(1)
126 #define MMC_BLK_DISCARD BIT(2)
127 #define MMC_BLK_SECDISCARD BIT(3)
128 #define MMC_BLK_CQE_RECOVERY BIT(4)
129 #define MMC_BLK_TRIM BIT(5)
130
131 /*
132 * Only set in main mmc_blk_data associated
133 * with mmc_card with dev_set_drvdata, and keeps
134 * track of the current selected device partition.
135 */
136 unsigned int part_curr;
137 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */
138 int area_type;
139
140 /* debugfs files (only in main mmc_blk_data) */
141 struct dentry *status_dentry;
142 struct dentry *ext_csd_dentry;
143 };
144
145 /* Device type for RPMB character devices */
146 static dev_t mmc_rpmb_devt;
147
148 /* Bus type for RPMB character devices */
149 static struct bus_type mmc_rpmb_bus_type = {
150 .name = "mmc_rpmb",
151 };
152
153 /**
154 * struct mmc_rpmb_data - special RPMB device type for these areas
155 * @dev: the device for the RPMB area
156 * @chrdev: character device for the RPMB area
157 * @id: unique device ID number
158 * @part_index: partition index (0 on first)
159 * @md: parent MMC block device
160 * @node: list item, so we can put this device on a list
161 */
162 struct mmc_rpmb_data {
163 struct device dev;
164 struct cdev chrdev;
165 int id;
166 unsigned int part_index;
167 struct mmc_blk_data *md;
168 struct list_head node;
169 };
170
171 static DEFINE_MUTEX(open_lock);
172
173 module_param(perdev_minors, int, 0444);
174 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
175
176 static inline int mmc_blk_part_switch(struct mmc_card *card,
177 unsigned int part_type);
178 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
179 struct mmc_card *card,
180 int recovery_mode,
181 struct mmc_queue *mq);
182 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
183
mmc_blk_get(struct gendisk * disk)184 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
185 {
186 struct mmc_blk_data *md;
187
188 mutex_lock(&open_lock);
189 md = disk->private_data;
190 if (md && !kref_get_unless_zero(&md->kref))
191 md = NULL;
192 mutex_unlock(&open_lock);
193
194 return md;
195 }
196
mmc_get_devidx(struct gendisk * disk)197 static inline int mmc_get_devidx(struct gendisk *disk)
198 {
199 int devidx = disk->first_minor / perdev_minors;
200 return devidx;
201 }
202
mmc_blk_kref_release(struct kref * ref)203 static void mmc_blk_kref_release(struct kref *ref)
204 {
205 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
206 int devidx;
207
208 devidx = mmc_get_devidx(md->disk);
209 ida_simple_remove(&mmc_blk_ida, devidx);
210
211 mutex_lock(&open_lock);
212 md->disk->private_data = NULL;
213 mutex_unlock(&open_lock);
214
215 put_disk(md->disk);
216 kfree(md);
217 }
218
mmc_blk_put(struct mmc_blk_data * md)219 static void mmc_blk_put(struct mmc_blk_data *md)
220 {
221 kref_put(&md->kref, mmc_blk_kref_release);
222 }
223
power_ro_lock_show(struct device * dev,struct device_attribute * attr,char * buf)224 static ssize_t power_ro_lock_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
226 {
227 int ret;
228 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
229 struct mmc_card *card = md->queue.card;
230 int locked = 0;
231
232 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
233 locked = 2;
234 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
235 locked = 1;
236
237 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
238
239 mmc_blk_put(md);
240
241 return ret;
242 }
243
power_ro_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)244 static ssize_t power_ro_lock_store(struct device *dev,
245 struct device_attribute *attr, const char *buf, size_t count)
246 {
247 int ret;
248 struct mmc_blk_data *md, *part_md;
249 struct mmc_queue *mq;
250 struct request *req;
251 unsigned long set;
252
253 if (kstrtoul(buf, 0, &set))
254 return -EINVAL;
255
256 if (set != 1)
257 return count;
258
259 md = mmc_blk_get(dev_to_disk(dev));
260 mq = &md->queue;
261
262 /* Dispatch locking to the block layer */
263 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
264 if (IS_ERR(req)) {
265 count = PTR_ERR(req);
266 goto out_put;
267 }
268 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
269 blk_execute_rq(req, false);
270 ret = req_to_mmc_queue_req(req)->drv_op_result;
271 blk_mq_free_request(req);
272
273 if (!ret) {
274 pr_info("%s: Locking boot partition ro until next power on\n",
275 md->disk->disk_name);
276 set_disk_ro(md->disk, 1);
277
278 list_for_each_entry(part_md, &md->part, part)
279 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
280 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
281 set_disk_ro(part_md->disk, 1);
282 }
283 }
284 out_put:
285 mmc_blk_put(md);
286 return count;
287 }
288
289 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
290 power_ro_lock_show, power_ro_lock_store);
291
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)292 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
293 char *buf)
294 {
295 int ret;
296 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
297
298 ret = snprintf(buf, PAGE_SIZE, "%d\n",
299 get_disk_ro(dev_to_disk(dev)) ^
300 md->read_only);
301 mmc_blk_put(md);
302 return ret;
303 }
304
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)305 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
306 const char *buf, size_t count)
307 {
308 int ret;
309 char *end;
310 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
311 unsigned long set = simple_strtoul(buf, &end, 0);
312 if (end == buf) {
313 ret = -EINVAL;
314 goto out;
315 }
316
317 set_disk_ro(dev_to_disk(dev), set || md->read_only);
318 ret = count;
319 out:
320 mmc_blk_put(md);
321 return ret;
322 }
323
324 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
325
326 static struct attribute *mmc_disk_attrs[] = {
327 &dev_attr_force_ro.attr,
328 &dev_attr_ro_lock_until_next_power_on.attr,
329 NULL,
330 };
331
mmc_disk_attrs_is_visible(struct kobject * kobj,struct attribute * a,int n)332 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
333 struct attribute *a, int n)
334 {
335 struct device *dev = kobj_to_dev(kobj);
336 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
337 umode_t mode = a->mode;
338
339 if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
340 (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
341 md->queue.card->ext_csd.boot_ro_lockable) {
342 mode = S_IRUGO;
343 if (!(md->queue.card->ext_csd.boot_ro_lock &
344 EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
345 mode |= S_IWUSR;
346 }
347
348 mmc_blk_put(md);
349 return mode;
350 }
351
352 static const struct attribute_group mmc_disk_attr_group = {
353 .is_visible = mmc_disk_attrs_is_visible,
354 .attrs = mmc_disk_attrs,
355 };
356
357 static const struct attribute_group *mmc_disk_attr_groups[] = {
358 &mmc_disk_attr_group,
359 NULL,
360 };
361
mmc_blk_open(struct block_device * bdev,fmode_t mode)362 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
363 {
364 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
365 int ret = -ENXIO;
366
367 mutex_lock(&block_mutex);
368 if (md) {
369 ret = 0;
370 if ((mode & FMODE_WRITE) && md->read_only) {
371 mmc_blk_put(md);
372 ret = -EROFS;
373 }
374 }
375 mutex_unlock(&block_mutex);
376
377 return ret;
378 }
379
mmc_blk_release(struct gendisk * disk,fmode_t mode)380 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
381 {
382 struct mmc_blk_data *md = disk->private_data;
383
384 mutex_lock(&block_mutex);
385 mmc_blk_put(md);
386 mutex_unlock(&block_mutex);
387 }
388
389 static int
mmc_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)390 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
391 {
392 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
393 geo->heads = 4;
394 geo->sectors = 16;
395 return 0;
396 }
397
398 struct mmc_blk_ioc_data {
399 struct mmc_ioc_cmd ic;
400 unsigned char *buf;
401 u64 buf_bytes;
402 struct mmc_rpmb_data *rpmb;
403 };
404
mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user * user)405 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
406 struct mmc_ioc_cmd __user *user)
407 {
408 struct mmc_blk_ioc_data *idata;
409 int err;
410
411 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
412 if (!idata) {
413 err = -ENOMEM;
414 goto out;
415 }
416
417 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
418 err = -EFAULT;
419 goto idata_err;
420 }
421
422 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
423 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
424 err = -EOVERFLOW;
425 goto idata_err;
426 }
427
428 if (!idata->buf_bytes) {
429 idata->buf = NULL;
430 return idata;
431 }
432
433 idata->buf = memdup_user((void __user *)(unsigned long)
434 idata->ic.data_ptr, idata->buf_bytes);
435 if (IS_ERR(idata->buf)) {
436 err = PTR_ERR(idata->buf);
437 goto idata_err;
438 }
439
440 return idata;
441
442 idata_err:
443 kfree(idata);
444 out:
445 return ERR_PTR(err);
446 }
447
mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user * ic_ptr,struct mmc_blk_ioc_data * idata)448 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
449 struct mmc_blk_ioc_data *idata)
450 {
451 struct mmc_ioc_cmd *ic = &idata->ic;
452
453 if (copy_to_user(&(ic_ptr->response), ic->response,
454 sizeof(ic->response)))
455 return -EFAULT;
456
457 if (!idata->ic.write_flag) {
458 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
459 idata->buf, idata->buf_bytes))
460 return -EFAULT;
461 }
462
463 return 0;
464 }
465
__mmc_blk_ioctl_cmd(struct mmc_card * card,struct mmc_blk_data * md,struct mmc_blk_ioc_data * idata)466 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
467 struct mmc_blk_ioc_data *idata)
468 {
469 struct mmc_command cmd = {}, sbc = {};
470 struct mmc_data data = {};
471 struct mmc_request mrq = {};
472 struct scatterlist sg;
473 bool r1b_resp, use_r1b_resp = false;
474 unsigned int busy_timeout_ms;
475 int err;
476 unsigned int target_part;
477
478 if (!card || !md || !idata)
479 return -EINVAL;
480
481 /*
482 * The RPMB accesses comes in from the character device, so we
483 * need to target these explicitly. Else we just target the
484 * partition type for the block device the ioctl() was issued
485 * on.
486 */
487 if (idata->rpmb) {
488 /* Support multiple RPMB partitions */
489 target_part = idata->rpmb->part_index;
490 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
491 } else {
492 target_part = md->part_type;
493 }
494
495 cmd.opcode = idata->ic.opcode;
496 cmd.arg = idata->ic.arg;
497 cmd.flags = idata->ic.flags;
498
499 if (idata->buf_bytes) {
500 data.sg = &sg;
501 data.sg_len = 1;
502 data.blksz = idata->ic.blksz;
503 data.blocks = idata->ic.blocks;
504
505 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
506
507 if (idata->ic.write_flag)
508 data.flags = MMC_DATA_WRITE;
509 else
510 data.flags = MMC_DATA_READ;
511
512 /* data.flags must already be set before doing this. */
513 mmc_set_data_timeout(&data, card);
514
515 /* Allow overriding the timeout_ns for empirical tuning. */
516 if (idata->ic.data_timeout_ns)
517 data.timeout_ns = idata->ic.data_timeout_ns;
518
519 mrq.data = &data;
520 }
521
522 mrq.cmd = &cmd;
523
524 err = mmc_blk_part_switch(card, target_part);
525 if (err)
526 return err;
527
528 if (idata->ic.is_acmd) {
529 err = mmc_app_cmd(card->host, card);
530 if (err)
531 return err;
532 }
533
534 if (idata->rpmb) {
535 sbc.opcode = MMC_SET_BLOCK_COUNT;
536 /*
537 * We don't do any blockcount validation because the max size
538 * may be increased by a future standard. We just copy the
539 * 'Reliable Write' bit here.
540 */
541 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
542 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
543 mrq.sbc = &sbc;
544 }
545
546 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
547 (cmd.opcode == MMC_SWITCH))
548 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
549
550 /* If it's an R1B response we need some more preparations. */
551 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
552 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
553 if (r1b_resp)
554 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd,
555 busy_timeout_ms);
556
557 mmc_wait_for_req(card->host, &mrq);
558 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
559
560 if (cmd.error) {
561 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
562 __func__, cmd.error);
563 return cmd.error;
564 }
565 if (data.error) {
566 dev_err(mmc_dev(card->host), "%s: data error %d\n",
567 __func__, data.error);
568 return data.error;
569 }
570
571 /*
572 * Make sure the cache of the PARTITION_CONFIG register and
573 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
574 * changed it successfully.
575 */
576 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
577 (cmd.opcode == MMC_SWITCH)) {
578 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
579 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
580
581 /*
582 * Update cache so the next mmc_blk_part_switch call operates
583 * on up-to-date data.
584 */
585 card->ext_csd.part_config = value;
586 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
587 }
588
589 /*
590 * Make sure to update CACHE_CTRL in case it was changed. The cache
591 * will get turned back on if the card is re-initialized, e.g.
592 * suspend/resume or hw reset in recovery.
593 */
594 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
595 (cmd.opcode == MMC_SWITCH)) {
596 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
597
598 card->ext_csd.cache_ctrl = value;
599 }
600
601 /*
602 * According to the SD specs, some commands require a delay after
603 * issuing the command.
604 */
605 if (idata->ic.postsleep_min_us)
606 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
607
608 /* No need to poll when using HW busy detection. */
609 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
610 return 0;
611
612 /* Ensure RPMB/R1B command has completed by polling with CMD13. */
613 if (idata->rpmb || r1b_resp)
614 err = mmc_poll_for_busy(card, busy_timeout_ms, false,
615 MMC_BUSY_IO);
616
617 return err;
618 }
619
mmc_blk_ioctl_cmd(struct mmc_blk_data * md,struct mmc_ioc_cmd __user * ic_ptr,struct mmc_rpmb_data * rpmb)620 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
621 struct mmc_ioc_cmd __user *ic_ptr,
622 struct mmc_rpmb_data *rpmb)
623 {
624 struct mmc_blk_ioc_data *idata;
625 struct mmc_blk_ioc_data *idatas[1];
626 struct mmc_queue *mq;
627 struct mmc_card *card;
628 int err = 0, ioc_err = 0;
629 struct request *req;
630
631 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
632 if (IS_ERR(idata))
633 return PTR_ERR(idata);
634 /* This will be NULL on non-RPMB ioctl():s */
635 idata->rpmb = rpmb;
636
637 card = md->queue.card;
638 if (IS_ERR(card)) {
639 err = PTR_ERR(card);
640 goto cmd_done;
641 }
642
643 /*
644 * Dispatch the ioctl() into the block request queue.
645 */
646 mq = &md->queue;
647 req = blk_mq_alloc_request(mq->queue,
648 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
649 if (IS_ERR(req)) {
650 err = PTR_ERR(req);
651 goto cmd_done;
652 }
653 idatas[0] = idata;
654 req_to_mmc_queue_req(req)->drv_op =
655 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
656 req_to_mmc_queue_req(req)->drv_op_data = idatas;
657 req_to_mmc_queue_req(req)->ioc_count = 1;
658 blk_execute_rq(req, false);
659 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
660 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
661 blk_mq_free_request(req);
662
663 cmd_done:
664 kfree(idata->buf);
665 kfree(idata);
666 return ioc_err ? ioc_err : err;
667 }
668
mmc_blk_ioctl_multi_cmd(struct mmc_blk_data * md,struct mmc_ioc_multi_cmd __user * user,struct mmc_rpmb_data * rpmb)669 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
670 struct mmc_ioc_multi_cmd __user *user,
671 struct mmc_rpmb_data *rpmb)
672 {
673 struct mmc_blk_ioc_data **idata = NULL;
674 struct mmc_ioc_cmd __user *cmds = user->cmds;
675 struct mmc_card *card;
676 struct mmc_queue *mq;
677 int err = 0, ioc_err = 0;
678 __u64 num_of_cmds;
679 unsigned int i, n;
680 struct request *req;
681
682 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
683 sizeof(num_of_cmds)))
684 return -EFAULT;
685
686 if (!num_of_cmds)
687 return 0;
688
689 if (num_of_cmds > MMC_IOC_MAX_CMDS)
690 return -EINVAL;
691
692 n = num_of_cmds;
693 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
694 if (!idata)
695 return -ENOMEM;
696
697 for (i = 0; i < n; i++) {
698 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
699 if (IS_ERR(idata[i])) {
700 err = PTR_ERR(idata[i]);
701 n = i;
702 goto cmd_err;
703 }
704 /* This will be NULL on non-RPMB ioctl():s */
705 idata[i]->rpmb = rpmb;
706 }
707
708 card = md->queue.card;
709 if (IS_ERR(card)) {
710 err = PTR_ERR(card);
711 goto cmd_err;
712 }
713
714
715 /*
716 * Dispatch the ioctl()s into the block request queue.
717 */
718 mq = &md->queue;
719 req = blk_mq_alloc_request(mq->queue,
720 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
721 if (IS_ERR(req)) {
722 err = PTR_ERR(req);
723 goto cmd_err;
724 }
725 req_to_mmc_queue_req(req)->drv_op =
726 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
727 req_to_mmc_queue_req(req)->drv_op_data = idata;
728 req_to_mmc_queue_req(req)->ioc_count = n;
729 blk_execute_rq(req, false);
730 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
731
732 /* copy to user if data and response */
733 for (i = 0; i < n && !err; i++)
734 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
735
736 blk_mq_free_request(req);
737
738 cmd_err:
739 for (i = 0; i < n; i++) {
740 kfree(idata[i]->buf);
741 kfree(idata[i]);
742 }
743 kfree(idata);
744 return ioc_err ? ioc_err : err;
745 }
746
mmc_blk_check_blkdev(struct block_device * bdev)747 static int mmc_blk_check_blkdev(struct block_device *bdev)
748 {
749 /*
750 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
751 * whole block device, not on a partition. This prevents overspray
752 * between sibling partitions.
753 */
754 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
755 return -EPERM;
756 return 0;
757 }
758
mmc_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)759 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
760 unsigned int cmd, unsigned long arg)
761 {
762 struct mmc_blk_data *md;
763 int ret;
764
765 switch (cmd) {
766 case MMC_IOC_CMD:
767 ret = mmc_blk_check_blkdev(bdev);
768 if (ret)
769 return ret;
770 md = mmc_blk_get(bdev->bd_disk);
771 if (!md)
772 return -EINVAL;
773 ret = mmc_blk_ioctl_cmd(md,
774 (struct mmc_ioc_cmd __user *)arg,
775 NULL);
776 mmc_blk_put(md);
777 return ret;
778 case MMC_IOC_MULTI_CMD:
779 ret = mmc_blk_check_blkdev(bdev);
780 if (ret)
781 return ret;
782 md = mmc_blk_get(bdev->bd_disk);
783 if (!md)
784 return -EINVAL;
785 ret = mmc_blk_ioctl_multi_cmd(md,
786 (struct mmc_ioc_multi_cmd __user *)arg,
787 NULL);
788 mmc_blk_put(md);
789 return ret;
790 default:
791 return -EINVAL;
792 }
793 }
794
795 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)796 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
797 unsigned int cmd, unsigned long arg)
798 {
799 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
800 }
801 #endif
802
mmc_blk_alternative_gpt_sector(struct gendisk * disk,sector_t * sector)803 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
804 sector_t *sector)
805 {
806 struct mmc_blk_data *md;
807 int ret;
808
809 md = mmc_blk_get(disk);
810 if (!md)
811 return -EINVAL;
812
813 if (md->queue.card)
814 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
815 else
816 ret = -ENODEV;
817
818 mmc_blk_put(md);
819
820 return ret;
821 }
822
823 static const struct block_device_operations mmc_bdops = {
824 .open = mmc_blk_open,
825 .release = mmc_blk_release,
826 .getgeo = mmc_blk_getgeo,
827 .owner = THIS_MODULE,
828 .ioctl = mmc_blk_ioctl,
829 #ifdef CONFIG_COMPAT
830 .compat_ioctl = mmc_blk_compat_ioctl,
831 #endif
832 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
833 };
834
mmc_blk_part_switch_pre(struct mmc_card * card,unsigned int part_type)835 static int mmc_blk_part_switch_pre(struct mmc_card *card,
836 unsigned int part_type)
837 {
838 int ret = 0;
839
840 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
841 if (card->ext_csd.cmdq_en) {
842 ret = mmc_cmdq_disable(card);
843 if (ret)
844 return ret;
845 }
846 mmc_retune_pause(card->host);
847 }
848
849 return ret;
850 }
851
mmc_blk_part_switch_post(struct mmc_card * card,unsigned int part_type)852 static int mmc_blk_part_switch_post(struct mmc_card *card,
853 unsigned int part_type)
854 {
855 int ret = 0;
856
857 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
858 mmc_retune_unpause(card->host);
859 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
860 ret = mmc_cmdq_enable(card);
861 }
862
863 return ret;
864 }
865
mmc_blk_part_switch(struct mmc_card * card,unsigned int part_type)866 static inline int mmc_blk_part_switch(struct mmc_card *card,
867 unsigned int part_type)
868 {
869 int ret = 0;
870 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
871
872 if (main_md->part_curr == part_type)
873 return 0;
874
875 if (mmc_card_mmc(card)) {
876 u8 part_config = card->ext_csd.part_config;
877
878 ret = mmc_blk_part_switch_pre(card, part_type);
879 if (ret)
880 return ret;
881
882 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
883 part_config |= part_type;
884
885 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
886 EXT_CSD_PART_CONFIG, part_config,
887 card->ext_csd.part_time);
888 if (ret) {
889 mmc_blk_part_switch_post(card, part_type);
890 return ret;
891 }
892
893 card->ext_csd.part_config = part_config;
894
895 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
896 }
897
898 main_md->part_curr = part_type;
899 return ret;
900 }
901
mmc_sd_num_wr_blocks(struct mmc_card * card,u32 * written_blocks)902 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
903 {
904 int err;
905 u32 result;
906 __be32 *blocks;
907
908 struct mmc_request mrq = {};
909 struct mmc_command cmd = {};
910 struct mmc_data data = {};
911
912 struct scatterlist sg;
913
914 cmd.opcode = MMC_APP_CMD;
915 cmd.arg = card->rca << 16;
916 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
917
918 err = mmc_wait_for_cmd(card->host, &cmd, 0);
919 if (err)
920 return err;
921 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
922 return -EIO;
923
924 memset(&cmd, 0, sizeof(struct mmc_command));
925
926 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
927 cmd.arg = 0;
928 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
929
930 data.blksz = 4;
931 data.blocks = 1;
932 data.flags = MMC_DATA_READ;
933 data.sg = &sg;
934 data.sg_len = 1;
935 mmc_set_data_timeout(&data, card);
936
937 mrq.cmd = &cmd;
938 mrq.data = &data;
939
940 blocks = kmalloc(4, GFP_KERNEL);
941 if (!blocks)
942 return -ENOMEM;
943
944 sg_init_one(&sg, blocks, 4);
945
946 mmc_wait_for_req(card->host, &mrq);
947
948 result = ntohl(*blocks);
949 kfree(blocks);
950
951 if (cmd.error || data.error)
952 return -EIO;
953
954 *written_blocks = result;
955
956 return 0;
957 }
958
mmc_blk_clock_khz(struct mmc_host * host)959 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
960 {
961 if (host->actual_clock)
962 return host->actual_clock / 1000;
963
964 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
965 if (host->ios.clock)
966 return host->ios.clock / 2000;
967
968 /* How can there be no clock */
969 WARN_ON_ONCE(1);
970 return 100; /* 100 kHz is minimum possible value */
971 }
972
mmc_blk_data_timeout_ms(struct mmc_host * host,struct mmc_data * data)973 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
974 struct mmc_data *data)
975 {
976 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
977 unsigned int khz;
978
979 if (data->timeout_clks) {
980 khz = mmc_blk_clock_khz(host);
981 ms += DIV_ROUND_UP(data->timeout_clks, khz);
982 }
983
984 return ms;
985 }
986
987 /*
988 * Attempts to reset the card and get back to the requested partition.
989 * Therefore any error here must result in cancelling the block layer
990 * request, it must not be reattempted without going through the mmc_blk
991 * partition sanity checks.
992 */
mmc_blk_reset(struct mmc_blk_data * md,struct mmc_host * host,int type)993 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
994 int type)
995 {
996 int err;
997 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
998
999 if (md->reset_done & type)
1000 return -EEXIST;
1001
1002 md->reset_done |= type;
1003 err = mmc_hw_reset(host->card);
1004 /*
1005 * A successful reset will leave the card in the main partition, but
1006 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1007 * in that case.
1008 */
1009 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1010 if (err)
1011 return err;
1012 /* Ensure we switch back to the correct partition */
1013 if (mmc_blk_part_switch(host->card, md->part_type))
1014 /*
1015 * We have failed to get back into the correct
1016 * partition, so we need to abort the whole request.
1017 */
1018 return -ENODEV;
1019 return 0;
1020 }
1021
mmc_blk_reset_success(struct mmc_blk_data * md,int type)1022 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1023 {
1024 md->reset_done &= ~type;
1025 }
1026
1027 /*
1028 * The non-block commands come back from the block layer after it queued it and
1029 * processed it with all other requests and then they get issued in this
1030 * function.
1031 */
mmc_blk_issue_drv_op(struct mmc_queue * mq,struct request * req)1032 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1033 {
1034 struct mmc_queue_req *mq_rq;
1035 struct mmc_card *card = mq->card;
1036 struct mmc_blk_data *md = mq->blkdata;
1037 struct mmc_blk_ioc_data **idata;
1038 bool rpmb_ioctl;
1039 u8 **ext_csd;
1040 u32 status;
1041 int ret;
1042 int i;
1043
1044 mq_rq = req_to_mmc_queue_req(req);
1045 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1046
1047 switch (mq_rq->drv_op) {
1048 case MMC_DRV_OP_IOCTL:
1049 if (card->ext_csd.cmdq_en) {
1050 ret = mmc_cmdq_disable(card);
1051 if (ret)
1052 break;
1053 }
1054 fallthrough;
1055 case MMC_DRV_OP_IOCTL_RPMB:
1056 idata = mq_rq->drv_op_data;
1057 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1058 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1059 if (ret)
1060 break;
1061 }
1062 /* Always switch back to main area after RPMB access */
1063 if (rpmb_ioctl)
1064 mmc_blk_part_switch(card, 0);
1065 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1066 mmc_cmdq_enable(card);
1067 break;
1068 case MMC_DRV_OP_BOOT_WP:
1069 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1070 card->ext_csd.boot_ro_lock |
1071 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1072 card->ext_csd.part_time);
1073 if (ret)
1074 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1075 md->disk->disk_name, ret);
1076 else
1077 card->ext_csd.boot_ro_lock |=
1078 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1079 break;
1080 case MMC_DRV_OP_GET_CARD_STATUS:
1081 ret = mmc_send_status(card, &status);
1082 if (!ret)
1083 ret = status;
1084 break;
1085 case MMC_DRV_OP_GET_EXT_CSD:
1086 ext_csd = mq_rq->drv_op_data;
1087 ret = mmc_get_ext_csd(card, ext_csd);
1088 break;
1089 default:
1090 pr_err("%s: unknown driver specific operation\n",
1091 md->disk->disk_name);
1092 ret = -EINVAL;
1093 break;
1094 }
1095 mq_rq->drv_op_result = ret;
1096 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1097 }
1098
mmc_blk_issue_erase_rq(struct mmc_queue * mq,struct request * req,int type,unsigned int erase_arg)1099 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1100 int type, unsigned int erase_arg)
1101 {
1102 struct mmc_blk_data *md = mq->blkdata;
1103 struct mmc_card *card = md->queue.card;
1104 unsigned int from, nr;
1105 int err = 0;
1106 blk_status_t status = BLK_STS_OK;
1107
1108 if (!mmc_can_erase(card)) {
1109 status = BLK_STS_NOTSUPP;
1110 goto fail;
1111 }
1112
1113 from = blk_rq_pos(req);
1114 nr = blk_rq_sectors(req);
1115
1116 do {
1117 err = 0;
1118 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1119 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1120 INAND_CMD38_ARG_EXT_CSD,
1121 erase_arg == MMC_TRIM_ARG ?
1122 INAND_CMD38_ARG_TRIM :
1123 INAND_CMD38_ARG_ERASE,
1124 card->ext_csd.generic_cmd6_time);
1125 }
1126 if (!err)
1127 err = mmc_erase(card, from, nr, erase_arg);
1128 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1129 if (err)
1130 status = BLK_STS_IOERR;
1131 else
1132 mmc_blk_reset_success(md, type);
1133 fail:
1134 blk_mq_end_request(req, status);
1135 }
1136
mmc_blk_issue_trim_rq(struct mmc_queue * mq,struct request * req)1137 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1138 {
1139 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1140 }
1141
mmc_blk_issue_discard_rq(struct mmc_queue * mq,struct request * req)1142 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1143 {
1144 struct mmc_blk_data *md = mq->blkdata;
1145 struct mmc_card *card = md->queue.card;
1146 unsigned int arg = card->erase_arg;
1147
1148 if (mmc_card_broken_sd_discard(card))
1149 arg = SD_ERASE_ARG;
1150
1151 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1152 }
1153
mmc_blk_issue_secdiscard_rq(struct mmc_queue * mq,struct request * req)1154 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1155 struct request *req)
1156 {
1157 struct mmc_blk_data *md = mq->blkdata;
1158 struct mmc_card *card = md->queue.card;
1159 unsigned int from, nr, arg;
1160 int err = 0, type = MMC_BLK_SECDISCARD;
1161 blk_status_t status = BLK_STS_OK;
1162
1163 if (!(mmc_can_secure_erase_trim(card))) {
1164 status = BLK_STS_NOTSUPP;
1165 goto out;
1166 }
1167
1168 from = blk_rq_pos(req);
1169 nr = blk_rq_sectors(req);
1170
1171 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1172 arg = MMC_SECURE_TRIM1_ARG;
1173 else
1174 arg = MMC_SECURE_ERASE_ARG;
1175
1176 retry:
1177 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1178 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1179 INAND_CMD38_ARG_EXT_CSD,
1180 arg == MMC_SECURE_TRIM1_ARG ?
1181 INAND_CMD38_ARG_SECTRIM1 :
1182 INAND_CMD38_ARG_SECERASE,
1183 card->ext_csd.generic_cmd6_time);
1184 if (err)
1185 goto out_retry;
1186 }
1187
1188 err = mmc_erase(card, from, nr, arg);
1189 if (err == -EIO)
1190 goto out_retry;
1191 if (err) {
1192 status = BLK_STS_IOERR;
1193 goto out;
1194 }
1195
1196 if (arg == MMC_SECURE_TRIM1_ARG) {
1197 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1198 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1199 INAND_CMD38_ARG_EXT_CSD,
1200 INAND_CMD38_ARG_SECTRIM2,
1201 card->ext_csd.generic_cmd6_time);
1202 if (err)
1203 goto out_retry;
1204 }
1205
1206 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1207 if (err == -EIO)
1208 goto out_retry;
1209 if (err) {
1210 status = BLK_STS_IOERR;
1211 goto out;
1212 }
1213 }
1214
1215 out_retry:
1216 if (err && !mmc_blk_reset(md, card->host, type))
1217 goto retry;
1218 if (!err)
1219 mmc_blk_reset_success(md, type);
1220 out:
1221 blk_mq_end_request(req, status);
1222 }
1223
mmc_blk_issue_flush(struct mmc_queue * mq,struct request * req)1224 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1225 {
1226 struct mmc_blk_data *md = mq->blkdata;
1227 struct mmc_card *card = md->queue.card;
1228 int ret = 0;
1229
1230 ret = mmc_flush_cache(card->host);
1231 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1232 }
1233
1234 /*
1235 * Reformat current write as a reliable write, supporting
1236 * both legacy and the enhanced reliable write MMC cards.
1237 * In each transfer we'll handle only as much as a single
1238 * reliable write can handle, thus finish the request in
1239 * partial completions.
1240 */
mmc_apply_rel_rw(struct mmc_blk_request * brq,struct mmc_card * card,struct request * req)1241 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1242 struct mmc_card *card,
1243 struct request *req)
1244 {
1245 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1246 /* Legacy mode imposes restrictions on transfers. */
1247 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1248 brq->data.blocks = 1;
1249
1250 if (brq->data.blocks > card->ext_csd.rel_sectors)
1251 brq->data.blocks = card->ext_csd.rel_sectors;
1252 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1253 brq->data.blocks = 1;
1254 }
1255 }
1256
1257 #define CMD_ERRORS_EXCL_OOR \
1258 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1259 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1260 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1261 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1262 R1_CC_ERROR | /* Card controller error */ \
1263 R1_ERROR) /* General/unknown error */
1264
1265 #define CMD_ERRORS \
1266 (CMD_ERRORS_EXCL_OOR | \
1267 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1268
mmc_blk_eval_resp_error(struct mmc_blk_request * brq)1269 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1270 {
1271 u32 val;
1272
1273 /*
1274 * Per the SD specification(physical layer version 4.10)[1],
1275 * section 4.3.3, it explicitly states that "When the last
1276 * block of user area is read using CMD18, the host should
1277 * ignore OUT_OF_RANGE error that may occur even the sequence
1278 * is correct". And JESD84-B51 for eMMC also has a similar
1279 * statement on section 6.8.3.
1280 *
1281 * Multiple block read/write could be done by either predefined
1282 * method, namely CMD23, or open-ending mode. For open-ending mode,
1283 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1284 *
1285 * However the spec[1] doesn't tell us whether we should also
1286 * ignore that for predefined method. But per the spec[1], section
1287 * 4.15 Set Block Count Command, it says"If illegal block count
1288 * is set, out of range error will be indicated during read/write
1289 * operation (For example, data transfer is stopped at user area
1290 * boundary)." In another word, we could expect a out of range error
1291 * in the response for the following CMD18/25. And if argument of
1292 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1293 * we could also expect to get a -ETIMEDOUT or any error number from
1294 * the host drivers due to missing data response(for write)/data(for
1295 * read), as the cards will stop the data transfer by itself per the
1296 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1297 */
1298
1299 if (!brq->stop.error) {
1300 bool oor_with_open_end;
1301 /* If there is no error yet, check R1 response */
1302
1303 val = brq->stop.resp[0] & CMD_ERRORS;
1304 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1305
1306 if (val && !oor_with_open_end)
1307 brq->stop.error = -EIO;
1308 }
1309 }
1310
mmc_blk_data_prep(struct mmc_queue * mq,struct mmc_queue_req * mqrq,int recovery_mode,bool * do_rel_wr_p,bool * do_data_tag_p)1311 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1312 int recovery_mode, bool *do_rel_wr_p,
1313 bool *do_data_tag_p)
1314 {
1315 struct mmc_blk_data *md = mq->blkdata;
1316 struct mmc_card *card = md->queue.card;
1317 struct mmc_blk_request *brq = &mqrq->brq;
1318 struct request *req = mmc_queue_req_to_req(mqrq);
1319 bool do_rel_wr, do_data_tag;
1320
1321 /*
1322 * Reliable writes are used to implement Forced Unit Access and
1323 * are supported only on MMCs.
1324 */
1325 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1326 rq_data_dir(req) == WRITE &&
1327 (md->flags & MMC_BLK_REL_WR);
1328
1329 memset(brq, 0, sizeof(struct mmc_blk_request));
1330
1331 mmc_crypto_prepare_req(mqrq);
1332
1333 brq->mrq.data = &brq->data;
1334 brq->mrq.tag = req->tag;
1335
1336 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1337 brq->stop.arg = 0;
1338
1339 if (rq_data_dir(req) == READ) {
1340 brq->data.flags = MMC_DATA_READ;
1341 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1342 } else {
1343 brq->data.flags = MMC_DATA_WRITE;
1344 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1345 }
1346
1347 brq->data.blksz = 512;
1348 brq->data.blocks = blk_rq_sectors(req);
1349 brq->data.blk_addr = blk_rq_pos(req);
1350
1351 /*
1352 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1353 * The eMMC will give "high" priority tasks priority over "simple"
1354 * priority tasks. Here we always set "simple" priority by not setting
1355 * MMC_DATA_PRIO.
1356 */
1357
1358 /*
1359 * The block layer doesn't support all sector count
1360 * restrictions, so we need to be prepared for too big
1361 * requests.
1362 */
1363 if (brq->data.blocks > card->host->max_blk_count)
1364 brq->data.blocks = card->host->max_blk_count;
1365
1366 if (brq->data.blocks > 1) {
1367 /*
1368 * Some SD cards in SPI mode return a CRC error or even lock up
1369 * completely when trying to read the last block using a
1370 * multiblock read command.
1371 */
1372 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1373 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1374 get_capacity(md->disk)))
1375 brq->data.blocks--;
1376
1377 /*
1378 * After a read error, we redo the request one (native) sector
1379 * at a time in order to accurately determine which
1380 * sectors can be read successfully.
1381 */
1382 if (recovery_mode)
1383 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1384
1385 /*
1386 * Some controllers have HW issues while operating
1387 * in multiple I/O mode
1388 */
1389 if (card->host->ops->multi_io_quirk)
1390 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1391 (rq_data_dir(req) == READ) ?
1392 MMC_DATA_READ : MMC_DATA_WRITE,
1393 brq->data.blocks);
1394 }
1395
1396 if (do_rel_wr) {
1397 mmc_apply_rel_rw(brq, card, req);
1398 brq->data.flags |= MMC_DATA_REL_WR;
1399 }
1400
1401 /*
1402 * Data tag is used only during writing meta data to speed
1403 * up write and any subsequent read of this meta data
1404 */
1405 do_data_tag = card->ext_csd.data_tag_unit_size &&
1406 (req->cmd_flags & REQ_META) &&
1407 (rq_data_dir(req) == WRITE) &&
1408 ((brq->data.blocks * brq->data.blksz) >=
1409 card->ext_csd.data_tag_unit_size);
1410
1411 if (do_data_tag)
1412 brq->data.flags |= MMC_DATA_DAT_TAG;
1413
1414 mmc_set_data_timeout(&brq->data, card);
1415
1416 brq->data.sg = mqrq->sg;
1417 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1418
1419 /*
1420 * Adjust the sg list so it is the same size as the
1421 * request.
1422 */
1423 if (brq->data.blocks != blk_rq_sectors(req)) {
1424 int i, data_size = brq->data.blocks << 9;
1425 struct scatterlist *sg;
1426
1427 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1428 data_size -= sg->length;
1429 if (data_size <= 0) {
1430 sg->length += data_size;
1431 i++;
1432 break;
1433 }
1434 }
1435 brq->data.sg_len = i;
1436 }
1437
1438 if (do_rel_wr_p)
1439 *do_rel_wr_p = do_rel_wr;
1440
1441 if (do_data_tag_p)
1442 *do_data_tag_p = do_data_tag;
1443 }
1444
1445 #define MMC_CQE_RETRIES 2
1446
mmc_blk_cqe_complete_rq(struct mmc_queue * mq,struct request * req)1447 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1448 {
1449 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1450 struct mmc_request *mrq = &mqrq->brq.mrq;
1451 struct request_queue *q = req->q;
1452 struct mmc_host *host = mq->card->host;
1453 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1454 unsigned long flags;
1455 bool put_card;
1456 int err;
1457
1458 mmc_cqe_post_req(host, mrq);
1459
1460 if (mrq->cmd && mrq->cmd->error)
1461 err = mrq->cmd->error;
1462 else if (mrq->data && mrq->data->error)
1463 err = mrq->data->error;
1464 else
1465 err = 0;
1466
1467 if (err) {
1468 if (mqrq->retries++ < MMC_CQE_RETRIES)
1469 blk_mq_requeue_request(req, true);
1470 else
1471 blk_mq_end_request(req, BLK_STS_IOERR);
1472 } else if (mrq->data) {
1473 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1474 blk_mq_requeue_request(req, true);
1475 else
1476 __blk_mq_end_request(req, BLK_STS_OK);
1477 } else {
1478 blk_mq_end_request(req, BLK_STS_OK);
1479 }
1480
1481 spin_lock_irqsave(&mq->lock, flags);
1482
1483 mq->in_flight[issue_type] -= 1;
1484
1485 put_card = (mmc_tot_in_flight(mq) == 0);
1486
1487 mmc_cqe_check_busy(mq);
1488
1489 spin_unlock_irqrestore(&mq->lock, flags);
1490
1491 if (!mq->cqe_busy)
1492 blk_mq_run_hw_queues(q, true);
1493
1494 if (put_card)
1495 mmc_put_card(mq->card, &mq->ctx);
1496 }
1497
mmc_blk_cqe_recovery(struct mmc_queue * mq)1498 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1499 {
1500 struct mmc_card *card = mq->card;
1501 struct mmc_host *host = card->host;
1502 int err;
1503
1504 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1505
1506 err = mmc_cqe_recovery(host);
1507 if (err)
1508 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1509 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1510
1511 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1512 }
1513
mmc_blk_cqe_req_done(struct mmc_request * mrq)1514 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1515 {
1516 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1517 brq.mrq);
1518 struct request *req = mmc_queue_req_to_req(mqrq);
1519 struct request_queue *q = req->q;
1520 struct mmc_queue *mq = q->queuedata;
1521
1522 /*
1523 * Block layer timeouts race with completions which means the normal
1524 * completion path cannot be used during recovery.
1525 */
1526 if (mq->in_recovery)
1527 mmc_blk_cqe_complete_rq(mq, req);
1528 else if (likely(!blk_should_fake_timeout(req->q)))
1529 blk_mq_complete_request(req);
1530 }
1531
mmc_blk_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)1532 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1533 {
1534 mrq->done = mmc_blk_cqe_req_done;
1535 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1536
1537 return mmc_cqe_start_req(host, mrq);
1538 }
1539
mmc_blk_cqe_prep_dcmd(struct mmc_queue_req * mqrq,struct request * req)1540 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1541 struct request *req)
1542 {
1543 struct mmc_blk_request *brq = &mqrq->brq;
1544
1545 memset(brq, 0, sizeof(*brq));
1546
1547 brq->mrq.cmd = &brq->cmd;
1548 brq->mrq.tag = req->tag;
1549
1550 return &brq->mrq;
1551 }
1552
mmc_blk_cqe_issue_flush(struct mmc_queue * mq,struct request * req)1553 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1554 {
1555 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1556 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1557
1558 mrq->cmd->opcode = MMC_SWITCH;
1559 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1560 (EXT_CSD_FLUSH_CACHE << 16) |
1561 (1 << 8) |
1562 EXT_CSD_CMD_SET_NORMAL;
1563 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1564
1565 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1566 }
1567
mmc_blk_hsq_issue_rw_rq(struct mmc_queue * mq,struct request * req)1568 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1569 {
1570 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1571 struct mmc_host *host = mq->card->host;
1572 int err;
1573
1574 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1575 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1576 mmc_pre_req(host, &mqrq->brq.mrq);
1577
1578 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1579 if (err)
1580 mmc_post_req(host, &mqrq->brq.mrq, err);
1581
1582 return err;
1583 }
1584
mmc_blk_cqe_issue_rw_rq(struct mmc_queue * mq,struct request * req)1585 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1586 {
1587 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1588 struct mmc_host *host = mq->card->host;
1589
1590 if (host->hsq_enabled)
1591 return mmc_blk_hsq_issue_rw_rq(mq, req);
1592
1593 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1594
1595 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1596 }
1597
mmc_blk_rw_rq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,int recovery_mode,struct mmc_queue * mq)1598 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1599 struct mmc_card *card,
1600 int recovery_mode,
1601 struct mmc_queue *mq)
1602 {
1603 u32 readcmd, writecmd;
1604 struct mmc_blk_request *brq = &mqrq->brq;
1605 struct request *req = mmc_queue_req_to_req(mqrq);
1606 struct mmc_blk_data *md = mq->blkdata;
1607 bool do_rel_wr, do_data_tag;
1608
1609 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1610
1611 brq->mrq.cmd = &brq->cmd;
1612
1613 brq->cmd.arg = blk_rq_pos(req);
1614 if (!mmc_card_blockaddr(card))
1615 brq->cmd.arg <<= 9;
1616 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1617
1618 if (brq->data.blocks > 1 || do_rel_wr) {
1619 /* SPI multiblock writes terminate using a special
1620 * token, not a STOP_TRANSMISSION request.
1621 */
1622 if (!mmc_host_is_spi(card->host) ||
1623 rq_data_dir(req) == READ)
1624 brq->mrq.stop = &brq->stop;
1625 readcmd = MMC_READ_MULTIPLE_BLOCK;
1626 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1627 } else {
1628 brq->mrq.stop = NULL;
1629 readcmd = MMC_READ_SINGLE_BLOCK;
1630 writecmd = MMC_WRITE_BLOCK;
1631 }
1632 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1633
1634 /*
1635 * Pre-defined multi-block transfers are preferable to
1636 * open ended-ones (and necessary for reliable writes).
1637 * However, it is not sufficient to just send CMD23,
1638 * and avoid the final CMD12, as on an error condition
1639 * CMD12 (stop) needs to be sent anyway. This, coupled
1640 * with Auto-CMD23 enhancements provided by some
1641 * hosts, means that the complexity of dealing
1642 * with this is best left to the host. If CMD23 is
1643 * supported by card and host, we'll fill sbc in and let
1644 * the host deal with handling it correctly. This means
1645 * that for hosts that don't expose MMC_CAP_CMD23, no
1646 * change of behavior will be observed.
1647 *
1648 * N.B: Some MMC cards experience perf degradation.
1649 * We'll avoid using CMD23-bounded multiblock writes for
1650 * these, while retaining features like reliable writes.
1651 */
1652 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1653 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1654 do_data_tag)) {
1655 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1656 brq->sbc.arg = brq->data.blocks |
1657 (do_rel_wr ? (1 << 31) : 0) |
1658 (do_data_tag ? (1 << 29) : 0);
1659 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1660 brq->mrq.sbc = &brq->sbc;
1661 }
1662 }
1663
1664 #define MMC_MAX_RETRIES 5
1665 #define MMC_DATA_RETRIES 2
1666 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1667
mmc_blk_send_stop(struct mmc_card * card,unsigned int timeout)1668 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1669 {
1670 struct mmc_command cmd = {
1671 .opcode = MMC_STOP_TRANSMISSION,
1672 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1673 /* Some hosts wait for busy anyway, so provide a busy timeout */
1674 .busy_timeout = timeout,
1675 };
1676
1677 return mmc_wait_for_cmd(card->host, &cmd, 5);
1678 }
1679
mmc_blk_fix_state(struct mmc_card * card,struct request * req)1680 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1681 {
1682 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1683 struct mmc_blk_request *brq = &mqrq->brq;
1684 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1685 int err;
1686
1687 mmc_retune_hold_now(card->host);
1688
1689 mmc_blk_send_stop(card, timeout);
1690
1691 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1692
1693 mmc_retune_release(card->host);
1694
1695 return err;
1696 }
1697
1698 #define MMC_READ_SINGLE_RETRIES 2
1699
1700 /* Single (native) sector read during recovery */
mmc_blk_read_single(struct mmc_queue * mq,struct request * req)1701 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1702 {
1703 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1704 struct mmc_request *mrq = &mqrq->brq.mrq;
1705 struct mmc_card *card = mq->card;
1706 struct mmc_host *host = card->host;
1707 blk_status_t error = BLK_STS_OK;
1708 size_t bytes_per_read = queue_physical_block_size(mq->queue);
1709
1710 do {
1711 u32 status;
1712 int err;
1713 int retries = 0;
1714
1715 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1716 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1717
1718 mmc_wait_for_req(host, mrq);
1719
1720 err = mmc_send_status(card, &status);
1721 if (err)
1722 goto error_exit;
1723
1724 if (!mmc_host_is_spi(host) &&
1725 !mmc_ready_for_data(status)) {
1726 err = mmc_blk_fix_state(card, req);
1727 if (err)
1728 goto error_exit;
1729 }
1730
1731 if (!mrq->cmd->error)
1732 break;
1733 }
1734
1735 if (mrq->cmd->error ||
1736 mrq->data->error ||
1737 (!mmc_host_is_spi(host) &&
1738 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1739 error = BLK_STS_IOERR;
1740 else
1741 error = BLK_STS_OK;
1742
1743 } while (blk_update_request(req, error, bytes_per_read));
1744
1745 return;
1746
1747 error_exit:
1748 mrq->data->bytes_xfered = 0;
1749 blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1750 /* Let it try the remaining request again */
1751 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1752 mqrq->retries = MMC_MAX_RETRIES - 1;
1753 }
1754
mmc_blk_oor_valid(struct mmc_blk_request * brq)1755 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1756 {
1757 return !!brq->mrq.sbc;
1758 }
1759
mmc_blk_stop_err_bits(struct mmc_blk_request * brq)1760 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1761 {
1762 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1763 }
1764
1765 /*
1766 * Check for errors the host controller driver might not have seen such as
1767 * response mode errors or invalid card state.
1768 */
mmc_blk_status_error(struct request * req,u32 status)1769 static bool mmc_blk_status_error(struct request *req, u32 status)
1770 {
1771 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1772 struct mmc_blk_request *brq = &mqrq->brq;
1773 struct mmc_queue *mq = req->q->queuedata;
1774 u32 stop_err_bits;
1775
1776 if (mmc_host_is_spi(mq->card->host))
1777 return false;
1778
1779 stop_err_bits = mmc_blk_stop_err_bits(brq);
1780
1781 return brq->cmd.resp[0] & CMD_ERRORS ||
1782 brq->stop.resp[0] & stop_err_bits ||
1783 status & stop_err_bits ||
1784 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1785 }
1786
mmc_blk_cmd_started(struct mmc_blk_request * brq)1787 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1788 {
1789 return !brq->sbc.error && !brq->cmd.error &&
1790 !(brq->cmd.resp[0] & CMD_ERRORS);
1791 }
1792
1793 /*
1794 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1795 * policy:
1796 * 1. A request that has transferred at least some data is considered
1797 * successful and will be requeued if there is remaining data to
1798 * transfer.
1799 * 2. Otherwise the number of retries is incremented and the request
1800 * will be requeued if there are remaining retries.
1801 * 3. Otherwise the request will be errored out.
1802 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1803 * mqrq->retries. So there are only 4 possible actions here:
1804 * 1. do not accept the bytes_xfered value i.e. set it to zero
1805 * 2. change mqrq->retries to determine the number of retries
1806 * 3. try to reset the card
1807 * 4. read one sector at a time
1808 */
mmc_blk_mq_rw_recovery(struct mmc_queue * mq,struct request * req)1809 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1810 {
1811 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1812 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1813 struct mmc_blk_request *brq = &mqrq->brq;
1814 struct mmc_blk_data *md = mq->blkdata;
1815 struct mmc_card *card = mq->card;
1816 u32 status;
1817 u32 blocks;
1818 int err;
1819
1820 /*
1821 * Some errors the host driver might not have seen. Set the number of
1822 * bytes transferred to zero in that case.
1823 */
1824 err = __mmc_send_status(card, &status, 0);
1825 if (err || mmc_blk_status_error(req, status))
1826 brq->data.bytes_xfered = 0;
1827
1828 mmc_retune_release(card->host);
1829
1830 /*
1831 * Try again to get the status. This also provides an opportunity for
1832 * re-tuning.
1833 */
1834 if (err)
1835 err = __mmc_send_status(card, &status, 0);
1836
1837 /*
1838 * Nothing more to do after the number of bytes transferred has been
1839 * updated and there is no card.
1840 */
1841 if (err && mmc_detect_card_removed(card->host))
1842 return;
1843
1844 /* Try to get back to "tran" state */
1845 if (!mmc_host_is_spi(mq->card->host) &&
1846 (err || !mmc_ready_for_data(status)))
1847 err = mmc_blk_fix_state(mq->card, req);
1848
1849 /*
1850 * Special case for SD cards where the card might record the number of
1851 * blocks written.
1852 */
1853 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1854 rq_data_dir(req) == WRITE) {
1855 if (mmc_sd_num_wr_blocks(card, &blocks))
1856 brq->data.bytes_xfered = 0;
1857 else
1858 brq->data.bytes_xfered = blocks << 9;
1859 }
1860
1861 /* Reset if the card is in a bad state */
1862 if (!mmc_host_is_spi(mq->card->host) &&
1863 err && mmc_blk_reset(md, card->host, type)) {
1864 pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1865 mqrq->retries = MMC_NO_RETRIES;
1866 return;
1867 }
1868
1869 /*
1870 * If anything was done, just return and if there is anything remaining
1871 * on the request it will get requeued.
1872 */
1873 if (brq->data.bytes_xfered)
1874 return;
1875
1876 /* Reset before last retry */
1877 if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1878 mmc_blk_reset(md, card->host, type))
1879 return;
1880
1881 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1882 if (brq->sbc.error || brq->cmd.error)
1883 return;
1884
1885 /* Reduce the remaining retries for data errors */
1886 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1887 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1888 return;
1889 }
1890
1891 if (rq_data_dir(req) == READ && brq->data.blocks >
1892 queue_physical_block_size(mq->queue) >> 9) {
1893 /* Read one (native) sector at a time */
1894 mmc_blk_read_single(mq, req);
1895 return;
1896 }
1897 }
1898
mmc_blk_rq_error(struct mmc_blk_request * brq)1899 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1900 {
1901 mmc_blk_eval_resp_error(brq);
1902
1903 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1904 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1905 }
1906
mmc_spi_err_check(struct mmc_card * card)1907 static int mmc_spi_err_check(struct mmc_card *card)
1908 {
1909 u32 status = 0;
1910 int err;
1911
1912 /*
1913 * SPI does not have a TRAN state we have to wait on, instead the
1914 * card is ready again when it no longer holds the line LOW.
1915 * We still have to ensure two things here before we know the write
1916 * was successful:
1917 * 1. The card has not disconnected during busy and we actually read our
1918 * own pull-up, thinking it was still connected, so ensure it
1919 * still responds.
1920 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1921 * just reconnected card after being disconnected during busy.
1922 */
1923 err = __mmc_send_status(card, &status, 0);
1924 if (err)
1925 return err;
1926 /* All R1 and R2 bits of SPI are errors in our case */
1927 if (status)
1928 return -EIO;
1929 return 0;
1930 }
1931
mmc_blk_busy_cb(void * cb_data,bool * busy)1932 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1933 {
1934 struct mmc_blk_busy_data *data = cb_data;
1935 u32 status = 0;
1936 int err;
1937
1938 err = mmc_send_status(data->card, &status);
1939 if (err)
1940 return err;
1941
1942 /* Accumulate response error bits. */
1943 data->status |= status;
1944
1945 *busy = !mmc_ready_for_data(status);
1946 return 0;
1947 }
1948
mmc_blk_card_busy(struct mmc_card * card,struct request * req)1949 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1950 {
1951 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1952 struct mmc_blk_busy_data cb_data;
1953 int err;
1954
1955 if (rq_data_dir(req) == READ)
1956 return 0;
1957
1958 if (mmc_host_is_spi(card->host)) {
1959 err = mmc_spi_err_check(card);
1960 if (err)
1961 mqrq->brq.data.bytes_xfered = 0;
1962 return err;
1963 }
1964
1965 cb_data.card = card;
1966 cb_data.status = 0;
1967 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1968 &mmc_blk_busy_cb, &cb_data);
1969
1970 /*
1971 * Do not assume data transferred correctly if there are any error bits
1972 * set.
1973 */
1974 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1975 mqrq->brq.data.bytes_xfered = 0;
1976 err = err ? err : -EIO;
1977 }
1978
1979 /* Copy the exception bit so it will be seen later on */
1980 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1981 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1982
1983 return err;
1984 }
1985
mmc_blk_rw_reset_success(struct mmc_queue * mq,struct request * req)1986 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1987 struct request *req)
1988 {
1989 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1990
1991 mmc_blk_reset_success(mq->blkdata, type);
1992 }
1993
mmc_blk_mq_complete_rq(struct mmc_queue * mq,struct request * req)1994 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1995 {
1996 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1997 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1998
1999 if (nr_bytes) {
2000 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2001 blk_mq_requeue_request(req, true);
2002 else
2003 __blk_mq_end_request(req, BLK_STS_OK);
2004 } else if (!blk_rq_bytes(req)) {
2005 __blk_mq_end_request(req, BLK_STS_IOERR);
2006 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2007 blk_mq_requeue_request(req, true);
2008 } else {
2009 if (mmc_card_removed(mq->card))
2010 req->rq_flags |= RQF_QUIET;
2011 blk_mq_end_request(req, BLK_STS_IOERR);
2012 }
2013 }
2014
mmc_blk_urgent_bkops_needed(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2015 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2016 struct mmc_queue_req *mqrq)
2017 {
2018 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2019 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2020 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2021 }
2022
mmc_blk_urgent_bkops(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2023 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2024 struct mmc_queue_req *mqrq)
2025 {
2026 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2027 mmc_run_bkops(mq->card);
2028 }
2029
mmc_blk_hsq_req_done(struct mmc_request * mrq)2030 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2031 {
2032 struct mmc_queue_req *mqrq =
2033 container_of(mrq, struct mmc_queue_req, brq.mrq);
2034 struct request *req = mmc_queue_req_to_req(mqrq);
2035 struct request_queue *q = req->q;
2036 struct mmc_queue *mq = q->queuedata;
2037 struct mmc_host *host = mq->card->host;
2038 unsigned long flags;
2039
2040 if (mmc_blk_rq_error(&mqrq->brq) ||
2041 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2042 spin_lock_irqsave(&mq->lock, flags);
2043 mq->recovery_needed = true;
2044 mq->recovery_req = req;
2045 spin_unlock_irqrestore(&mq->lock, flags);
2046
2047 host->cqe_ops->cqe_recovery_start(host);
2048
2049 schedule_work(&mq->recovery_work);
2050 return;
2051 }
2052
2053 mmc_blk_rw_reset_success(mq, req);
2054
2055 /*
2056 * Block layer timeouts race with completions which means the normal
2057 * completion path cannot be used during recovery.
2058 */
2059 if (mq->in_recovery)
2060 mmc_blk_cqe_complete_rq(mq, req);
2061 else if (likely(!blk_should_fake_timeout(req->q)))
2062 blk_mq_complete_request(req);
2063 }
2064
mmc_blk_mq_complete(struct request * req)2065 void mmc_blk_mq_complete(struct request *req)
2066 {
2067 struct mmc_queue *mq = req->q->queuedata;
2068 struct mmc_host *host = mq->card->host;
2069
2070 if (host->cqe_enabled)
2071 mmc_blk_cqe_complete_rq(mq, req);
2072 else if (likely(!blk_should_fake_timeout(req->q)))
2073 mmc_blk_mq_complete_rq(mq, req);
2074 }
2075
mmc_blk_mq_poll_completion(struct mmc_queue * mq,struct request * req)2076 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2077 struct request *req)
2078 {
2079 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2080 struct mmc_host *host = mq->card->host;
2081
2082 if (mmc_blk_rq_error(&mqrq->brq) ||
2083 mmc_blk_card_busy(mq->card, req)) {
2084 mmc_blk_mq_rw_recovery(mq, req);
2085 } else {
2086 mmc_blk_rw_reset_success(mq, req);
2087 mmc_retune_release(host);
2088 }
2089
2090 mmc_blk_urgent_bkops(mq, mqrq);
2091 }
2092
mmc_blk_mq_dec_in_flight(struct mmc_queue * mq,struct request * req)2093 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
2094 {
2095 unsigned long flags;
2096 bool put_card;
2097
2098 spin_lock_irqsave(&mq->lock, flags);
2099
2100 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2101
2102 put_card = (mmc_tot_in_flight(mq) == 0);
2103
2104 spin_unlock_irqrestore(&mq->lock, flags);
2105
2106 if (put_card)
2107 mmc_put_card(mq->card, &mq->ctx);
2108 }
2109
mmc_blk_mq_post_req(struct mmc_queue * mq,struct request * req,bool can_sleep)2110 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2111 bool can_sleep)
2112 {
2113 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2114 struct mmc_request *mrq = &mqrq->brq.mrq;
2115 struct mmc_host *host = mq->card->host;
2116
2117 mmc_post_req(host, mrq, 0);
2118
2119 /*
2120 * Block layer timeouts race with completions which means the normal
2121 * completion path cannot be used during recovery.
2122 */
2123 if (mq->in_recovery) {
2124 mmc_blk_mq_complete_rq(mq, req);
2125 } else if (likely(!blk_should_fake_timeout(req->q))) {
2126 if (can_sleep)
2127 blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2128 else
2129 blk_mq_complete_request(req);
2130 }
2131
2132 mmc_blk_mq_dec_in_flight(mq, req);
2133 }
2134
mmc_blk_mq_recovery(struct mmc_queue * mq)2135 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2136 {
2137 struct request *req = mq->recovery_req;
2138 struct mmc_host *host = mq->card->host;
2139 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2140
2141 mq->recovery_req = NULL;
2142 mq->rw_wait = false;
2143
2144 if (mmc_blk_rq_error(&mqrq->brq)) {
2145 mmc_retune_hold_now(host);
2146 mmc_blk_mq_rw_recovery(mq, req);
2147 }
2148
2149 mmc_blk_urgent_bkops(mq, mqrq);
2150
2151 mmc_blk_mq_post_req(mq, req, true);
2152 }
2153
mmc_blk_mq_complete_prev_req(struct mmc_queue * mq,struct request ** prev_req)2154 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2155 struct request **prev_req)
2156 {
2157 if (mmc_host_done_complete(mq->card->host))
2158 return;
2159
2160 mutex_lock(&mq->complete_lock);
2161
2162 if (!mq->complete_req)
2163 goto out_unlock;
2164
2165 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2166
2167 if (prev_req)
2168 *prev_req = mq->complete_req;
2169 else
2170 mmc_blk_mq_post_req(mq, mq->complete_req, true);
2171
2172 mq->complete_req = NULL;
2173
2174 out_unlock:
2175 mutex_unlock(&mq->complete_lock);
2176 }
2177
mmc_blk_mq_complete_work(struct work_struct * work)2178 void mmc_blk_mq_complete_work(struct work_struct *work)
2179 {
2180 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2181 complete_work);
2182
2183 mmc_blk_mq_complete_prev_req(mq, NULL);
2184 }
2185
mmc_blk_mq_req_done(struct mmc_request * mrq)2186 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2187 {
2188 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2189 brq.mrq);
2190 struct request *req = mmc_queue_req_to_req(mqrq);
2191 struct request_queue *q = req->q;
2192 struct mmc_queue *mq = q->queuedata;
2193 struct mmc_host *host = mq->card->host;
2194 unsigned long flags;
2195
2196 if (!mmc_host_done_complete(host)) {
2197 bool waiting;
2198
2199 /*
2200 * We cannot complete the request in this context, so record
2201 * that there is a request to complete, and that a following
2202 * request does not need to wait (although it does need to
2203 * complete complete_req first).
2204 */
2205 spin_lock_irqsave(&mq->lock, flags);
2206 mq->complete_req = req;
2207 mq->rw_wait = false;
2208 waiting = mq->waiting;
2209 spin_unlock_irqrestore(&mq->lock, flags);
2210
2211 /*
2212 * If 'waiting' then the waiting task will complete this
2213 * request, otherwise queue a work to do it. Note that
2214 * complete_work may still race with the dispatch of a following
2215 * request.
2216 */
2217 if (waiting)
2218 wake_up(&mq->wait);
2219 else
2220 queue_work(mq->card->complete_wq, &mq->complete_work);
2221
2222 return;
2223 }
2224
2225 /* Take the recovery path for errors or urgent background operations */
2226 if (mmc_blk_rq_error(&mqrq->brq) ||
2227 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2228 spin_lock_irqsave(&mq->lock, flags);
2229 mq->recovery_needed = true;
2230 mq->recovery_req = req;
2231 spin_unlock_irqrestore(&mq->lock, flags);
2232 wake_up(&mq->wait);
2233 schedule_work(&mq->recovery_work);
2234 return;
2235 }
2236
2237 mmc_blk_rw_reset_success(mq, req);
2238
2239 mq->rw_wait = false;
2240 wake_up(&mq->wait);
2241
2242 /* context unknown */
2243 mmc_blk_mq_post_req(mq, req, false);
2244 }
2245
mmc_blk_rw_wait_cond(struct mmc_queue * mq,int * err)2246 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2247 {
2248 unsigned long flags;
2249 bool done;
2250
2251 /*
2252 * Wait while there is another request in progress, but not if recovery
2253 * is needed. Also indicate whether there is a request waiting to start.
2254 */
2255 spin_lock_irqsave(&mq->lock, flags);
2256 if (mq->recovery_needed) {
2257 *err = -EBUSY;
2258 done = true;
2259 } else {
2260 done = !mq->rw_wait;
2261 }
2262 mq->waiting = !done;
2263 spin_unlock_irqrestore(&mq->lock, flags);
2264
2265 return done;
2266 }
2267
mmc_blk_rw_wait(struct mmc_queue * mq,struct request ** prev_req)2268 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2269 {
2270 int err = 0;
2271
2272 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2273
2274 /* Always complete the previous request if there is one */
2275 mmc_blk_mq_complete_prev_req(mq, prev_req);
2276
2277 return err;
2278 }
2279
mmc_blk_mq_issue_rw_rq(struct mmc_queue * mq,struct request * req)2280 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2281 struct request *req)
2282 {
2283 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2284 struct mmc_host *host = mq->card->host;
2285 struct request *prev_req = NULL;
2286 int err = 0;
2287
2288 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2289
2290 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2291
2292 mmc_pre_req(host, &mqrq->brq.mrq);
2293
2294 err = mmc_blk_rw_wait(mq, &prev_req);
2295 if (err)
2296 goto out_post_req;
2297
2298 mq->rw_wait = true;
2299
2300 err = mmc_start_request(host, &mqrq->brq.mrq);
2301
2302 if (prev_req)
2303 mmc_blk_mq_post_req(mq, prev_req, true);
2304
2305 if (err)
2306 mq->rw_wait = false;
2307
2308 /* Release re-tuning here where there is no synchronization required */
2309 if (err || mmc_host_done_complete(host))
2310 mmc_retune_release(host);
2311
2312 out_post_req:
2313 if (err)
2314 mmc_post_req(host, &mqrq->brq.mrq, err);
2315
2316 return err;
2317 }
2318
mmc_blk_wait_for_idle(struct mmc_queue * mq,struct mmc_host * host)2319 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2320 {
2321 if (host->cqe_enabled)
2322 return host->cqe_ops->cqe_wait_for_idle(host);
2323
2324 return mmc_blk_rw_wait(mq, NULL);
2325 }
2326
mmc_blk_mq_issue_rq(struct mmc_queue * mq,struct request * req)2327 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2328 {
2329 struct mmc_blk_data *md = mq->blkdata;
2330 struct mmc_card *card = md->queue.card;
2331 struct mmc_host *host = card->host;
2332 int ret;
2333
2334 ret = mmc_blk_part_switch(card, md->part_type);
2335 if (ret)
2336 return MMC_REQ_FAILED_TO_START;
2337
2338 switch (mmc_issue_type(mq, req)) {
2339 case MMC_ISSUE_SYNC:
2340 ret = mmc_blk_wait_for_idle(mq, host);
2341 if (ret)
2342 return MMC_REQ_BUSY;
2343 switch (req_op(req)) {
2344 case REQ_OP_DRV_IN:
2345 case REQ_OP_DRV_OUT:
2346 mmc_blk_issue_drv_op(mq, req);
2347 break;
2348 case REQ_OP_DISCARD:
2349 mmc_blk_issue_discard_rq(mq, req);
2350 break;
2351 case REQ_OP_SECURE_ERASE:
2352 mmc_blk_issue_secdiscard_rq(mq, req);
2353 break;
2354 case REQ_OP_WRITE_ZEROES:
2355 mmc_blk_issue_trim_rq(mq, req);
2356 break;
2357 case REQ_OP_FLUSH:
2358 mmc_blk_issue_flush(mq, req);
2359 break;
2360 default:
2361 WARN_ON_ONCE(1);
2362 return MMC_REQ_FAILED_TO_START;
2363 }
2364 return MMC_REQ_FINISHED;
2365 case MMC_ISSUE_DCMD:
2366 case MMC_ISSUE_ASYNC:
2367 switch (req_op(req)) {
2368 case REQ_OP_FLUSH:
2369 if (!mmc_cache_enabled(host)) {
2370 blk_mq_end_request(req, BLK_STS_OK);
2371 return MMC_REQ_FINISHED;
2372 }
2373 ret = mmc_blk_cqe_issue_flush(mq, req);
2374 break;
2375 case REQ_OP_READ:
2376 case REQ_OP_WRITE:
2377 if (host->cqe_enabled)
2378 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2379 else
2380 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2381 break;
2382 default:
2383 WARN_ON_ONCE(1);
2384 ret = -EINVAL;
2385 }
2386 if (!ret)
2387 return MMC_REQ_STARTED;
2388 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2389 default:
2390 WARN_ON_ONCE(1);
2391 return MMC_REQ_FAILED_TO_START;
2392 }
2393 }
2394
mmc_blk_readonly(struct mmc_card * card)2395 static inline int mmc_blk_readonly(struct mmc_card *card)
2396 {
2397 return mmc_card_readonly(card) ||
2398 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2399 }
2400
mmc_blk_alloc_req(struct mmc_card * card,struct device * parent,sector_t size,bool default_ro,const char * subname,int area_type,unsigned int part_type)2401 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2402 struct device *parent,
2403 sector_t size,
2404 bool default_ro,
2405 const char *subname,
2406 int area_type,
2407 unsigned int part_type)
2408 {
2409 struct mmc_blk_data *md;
2410 int devidx, ret;
2411 char cap_str[10];
2412 bool cache_enabled = false;
2413 bool fua_enabled = false;
2414
2415 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2416 if (devidx < 0) {
2417 /*
2418 * We get -ENOSPC because there are no more any available
2419 * devidx. The reason may be that, either userspace haven't yet
2420 * unmounted the partitions, which postpones mmc_blk_release()
2421 * from being called, or the device has more partitions than
2422 * what we support.
2423 */
2424 if (devidx == -ENOSPC)
2425 dev_err(mmc_dev(card->host),
2426 "no more device IDs available\n");
2427
2428 return ERR_PTR(devidx);
2429 }
2430
2431 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2432 if (!md) {
2433 ret = -ENOMEM;
2434 goto out;
2435 }
2436
2437 md->area_type = area_type;
2438
2439 /*
2440 * Set the read-only status based on the supported commands
2441 * and the write protect switch.
2442 */
2443 md->read_only = mmc_blk_readonly(card);
2444
2445 md->disk = mmc_init_queue(&md->queue, card);
2446 if (IS_ERR(md->disk)) {
2447 ret = PTR_ERR(md->disk);
2448 goto err_kfree;
2449 }
2450
2451 INIT_LIST_HEAD(&md->part);
2452 INIT_LIST_HEAD(&md->rpmbs);
2453 kref_init(&md->kref);
2454
2455 md->queue.blkdata = md;
2456 md->part_type = part_type;
2457
2458 md->disk->major = MMC_BLOCK_MAJOR;
2459 md->disk->minors = perdev_minors;
2460 md->disk->first_minor = devidx * perdev_minors;
2461 md->disk->fops = &mmc_bdops;
2462 md->disk->private_data = md;
2463 md->parent = parent;
2464 set_disk_ro(md->disk, md->read_only || default_ro);
2465 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2466 md->disk->flags |= GENHD_FL_NO_PART;
2467
2468 /*
2469 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2470 *
2471 * - be set for removable media with permanent block devices
2472 * - be unset for removable block devices with permanent media
2473 *
2474 * Since MMC block devices clearly fall under the second
2475 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2476 * should use the block device creation/destruction hotplug
2477 * messages to tell when the card is present.
2478 */
2479
2480 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2481 "mmcblk%u%s", card->host->index, subname ? subname : "");
2482
2483 set_capacity(md->disk, size);
2484
2485 if (mmc_host_cmd23(card->host)) {
2486 if ((mmc_card_mmc(card) &&
2487 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2488 (mmc_card_sd(card) &&
2489 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2490 md->flags |= MMC_BLK_CMD23;
2491 }
2492
2493 if (md->flags & MMC_BLK_CMD23 &&
2494 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2495 card->ext_csd.rel_sectors)) {
2496 md->flags |= MMC_BLK_REL_WR;
2497 fua_enabled = true;
2498 cache_enabled = true;
2499 }
2500 if (mmc_cache_enabled(card->host))
2501 cache_enabled = true;
2502
2503 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2504
2505 string_get_size((u64)size, 512, STRING_UNITS_2,
2506 cap_str, sizeof(cap_str));
2507 pr_info("%s: %s %s %s %s\n",
2508 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2509 cap_str, md->read_only ? "(ro)" : "");
2510
2511 /* used in ->open, must be set before add_disk: */
2512 if (area_type == MMC_BLK_DATA_AREA_MAIN)
2513 dev_set_drvdata(&card->dev, md);
2514 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2515 if (ret)
2516 goto err_put_disk;
2517 return md;
2518
2519 err_put_disk:
2520 put_disk(md->disk);
2521 blk_mq_free_tag_set(&md->queue.tag_set);
2522 err_kfree:
2523 kfree(md);
2524 out:
2525 ida_simple_remove(&mmc_blk_ida, devidx);
2526 return ERR_PTR(ret);
2527 }
2528
mmc_blk_alloc(struct mmc_card * card)2529 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2530 {
2531 sector_t size;
2532
2533 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2534 /*
2535 * The EXT_CSD sector count is in number or 512 byte
2536 * sectors.
2537 */
2538 size = card->ext_csd.sectors;
2539 } else {
2540 /*
2541 * The CSD capacity field is in units of read_blkbits.
2542 * set_capacity takes units of 512 bytes.
2543 */
2544 size = (typeof(sector_t))card->csd.capacity
2545 << (card->csd.read_blkbits - 9);
2546 }
2547
2548 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2549 MMC_BLK_DATA_AREA_MAIN, 0);
2550 }
2551
mmc_blk_alloc_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_type,sector_t size,bool default_ro,const char * subname,int area_type)2552 static int mmc_blk_alloc_part(struct mmc_card *card,
2553 struct mmc_blk_data *md,
2554 unsigned int part_type,
2555 sector_t size,
2556 bool default_ro,
2557 const char *subname,
2558 int area_type)
2559 {
2560 struct mmc_blk_data *part_md;
2561
2562 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2563 subname, area_type, part_type);
2564 if (IS_ERR(part_md))
2565 return PTR_ERR(part_md);
2566 list_add(&part_md->part, &md->part);
2567
2568 return 0;
2569 }
2570
2571 /**
2572 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2573 * @filp: the character device file
2574 * @cmd: the ioctl() command
2575 * @arg: the argument from userspace
2576 *
2577 * This will essentially just redirect the ioctl()s coming in over to
2578 * the main block device spawning the RPMB character device.
2579 */
mmc_rpmb_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2580 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2581 unsigned long arg)
2582 {
2583 struct mmc_rpmb_data *rpmb = filp->private_data;
2584 int ret;
2585
2586 switch (cmd) {
2587 case MMC_IOC_CMD:
2588 ret = mmc_blk_ioctl_cmd(rpmb->md,
2589 (struct mmc_ioc_cmd __user *)arg,
2590 rpmb);
2591 break;
2592 case MMC_IOC_MULTI_CMD:
2593 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2594 (struct mmc_ioc_multi_cmd __user *)arg,
2595 rpmb);
2596 break;
2597 default:
2598 ret = -EINVAL;
2599 break;
2600 }
2601
2602 return ret;
2603 }
2604
2605 #ifdef CONFIG_COMPAT
mmc_rpmb_ioctl_compat(struct file * filp,unsigned int cmd,unsigned long arg)2606 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2607 unsigned long arg)
2608 {
2609 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2610 }
2611 #endif
2612
mmc_rpmb_chrdev_open(struct inode * inode,struct file * filp)2613 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2614 {
2615 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2616 struct mmc_rpmb_data, chrdev);
2617
2618 get_device(&rpmb->dev);
2619 filp->private_data = rpmb;
2620 mmc_blk_get(rpmb->md->disk);
2621
2622 return nonseekable_open(inode, filp);
2623 }
2624
mmc_rpmb_chrdev_release(struct inode * inode,struct file * filp)2625 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2626 {
2627 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2628 struct mmc_rpmb_data, chrdev);
2629
2630 mmc_blk_put(rpmb->md);
2631 put_device(&rpmb->dev);
2632
2633 return 0;
2634 }
2635
2636 static const struct file_operations mmc_rpmb_fileops = {
2637 .release = mmc_rpmb_chrdev_release,
2638 .open = mmc_rpmb_chrdev_open,
2639 .owner = THIS_MODULE,
2640 .llseek = no_llseek,
2641 .unlocked_ioctl = mmc_rpmb_ioctl,
2642 #ifdef CONFIG_COMPAT
2643 .compat_ioctl = mmc_rpmb_ioctl_compat,
2644 #endif
2645 };
2646
mmc_blk_rpmb_device_release(struct device * dev)2647 static void mmc_blk_rpmb_device_release(struct device *dev)
2648 {
2649 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2650
2651 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2652 kfree(rpmb);
2653 }
2654
mmc_blk_alloc_rpmb_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_index,sector_t size,const char * subname)2655 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2656 struct mmc_blk_data *md,
2657 unsigned int part_index,
2658 sector_t size,
2659 const char *subname)
2660 {
2661 int devidx, ret;
2662 char rpmb_name[DISK_NAME_LEN];
2663 char cap_str[10];
2664 struct mmc_rpmb_data *rpmb;
2665
2666 /* This creates the minor number for the RPMB char device */
2667 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2668 if (devidx < 0)
2669 return devidx;
2670
2671 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2672 if (!rpmb) {
2673 ida_simple_remove(&mmc_rpmb_ida, devidx);
2674 return -ENOMEM;
2675 }
2676
2677 snprintf(rpmb_name, sizeof(rpmb_name),
2678 "mmcblk%u%s", card->host->index, subname ? subname : "");
2679
2680 rpmb->id = devidx;
2681 rpmb->part_index = part_index;
2682 rpmb->dev.init_name = rpmb_name;
2683 rpmb->dev.bus = &mmc_rpmb_bus_type;
2684 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2685 rpmb->dev.parent = &card->dev;
2686 rpmb->dev.release = mmc_blk_rpmb_device_release;
2687 device_initialize(&rpmb->dev);
2688 dev_set_drvdata(&rpmb->dev, rpmb);
2689 rpmb->md = md;
2690
2691 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2692 rpmb->chrdev.owner = THIS_MODULE;
2693 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2694 if (ret) {
2695 pr_err("%s: could not add character device\n", rpmb_name);
2696 goto out_put_device;
2697 }
2698
2699 list_add(&rpmb->node, &md->rpmbs);
2700
2701 string_get_size((u64)size, 512, STRING_UNITS_2,
2702 cap_str, sizeof(cap_str));
2703
2704 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2705 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2706 MAJOR(mmc_rpmb_devt), rpmb->id);
2707
2708 return 0;
2709
2710 out_put_device:
2711 put_device(&rpmb->dev);
2712 return ret;
2713 }
2714
mmc_blk_remove_rpmb_part(struct mmc_rpmb_data * rpmb)2715 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2716
2717 {
2718 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2719 put_device(&rpmb->dev);
2720 }
2721
2722 /* MMC Physical partitions consist of two boot partitions and
2723 * up to four general purpose partitions.
2724 * For each partition enabled in EXT_CSD a block device will be allocatedi
2725 * to provide access to the partition.
2726 */
2727
mmc_blk_alloc_parts(struct mmc_card * card,struct mmc_blk_data * md)2728 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2729 {
2730 int idx, ret;
2731
2732 if (!mmc_card_mmc(card))
2733 return 0;
2734
2735 for (idx = 0; idx < card->nr_parts; idx++) {
2736 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2737 /*
2738 * RPMB partitions does not provide block access, they
2739 * are only accessed using ioctl():s. Thus create
2740 * special RPMB block devices that do not have a
2741 * backing block queue for these.
2742 */
2743 ret = mmc_blk_alloc_rpmb_part(card, md,
2744 card->part[idx].part_cfg,
2745 card->part[idx].size >> 9,
2746 card->part[idx].name);
2747 if (ret)
2748 return ret;
2749 } else if (card->part[idx].size) {
2750 ret = mmc_blk_alloc_part(card, md,
2751 card->part[idx].part_cfg,
2752 card->part[idx].size >> 9,
2753 card->part[idx].force_ro,
2754 card->part[idx].name,
2755 card->part[idx].area_type);
2756 if (ret)
2757 return ret;
2758 }
2759 }
2760
2761 return 0;
2762 }
2763
mmc_blk_remove_req(struct mmc_blk_data * md)2764 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2765 {
2766 /*
2767 * Flush remaining requests and free queues. It is freeing the queue
2768 * that stops new requests from being accepted.
2769 */
2770 del_gendisk(md->disk);
2771 mmc_cleanup_queue(&md->queue);
2772 mmc_blk_put(md);
2773 }
2774
mmc_blk_remove_parts(struct mmc_card * card,struct mmc_blk_data * md)2775 static void mmc_blk_remove_parts(struct mmc_card *card,
2776 struct mmc_blk_data *md)
2777 {
2778 struct list_head *pos, *q;
2779 struct mmc_blk_data *part_md;
2780 struct mmc_rpmb_data *rpmb;
2781
2782 /* Remove RPMB partitions */
2783 list_for_each_safe(pos, q, &md->rpmbs) {
2784 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2785 list_del(pos);
2786 mmc_blk_remove_rpmb_part(rpmb);
2787 }
2788 /* Remove block partitions */
2789 list_for_each_safe(pos, q, &md->part) {
2790 part_md = list_entry(pos, struct mmc_blk_data, part);
2791 list_del(pos);
2792 mmc_blk_remove_req(part_md);
2793 }
2794 }
2795
2796 #ifdef CONFIG_DEBUG_FS
2797
mmc_dbg_card_status_get(void * data,u64 * val)2798 static int mmc_dbg_card_status_get(void *data, u64 *val)
2799 {
2800 struct mmc_card *card = data;
2801 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2802 struct mmc_queue *mq = &md->queue;
2803 struct request *req;
2804 int ret;
2805
2806 /* Ask the block layer about the card status */
2807 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2808 if (IS_ERR(req))
2809 return PTR_ERR(req);
2810 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2811 blk_execute_rq(req, false);
2812 ret = req_to_mmc_queue_req(req)->drv_op_result;
2813 if (ret >= 0) {
2814 *val = ret;
2815 ret = 0;
2816 }
2817 blk_mq_free_request(req);
2818
2819 return ret;
2820 }
2821 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2822 NULL, "%08llx\n");
2823
2824 /* That is two digits * 512 + 1 for newline */
2825 #define EXT_CSD_STR_LEN 1025
2826
mmc_ext_csd_open(struct inode * inode,struct file * filp)2827 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2828 {
2829 struct mmc_card *card = inode->i_private;
2830 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2831 struct mmc_queue *mq = &md->queue;
2832 struct request *req;
2833 char *buf;
2834 ssize_t n = 0;
2835 u8 *ext_csd;
2836 int err, i;
2837
2838 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2839 if (!buf)
2840 return -ENOMEM;
2841
2842 /* Ask the block layer for the EXT CSD */
2843 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2844 if (IS_ERR(req)) {
2845 err = PTR_ERR(req);
2846 goto out_free;
2847 }
2848 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2849 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2850 blk_execute_rq(req, false);
2851 err = req_to_mmc_queue_req(req)->drv_op_result;
2852 blk_mq_free_request(req);
2853 if (err) {
2854 pr_err("FAILED %d\n", err);
2855 goto out_free;
2856 }
2857
2858 for (i = 0; i < 512; i++)
2859 n += sprintf(buf + n, "%02x", ext_csd[i]);
2860 n += sprintf(buf + n, "\n");
2861
2862 if (n != EXT_CSD_STR_LEN) {
2863 err = -EINVAL;
2864 kfree(ext_csd);
2865 goto out_free;
2866 }
2867
2868 filp->private_data = buf;
2869 kfree(ext_csd);
2870 return 0;
2871
2872 out_free:
2873 kfree(buf);
2874 return err;
2875 }
2876
mmc_ext_csd_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)2877 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2878 size_t cnt, loff_t *ppos)
2879 {
2880 char *buf = filp->private_data;
2881
2882 return simple_read_from_buffer(ubuf, cnt, ppos,
2883 buf, EXT_CSD_STR_LEN);
2884 }
2885
mmc_ext_csd_release(struct inode * inode,struct file * file)2886 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2887 {
2888 kfree(file->private_data);
2889 return 0;
2890 }
2891
2892 static const struct file_operations mmc_dbg_ext_csd_fops = {
2893 .open = mmc_ext_csd_open,
2894 .read = mmc_ext_csd_read,
2895 .release = mmc_ext_csd_release,
2896 .llseek = default_llseek,
2897 };
2898
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2899 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2900 {
2901 struct dentry *root;
2902
2903 if (!card->debugfs_root)
2904 return 0;
2905
2906 root = card->debugfs_root;
2907
2908 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2909 md->status_dentry =
2910 debugfs_create_file_unsafe("status", 0400, root,
2911 card,
2912 &mmc_dbg_card_status_fops);
2913 if (!md->status_dentry)
2914 return -EIO;
2915 }
2916
2917 if (mmc_card_mmc(card)) {
2918 md->ext_csd_dentry =
2919 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2920 &mmc_dbg_ext_csd_fops);
2921 if (!md->ext_csd_dentry)
2922 return -EIO;
2923 }
2924
2925 return 0;
2926 }
2927
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2928 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2929 struct mmc_blk_data *md)
2930 {
2931 if (!card->debugfs_root)
2932 return;
2933
2934 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2935 debugfs_remove(md->status_dentry);
2936 md->status_dentry = NULL;
2937 }
2938
2939 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2940 debugfs_remove(md->ext_csd_dentry);
2941 md->ext_csd_dentry = NULL;
2942 }
2943 }
2944
2945 #else
2946
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2947 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2948 {
2949 return 0;
2950 }
2951
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2952 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2953 struct mmc_blk_data *md)
2954 {
2955 }
2956
2957 #endif /* CONFIG_DEBUG_FS */
2958
mmc_blk_probe(struct mmc_card * card)2959 static int mmc_blk_probe(struct mmc_card *card)
2960 {
2961 struct mmc_blk_data *md;
2962 int ret = 0;
2963
2964 /*
2965 * Check that the card supports the command class(es) we need.
2966 */
2967 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2968 return -ENODEV;
2969
2970 mmc_fixup_device(card, mmc_blk_fixups);
2971
2972 card->complete_wq = alloc_workqueue("mmc_complete",
2973 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2974 if (!card->complete_wq) {
2975 pr_err("Failed to create mmc completion workqueue");
2976 return -ENOMEM;
2977 }
2978
2979 md = mmc_blk_alloc(card);
2980 if (IS_ERR(md)) {
2981 ret = PTR_ERR(md);
2982 goto out_free;
2983 }
2984
2985 ret = mmc_blk_alloc_parts(card, md);
2986 if (ret)
2987 goto out;
2988
2989 /* Add two debugfs entries */
2990 mmc_blk_add_debugfs(card, md);
2991
2992 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2993 pm_runtime_use_autosuspend(&card->dev);
2994
2995 /*
2996 * Don't enable runtime PM for SD-combo cards here. Leave that
2997 * decision to be taken during the SDIO init sequence instead.
2998 */
2999 if (!mmc_card_sd_combo(card)) {
3000 pm_runtime_set_active(&card->dev);
3001 pm_runtime_enable(&card->dev);
3002 }
3003
3004 return 0;
3005
3006 out:
3007 mmc_blk_remove_parts(card, md);
3008 mmc_blk_remove_req(md);
3009 out_free:
3010 destroy_workqueue(card->complete_wq);
3011 return ret;
3012 }
3013
mmc_blk_remove(struct mmc_card * card)3014 static void mmc_blk_remove(struct mmc_card *card)
3015 {
3016 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3017
3018 mmc_blk_remove_debugfs(card, md);
3019 mmc_blk_remove_parts(card, md);
3020 pm_runtime_get_sync(&card->dev);
3021 if (md->part_curr != md->part_type) {
3022 mmc_claim_host(card->host);
3023 mmc_blk_part_switch(card, md->part_type);
3024 mmc_release_host(card->host);
3025 }
3026 if (!mmc_card_sd_combo(card))
3027 pm_runtime_disable(&card->dev);
3028 pm_runtime_put_noidle(&card->dev);
3029 mmc_blk_remove_req(md);
3030 dev_set_drvdata(&card->dev, NULL);
3031 destroy_workqueue(card->complete_wq);
3032 }
3033
_mmc_blk_suspend(struct mmc_card * card)3034 static int _mmc_blk_suspend(struct mmc_card *card)
3035 {
3036 struct mmc_blk_data *part_md;
3037 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3038
3039 if (md) {
3040 mmc_queue_suspend(&md->queue);
3041 list_for_each_entry(part_md, &md->part, part) {
3042 mmc_queue_suspend(&part_md->queue);
3043 }
3044 }
3045 return 0;
3046 }
3047
mmc_blk_shutdown(struct mmc_card * card)3048 static void mmc_blk_shutdown(struct mmc_card *card)
3049 {
3050 _mmc_blk_suspend(card);
3051 }
3052
3053 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device * dev)3054 static int mmc_blk_suspend(struct device *dev)
3055 {
3056 struct mmc_card *card = mmc_dev_to_card(dev);
3057
3058 return _mmc_blk_suspend(card);
3059 }
3060
mmc_blk_resume(struct device * dev)3061 static int mmc_blk_resume(struct device *dev)
3062 {
3063 struct mmc_blk_data *part_md;
3064 struct mmc_blk_data *md = dev_get_drvdata(dev);
3065
3066 if (md) {
3067 /*
3068 * Resume involves the card going into idle state,
3069 * so current partition is always the main one.
3070 */
3071 md->part_curr = md->part_type;
3072 mmc_queue_resume(&md->queue);
3073 list_for_each_entry(part_md, &md->part, part) {
3074 mmc_queue_resume(&part_md->queue);
3075 }
3076 }
3077 return 0;
3078 }
3079 #endif
3080
3081 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3082
3083 static struct mmc_driver mmc_driver = {
3084 .drv = {
3085 .name = "mmcblk",
3086 .pm = &mmc_blk_pm_ops,
3087 },
3088 .probe = mmc_blk_probe,
3089 .remove = mmc_blk_remove,
3090 .shutdown = mmc_blk_shutdown,
3091 };
3092
mmc_blk_init(void)3093 static int __init mmc_blk_init(void)
3094 {
3095 int res;
3096
3097 res = bus_register(&mmc_rpmb_bus_type);
3098 if (res < 0) {
3099 pr_err("mmcblk: could not register RPMB bus type\n");
3100 return res;
3101 }
3102 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3103 if (res < 0) {
3104 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3105 goto out_bus_unreg;
3106 }
3107
3108 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3109 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3110
3111 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3112
3113 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3114 if (res)
3115 goto out_chrdev_unreg;
3116
3117 res = mmc_register_driver(&mmc_driver);
3118 if (res)
3119 goto out_blkdev_unreg;
3120
3121 return 0;
3122
3123 out_blkdev_unreg:
3124 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3125 out_chrdev_unreg:
3126 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3127 out_bus_unreg:
3128 bus_unregister(&mmc_rpmb_bus_type);
3129 return res;
3130 }
3131
mmc_blk_exit(void)3132 static void __exit mmc_blk_exit(void)
3133 {
3134 mmc_unregister_driver(&mmc_driver);
3135 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3136 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3137 bus_unregister(&mmc_rpmb_bus_type);
3138 }
3139
3140 module_init(mmc_blk_init);
3141 module_exit(mmc_blk_exit);
3142
3143 MODULE_LICENSE("GPL");
3144 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3145
3146