1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 *
9 */
10
11 #ifndef __UBOOT__
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/ptrace.h>
15 #include <linux/seq_file.h>
16 #include <linux/string.h>
17 #include <linux/timer.h>
18 #include <linux/major.h>
19 #include <linux/fs.h>
20 #include <linux/err.h>
21 #include <linux/ioctl.h>
22 #include <linux/init.h>
23 #include <linux/proc_fs.h>
24 #include <linux/idr.h>
25 #include <linux/backing-dev.h>
26 #include <linux/gfp.h>
27 #include <linux/slab.h>
28 #else
29 #include <linux/bitops.h>
30 #include <linux/bug.h>
31 #include <linux/err.h>
32 #include <ubi_uboot.h>
33 #endif
34
35 #include <linux/log2.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/partitions.h>
38
39 #include "mtdcore.h"
40
41 #ifndef __UBOOT__
42 /*
43 * backing device capabilities for non-mappable devices (such as NAND flash)
44 * - permits private mappings, copies are taken of the data
45 */
46 static struct backing_dev_info mtd_bdi_unmappable = {
47 .capabilities = BDI_CAP_MAP_COPY,
48 };
49
50 /*
51 * backing device capabilities for R/O mappable devices (such as ROM)
52 * - permits private mappings, copies are taken of the data
53 * - permits non-writable shared mappings
54 */
55 static struct backing_dev_info mtd_bdi_ro_mappable = {
56 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
57 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
58 };
59
60 /*
61 * backing device capabilities for writable mappable devices (such as RAM)
62 * - permits private mappings, copies are taken of the data
63 * - permits non-writable shared mappings
64 */
65 static struct backing_dev_info mtd_bdi_rw_mappable = {
66 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
67 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
68 BDI_CAP_WRITE_MAP),
69 };
70
71 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
72 static int mtd_cls_resume(struct device *dev);
73
74 static struct class mtd_class = {
75 .name = "mtd",
76 .owner = THIS_MODULE,
77 .suspend = mtd_cls_suspend,
78 .resume = mtd_cls_resume,
79 };
80 #else
81 #define MAX_IDR_ID 64
82
83 struct idr_layer {
84 int used;
85 void *ptr;
86 };
87
88 struct idr {
89 struct idr_layer id[MAX_IDR_ID];
90 bool updated;
91 };
92
93 #define DEFINE_IDR(name) struct idr name;
94
idr_remove(struct idr * idp,int id)95 void idr_remove(struct idr *idp, int id)
96 {
97 if (idp->id[id].used) {
98 idp->id[id].used = 0;
99 idp->updated = true;
100 }
101
102 return;
103 }
idr_find(struct idr * idp,int id)104 void *idr_find(struct idr *idp, int id)
105 {
106 if (idp->id[id].used)
107 return idp->id[id].ptr;
108
109 return NULL;
110 }
111
idr_get_next(struct idr * idp,int * next)112 void *idr_get_next(struct idr *idp, int *next)
113 {
114 void *ret;
115 int id = *next;
116
117 ret = idr_find(idp, id);
118 if (ret) {
119 id ++;
120 if (!idp->id[id].used)
121 id = 0;
122 *next = id;
123 } else {
124 *next = 0;
125 }
126
127 return ret;
128 }
129
idr_alloc(struct idr * idp,void * ptr,int start,int end,gfp_t gfp_mask)130 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
131 {
132 struct idr_layer *idl;
133 int i = 0;
134
135 while (i < MAX_IDR_ID) {
136 idl = &idp->id[i];
137 if (idl->used == 0) {
138 idl->used = 1;
139 idl->ptr = ptr;
140 idp->updated = true;
141 return i;
142 }
143 i++;
144 }
145 return -ENOSPC;
146 }
147 #endif
148
149 static DEFINE_IDR(mtd_idr);
150
151 /* These are exported solely for the purpose of mtd_blkdevs.c. You
152 should not use them for _anything_ else */
153 DEFINE_MUTEX(mtd_table_mutex);
154 EXPORT_SYMBOL_GPL(mtd_table_mutex);
155
__mtd_next_device(int i)156 struct mtd_info *__mtd_next_device(int i)
157 {
158 return idr_get_next(&mtd_idr, &i);
159 }
160 EXPORT_SYMBOL_GPL(__mtd_next_device);
161
mtd_dev_list_updated(void)162 bool mtd_dev_list_updated(void)
163 {
164 if (mtd_idr.updated) {
165 mtd_idr.updated = false;
166 return true;
167 }
168
169 return false;
170 }
171
172 #ifndef __UBOOT__
173 static LIST_HEAD(mtd_notifiers);
174
175
176 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
177
178 /* REVISIT once MTD uses the driver model better, whoever allocates
179 * the mtd_info will probably want to use the release() hook...
180 */
mtd_release(struct device * dev)181 static void mtd_release(struct device *dev)
182 {
183 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
184 dev_t index = MTD_DEVT(mtd->index);
185
186 /* remove /dev/mtdXro node if needed */
187 if (index)
188 device_destroy(&mtd_class, index + 1);
189 }
190
mtd_cls_suspend(struct device * dev,pm_message_t state)191 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
192 {
193 struct mtd_info *mtd = dev_get_drvdata(dev);
194
195 return mtd ? mtd_suspend(mtd) : 0;
196 }
197
mtd_cls_resume(struct device * dev)198 static int mtd_cls_resume(struct device *dev)
199 {
200 struct mtd_info *mtd = dev_get_drvdata(dev);
201
202 if (mtd)
203 mtd_resume(mtd);
204 return 0;
205 }
206
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)207 static ssize_t mtd_type_show(struct device *dev,
208 struct device_attribute *attr, char *buf)
209 {
210 struct mtd_info *mtd = dev_get_drvdata(dev);
211 char *type;
212
213 switch (mtd->type) {
214 case MTD_ABSENT:
215 type = "absent";
216 break;
217 case MTD_RAM:
218 type = "ram";
219 break;
220 case MTD_ROM:
221 type = "rom";
222 break;
223 case MTD_NORFLASH:
224 type = "nor";
225 break;
226 case MTD_NANDFLASH:
227 type = "nand";
228 break;
229 case MTD_DATAFLASH:
230 type = "dataflash";
231 break;
232 case MTD_UBIVOLUME:
233 type = "ubi";
234 break;
235 case MTD_MLCNANDFLASH:
236 type = "mlc-nand";
237 break;
238 default:
239 type = "unknown";
240 }
241
242 return snprintf(buf, PAGE_SIZE, "%s\n", type);
243 }
244 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
245
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)246 static ssize_t mtd_flags_show(struct device *dev,
247 struct device_attribute *attr, char *buf)
248 {
249 struct mtd_info *mtd = dev_get_drvdata(dev);
250
251 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
252
253 }
254 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
255
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)256 static ssize_t mtd_size_show(struct device *dev,
257 struct device_attribute *attr, char *buf)
258 {
259 struct mtd_info *mtd = dev_get_drvdata(dev);
260
261 return snprintf(buf, PAGE_SIZE, "%llu\n",
262 (unsigned long long)mtd->size);
263
264 }
265 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
266
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)267 static ssize_t mtd_erasesize_show(struct device *dev,
268 struct device_attribute *attr, char *buf)
269 {
270 struct mtd_info *mtd = dev_get_drvdata(dev);
271
272 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
273
274 }
275 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
276
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)277 static ssize_t mtd_writesize_show(struct device *dev,
278 struct device_attribute *attr, char *buf)
279 {
280 struct mtd_info *mtd = dev_get_drvdata(dev);
281
282 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
283
284 }
285 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
286
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)287 static ssize_t mtd_subpagesize_show(struct device *dev,
288 struct device_attribute *attr, char *buf)
289 {
290 struct mtd_info *mtd = dev_get_drvdata(dev);
291 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
292
293 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
294
295 }
296 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
297
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)298 static ssize_t mtd_oobsize_show(struct device *dev,
299 struct device_attribute *attr, char *buf)
300 {
301 struct mtd_info *mtd = dev_get_drvdata(dev);
302
303 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
304
305 }
306 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
307
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)308 static ssize_t mtd_numeraseregions_show(struct device *dev,
309 struct device_attribute *attr, char *buf)
310 {
311 struct mtd_info *mtd = dev_get_drvdata(dev);
312
313 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
314
315 }
316 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
317 NULL);
318
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)319 static ssize_t mtd_name_show(struct device *dev,
320 struct device_attribute *attr, char *buf)
321 {
322 struct mtd_info *mtd = dev_get_drvdata(dev);
323
324 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
325
326 }
327 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
328
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)329 static ssize_t mtd_ecc_strength_show(struct device *dev,
330 struct device_attribute *attr, char *buf)
331 {
332 struct mtd_info *mtd = dev_get_drvdata(dev);
333
334 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
335 }
336 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
337
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)338 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
339 struct device_attribute *attr,
340 char *buf)
341 {
342 struct mtd_info *mtd = dev_get_drvdata(dev);
343
344 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
345 }
346
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)347 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
348 struct device_attribute *attr,
349 const char *buf, size_t count)
350 {
351 struct mtd_info *mtd = dev_get_drvdata(dev);
352 unsigned int bitflip_threshold;
353 int retval;
354
355 retval = kstrtouint(buf, 0, &bitflip_threshold);
356 if (retval)
357 return retval;
358
359 mtd->bitflip_threshold = bitflip_threshold;
360 return count;
361 }
362 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
363 mtd_bitflip_threshold_show,
364 mtd_bitflip_threshold_store);
365
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)366 static ssize_t mtd_ecc_step_size_show(struct device *dev,
367 struct device_attribute *attr, char *buf)
368 {
369 struct mtd_info *mtd = dev_get_drvdata(dev);
370
371 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
372
373 }
374 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
375
376 static struct attribute *mtd_attrs[] = {
377 &dev_attr_type.attr,
378 &dev_attr_flags.attr,
379 &dev_attr_size.attr,
380 &dev_attr_erasesize.attr,
381 &dev_attr_writesize.attr,
382 &dev_attr_subpagesize.attr,
383 &dev_attr_oobsize.attr,
384 &dev_attr_numeraseregions.attr,
385 &dev_attr_name.attr,
386 &dev_attr_ecc_strength.attr,
387 &dev_attr_ecc_step_size.attr,
388 &dev_attr_bitflip_threshold.attr,
389 NULL,
390 };
391 ATTRIBUTE_GROUPS(mtd);
392
393 static struct device_type mtd_devtype = {
394 .name = "mtd",
395 .groups = mtd_groups,
396 .release = mtd_release,
397 };
398 #endif
399
400 /**
401 * add_mtd_device - register an MTD device
402 * @mtd: pointer to new MTD device info structure
403 *
404 * Add a device to the list of MTD devices present in the system, and
405 * notify each currently active MTD 'user' of its arrival. Returns
406 * zero on success or 1 on failure, which currently will only happen
407 * if there is insufficient memory or a sysfs error.
408 */
409
add_mtd_device(struct mtd_info * mtd)410 int add_mtd_device(struct mtd_info *mtd)
411 {
412 #ifndef __UBOOT__
413 struct mtd_notifier *not;
414 #endif
415 int i, error;
416
417 #ifndef __UBOOT__
418 if (!mtd->backing_dev_info) {
419 switch (mtd->type) {
420 case MTD_RAM:
421 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
422 break;
423 case MTD_ROM:
424 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
425 break;
426 default:
427 mtd->backing_dev_info = &mtd_bdi_unmappable;
428 break;
429 }
430 }
431 #endif
432
433 BUG_ON(mtd->writesize == 0);
434 mutex_lock(&mtd_table_mutex);
435
436 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
437 if (i < 0)
438 goto fail_locked;
439
440 mtd->index = i;
441 mtd->usecount = 0;
442
443 INIT_LIST_HEAD(&mtd->partitions);
444
445 /* default value if not set by driver */
446 if (mtd->bitflip_threshold == 0)
447 mtd->bitflip_threshold = mtd->ecc_strength;
448
449 if (is_power_of_2(mtd->erasesize))
450 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
451 else
452 mtd->erasesize_shift = 0;
453
454 if (is_power_of_2(mtd->writesize))
455 mtd->writesize_shift = ffs(mtd->writesize) - 1;
456 else
457 mtd->writesize_shift = 0;
458
459 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
460 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
461
462 /* Some chips always power up locked. Unlock them now */
463 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
464 error = mtd_unlock(mtd, 0, mtd->size);
465 if (error && error != -EOPNOTSUPP)
466 printk(KERN_WARNING
467 "%s: unlock failed, writes may not work\n",
468 mtd->name);
469 }
470
471 #ifndef __UBOOT__
472 /* Caller should have set dev.parent to match the
473 * physical device.
474 */
475 mtd->dev.type = &mtd_devtype;
476 mtd->dev.class = &mtd_class;
477 mtd->dev.devt = MTD_DEVT(i);
478 dev_set_name(&mtd->dev, "mtd%d", i);
479 dev_set_drvdata(&mtd->dev, mtd);
480 if (device_register(&mtd->dev) != 0)
481 goto fail_added;
482
483 if (MTD_DEVT(i))
484 device_create(&mtd_class, mtd->dev.parent,
485 MTD_DEVT(i) + 1,
486 NULL, "mtd%dro", i);
487
488 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
489 /* No need to get a refcount on the module containing
490 the notifier, since we hold the mtd_table_mutex */
491 list_for_each_entry(not, &mtd_notifiers, list)
492 not->add(mtd);
493 #else
494 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
495 #endif
496
497 mutex_unlock(&mtd_table_mutex);
498 /* We _know_ we aren't being removed, because
499 our caller is still holding us here. So none
500 of this try_ nonsense, and no bitching about it
501 either. :) */
502 __module_get(THIS_MODULE);
503 return 0;
504
505 #ifndef __UBOOT__
506 fail_added:
507 idr_remove(&mtd_idr, i);
508 #endif
509 fail_locked:
510 mutex_unlock(&mtd_table_mutex);
511 return 1;
512 }
513
514 /**
515 * del_mtd_device - unregister an MTD device
516 * @mtd: pointer to MTD device info structure
517 *
518 * Remove a device from the list of MTD devices present in the system,
519 * and notify each currently active MTD 'user' of its departure.
520 * Returns zero on success or 1 on failure, which currently will happen
521 * if the requested device does not appear to be present in the list.
522 */
523
del_mtd_device(struct mtd_info * mtd)524 int del_mtd_device(struct mtd_info *mtd)
525 {
526 int ret;
527 #ifndef __UBOOT__
528 struct mtd_notifier *not;
529 #endif
530
531 ret = del_mtd_partitions(mtd);
532 if (ret) {
533 debug("Failed to delete MTD partitions attached to %s (err %d)\n",
534 mtd->name, ret);
535 return ret;
536 }
537
538 mutex_lock(&mtd_table_mutex);
539
540 if (idr_find(&mtd_idr, mtd->index) != mtd) {
541 ret = -ENODEV;
542 goto out_error;
543 }
544
545 #ifndef __UBOOT__
546 /* No need to get a refcount on the module containing
547 the notifier, since we hold the mtd_table_mutex */
548 list_for_each_entry(not, &mtd_notifiers, list)
549 not->remove(mtd);
550 #endif
551
552 if (mtd->usecount) {
553 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
554 mtd->index, mtd->name, mtd->usecount);
555 ret = -EBUSY;
556 } else {
557 #ifndef __UBOOT__
558 device_unregister(&mtd->dev);
559 #endif
560
561 idr_remove(&mtd_idr, mtd->index);
562
563 module_put(THIS_MODULE);
564 ret = 0;
565 }
566
567 out_error:
568 mutex_unlock(&mtd_table_mutex);
569 return ret;
570 }
571
572 #ifndef __UBOOT__
573 /**
574 * mtd_device_parse_register - parse partitions and register an MTD device.
575 *
576 * @mtd: the MTD device to register
577 * @types: the list of MTD partition probes to try, see
578 * 'parse_mtd_partitions()' for more information
579 * @parser_data: MTD partition parser-specific data
580 * @parts: fallback partition information to register, if parsing fails;
581 * only valid if %nr_parts > %0
582 * @nr_parts: the number of partitions in parts, if zero then the full
583 * MTD device is registered if no partition info is found
584 *
585 * This function aggregates MTD partitions parsing (done by
586 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
587 * basically follows the most common pattern found in many MTD drivers:
588 *
589 * * It first tries to probe partitions on MTD device @mtd using parsers
590 * specified in @types (if @types is %NULL, then the default list of parsers
591 * is used, see 'parse_mtd_partitions()' for more information). If none are
592 * found this functions tries to fallback to information specified in
593 * @parts/@nr_parts.
594 * * If any partitioning info was found, this function registers the found
595 * partitions.
596 * * If no partitions were found this function just registers the MTD device
597 * @mtd and exits.
598 *
599 * Returns zero in case of success and a negative error code in case of failure.
600 */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)601 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
602 struct mtd_part_parser_data *parser_data,
603 const struct mtd_partition *parts,
604 int nr_parts)
605 {
606 int err;
607 struct mtd_partition *real_parts;
608
609 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
610 if (err <= 0 && nr_parts && parts) {
611 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
612 GFP_KERNEL);
613 if (!real_parts)
614 err = -ENOMEM;
615 else
616 err = nr_parts;
617 }
618
619 if (err > 0) {
620 err = add_mtd_partitions(mtd, real_parts, err);
621 kfree(real_parts);
622 } else if (err == 0) {
623 err = add_mtd_device(mtd);
624 if (err == 1)
625 err = -ENODEV;
626 }
627
628 return err;
629 }
630 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
631
632 /**
633 * mtd_device_unregister - unregister an existing MTD device.
634 *
635 * @master: the MTD device to unregister. This will unregister both the master
636 * and any partitions if registered.
637 */
mtd_device_unregister(struct mtd_info * master)638 int mtd_device_unregister(struct mtd_info *master)
639 {
640 int err;
641
642 err = del_mtd_partitions(master);
643 if (err)
644 return err;
645
646 if (!device_is_registered(&master->dev))
647 return 0;
648
649 return del_mtd_device(master);
650 }
651 EXPORT_SYMBOL_GPL(mtd_device_unregister);
652
653 /**
654 * register_mtd_user - register a 'user' of MTD devices.
655 * @new: pointer to notifier info structure
656 *
657 * Registers a pair of callbacks function to be called upon addition
658 * or removal of MTD devices. Causes the 'add' callback to be immediately
659 * invoked for each MTD device currently present in the system.
660 */
register_mtd_user(struct mtd_notifier * new)661 void register_mtd_user (struct mtd_notifier *new)
662 {
663 struct mtd_info *mtd;
664
665 mutex_lock(&mtd_table_mutex);
666
667 list_add(&new->list, &mtd_notifiers);
668
669 __module_get(THIS_MODULE);
670
671 mtd_for_each_device(mtd)
672 new->add(mtd);
673
674 mutex_unlock(&mtd_table_mutex);
675 }
676 EXPORT_SYMBOL_GPL(register_mtd_user);
677
678 /**
679 * unregister_mtd_user - unregister a 'user' of MTD devices.
680 * @old: pointer to notifier info structure
681 *
682 * Removes a callback function pair from the list of 'users' to be
683 * notified upon addition or removal of MTD devices. Causes the
684 * 'remove' callback to be immediately invoked for each MTD device
685 * currently present in the system.
686 */
unregister_mtd_user(struct mtd_notifier * old)687 int unregister_mtd_user (struct mtd_notifier *old)
688 {
689 struct mtd_info *mtd;
690
691 mutex_lock(&mtd_table_mutex);
692
693 module_put(THIS_MODULE);
694
695 mtd_for_each_device(mtd)
696 old->remove(mtd);
697
698 list_del(&old->list);
699 mutex_unlock(&mtd_table_mutex);
700 return 0;
701 }
702 EXPORT_SYMBOL_GPL(unregister_mtd_user);
703 #endif
704
705 /**
706 * get_mtd_device - obtain a validated handle for an MTD device
707 * @mtd: last known address of the required MTD device
708 * @num: internal device number of the required MTD device
709 *
710 * Given a number and NULL address, return the num'th entry in the device
711 * table, if any. Given an address and num == -1, search the device table
712 * for a device with that address and return if it's still present. Given
713 * both, return the num'th driver only if its address matches. Return
714 * error code if not.
715 */
get_mtd_device(struct mtd_info * mtd,int num)716 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
717 {
718 struct mtd_info *ret = NULL, *other;
719 int err = -ENODEV;
720
721 mutex_lock(&mtd_table_mutex);
722
723 if (num == -1) {
724 mtd_for_each_device(other) {
725 if (other == mtd) {
726 ret = mtd;
727 break;
728 }
729 }
730 } else if (num >= 0) {
731 ret = idr_find(&mtd_idr, num);
732 if (mtd && mtd != ret)
733 ret = NULL;
734 }
735
736 if (!ret) {
737 ret = ERR_PTR(err);
738 goto out;
739 }
740
741 err = __get_mtd_device(ret);
742 if (err)
743 ret = ERR_PTR(err);
744 out:
745 mutex_unlock(&mtd_table_mutex);
746 return ret;
747 }
748 EXPORT_SYMBOL_GPL(get_mtd_device);
749
750
__get_mtd_device(struct mtd_info * mtd)751 int __get_mtd_device(struct mtd_info *mtd)
752 {
753 int err;
754
755 if (!try_module_get(mtd->owner))
756 return -ENODEV;
757
758 if (mtd->_get_device) {
759 err = mtd->_get_device(mtd);
760
761 if (err) {
762 module_put(mtd->owner);
763 return err;
764 }
765 }
766 mtd->usecount++;
767 return 0;
768 }
769 EXPORT_SYMBOL_GPL(__get_mtd_device);
770
771 #if CONFIG_IS_ENABLED(DM) && CONFIG_IS_ENABLED(OF_CONTROL)
mtd_device_matches_name(struct mtd_info * mtd,const char * name)772 static bool mtd_device_matches_name(struct mtd_info *mtd, const char *name)
773 {
774 struct udevice *dev = NULL;
775 bool is_part;
776
777 /*
778 * If the first character of mtd name is '/', try interpreting as OF
779 * path. Otherwise try comparing by mtd->name and mtd->dev->name.
780 */
781 if (*name == '/')
782 device_get_global_by_ofnode(ofnode_path(name), &dev);
783
784 is_part = mtd_is_partition(mtd);
785
786 return (!is_part && dev && mtd->dev == dev) ||
787 !strcmp(name, mtd->name) ||
788 (is_part && mtd->dev && !strcmp(name, mtd->dev->name));
789 }
790 #else
mtd_device_matches_name(struct mtd_info * mtd,const char * name)791 static bool mtd_device_matches_name(struct mtd_info *mtd, const char *name)
792 {
793 return !strcmp(name, mtd->name);
794 }
795 #endif
796
797 /**
798 * get_mtd_device_nm - obtain a validated handle for an MTD device by
799 * device name
800 * @name: MTD device name to open
801 *
802 * This function returns MTD device description structure in case of
803 * success and an error code in case of failure.
804 */
get_mtd_device_nm(const char * name)805 struct mtd_info *get_mtd_device_nm(const char *name)
806 {
807 int err = -ENODEV;
808 struct mtd_info *mtd = NULL, *other;
809
810 mutex_lock(&mtd_table_mutex);
811
812 mtd_for_each_device(other) {
813 #ifdef __UBOOT__
814 if (mtd_device_matches_name(other, name)) {
815 if (mtd)
816 printf("\nWarning: MTD name \"%s\" is not unique!\n\n",
817 name);
818 mtd = other;
819 }
820 #else /* !__UBOOT__ */
821 if (!strcmp(name, other->name)) {
822 mtd = other;
823 break;
824 }
825 #endif /* !__UBOOT__ */
826 }
827
828 if (!mtd)
829 goto out_unlock;
830
831 err = __get_mtd_device(mtd);
832 if (err)
833 goto out_unlock;
834
835 mutex_unlock(&mtd_table_mutex);
836 return mtd;
837
838 out_unlock:
839 mutex_unlock(&mtd_table_mutex);
840 return ERR_PTR(err);
841 }
842 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
843
844 #if defined(CONFIG_CMD_MTDPARTS_SPREAD)
845 /**
846 * mtd_get_len_incl_bad
847 *
848 * Check if length including bad blocks fits into device.
849 *
850 * @param mtd an MTD device
851 * @param offset offset in flash
852 * @param length image length
853 * @return image length including bad blocks in *len_incl_bad and whether or not
854 * the length returned was truncated in *truncated
855 */
mtd_get_len_incl_bad(struct mtd_info * mtd,uint64_t offset,const uint64_t length,uint64_t * len_incl_bad,int * truncated)856 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
857 const uint64_t length, uint64_t *len_incl_bad,
858 int *truncated)
859 {
860 *truncated = 0;
861 *len_incl_bad = 0;
862
863 if (!mtd->_block_isbad) {
864 *len_incl_bad = length;
865 return;
866 }
867
868 uint64_t len_excl_bad = 0;
869 uint64_t block_len;
870
871 while (len_excl_bad < length) {
872 if (offset >= mtd->size) {
873 *truncated = 1;
874 return;
875 }
876
877 block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
878
879 if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
880 len_excl_bad += block_len;
881
882 *len_incl_bad += block_len;
883 offset += block_len;
884 }
885 }
886 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
887
put_mtd_device(struct mtd_info * mtd)888 void put_mtd_device(struct mtd_info *mtd)
889 {
890 mutex_lock(&mtd_table_mutex);
891 __put_mtd_device(mtd);
892 mutex_unlock(&mtd_table_mutex);
893
894 }
895 EXPORT_SYMBOL_GPL(put_mtd_device);
896
__put_mtd_device(struct mtd_info * mtd)897 void __put_mtd_device(struct mtd_info *mtd)
898 {
899 --mtd->usecount;
900 BUG_ON(mtd->usecount < 0);
901
902 if (mtd->_put_device)
903 mtd->_put_device(mtd);
904
905 module_put(mtd->owner);
906 }
907 EXPORT_SYMBOL_GPL(__put_mtd_device);
908
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)909 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
910 {
911 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
912 return -EINVAL;
913 if (!(mtd->flags & MTD_WRITEABLE))
914 return -EROFS;
915 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
916 if (!instr->len) {
917 instr->state = MTD_ERASE_DONE;
918 return 0;
919 }
920 return mtd->_erase(mtd, instr);
921 }
922 EXPORT_SYMBOL_GPL(mtd_erase);
923
924 #ifndef __UBOOT__
925 /*
926 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
927 */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)928 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
929 void **virt, resource_size_t *phys)
930 {
931 *retlen = 0;
932 *virt = NULL;
933 if (phys)
934 *phys = 0;
935 if (!mtd->_point)
936 return -EOPNOTSUPP;
937 if (from < 0 || from > mtd->size || len > mtd->size - from)
938 return -EINVAL;
939 if (!len)
940 return 0;
941 return mtd->_point(mtd, from, len, retlen, virt, phys);
942 }
943 EXPORT_SYMBOL_GPL(mtd_point);
944
945 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)946 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
947 {
948 if (!mtd->_point)
949 return -EOPNOTSUPP;
950 if (from < 0 || from > mtd->size || len > mtd->size - from)
951 return -EINVAL;
952 if (!len)
953 return 0;
954 return mtd->_unpoint(mtd, from, len);
955 }
956 EXPORT_SYMBOL_GPL(mtd_unpoint);
957 #endif
958
959 /*
960 * Allow NOMMU mmap() to directly map the device (if not NULL)
961 * - return the address to which the offset maps
962 * - return -ENOSYS to indicate refusal to do the mapping
963 */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)964 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
965 unsigned long offset, unsigned long flags)
966 {
967 if (!mtd->_get_unmapped_area)
968 return -EOPNOTSUPP;
969 if (offset > mtd->size || len > mtd->size - offset)
970 return -EINVAL;
971 return mtd->_get_unmapped_area(mtd, len, offset, flags);
972 }
973 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
974
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)975 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
976 u_char *buf)
977 {
978 int ret_code;
979 *retlen = 0;
980 if (from < 0 || from > mtd->size || len > mtd->size - from)
981 return -EINVAL;
982 if (!len)
983 return 0;
984
985 /*
986 * In the absence of an error, drivers return a non-negative integer
987 * representing the maximum number of bitflips that were corrected on
988 * any one ecc region (if applicable; zero otherwise).
989 */
990 if (mtd->_read) {
991 ret_code = mtd->_read(mtd, from, len, retlen, buf);
992 } else if (mtd->_read_oob) {
993 struct mtd_oob_ops ops = {
994 .len = len,
995 .datbuf = buf,
996 };
997
998 ret_code = mtd->_read_oob(mtd, from, &ops);
999 *retlen = ops.retlen;
1000 } else {
1001 return -ENOTSUPP;
1002 }
1003
1004 if (unlikely(ret_code < 0))
1005 return ret_code;
1006 if (mtd->ecc_strength == 0)
1007 return 0; /* device lacks ecc */
1008 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1009 }
1010 EXPORT_SYMBOL_GPL(mtd_read);
1011
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1012 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1013 const u_char *buf)
1014 {
1015 *retlen = 0;
1016 if (to < 0 || to > mtd->size || len > mtd->size - to)
1017 return -EINVAL;
1018 if ((!mtd->_write && !mtd->_write_oob) ||
1019 !(mtd->flags & MTD_WRITEABLE))
1020 return -EROFS;
1021 if (!len)
1022 return 0;
1023
1024 if (!mtd->_write) {
1025 struct mtd_oob_ops ops = {
1026 .len = len,
1027 .datbuf = (u8 *)buf,
1028 };
1029 int ret;
1030
1031 ret = mtd->_write_oob(mtd, to, &ops);
1032 *retlen = ops.retlen;
1033 return ret;
1034 }
1035
1036 return mtd->_write(mtd, to, len, retlen, buf);
1037 }
1038 EXPORT_SYMBOL_GPL(mtd_write);
1039
1040 /*
1041 * In blackbox flight recorder like scenarios we want to make successful writes
1042 * in interrupt context. panic_write() is only intended to be called when its
1043 * known the kernel is about to panic and we need the write to succeed. Since
1044 * the kernel is not going to be running for much longer, this function can
1045 * break locks and delay to ensure the write succeeds (but not sleep).
1046 */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1047 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1048 const u_char *buf)
1049 {
1050 *retlen = 0;
1051 if (!mtd->_panic_write)
1052 return -EOPNOTSUPP;
1053 if (to < 0 || to > mtd->size || len > mtd->size - to)
1054 return -EINVAL;
1055 if (!(mtd->flags & MTD_WRITEABLE))
1056 return -EROFS;
1057 if (!len)
1058 return 0;
1059 return mtd->_panic_write(mtd, to, len, retlen, buf);
1060 }
1061 EXPORT_SYMBOL_GPL(mtd_panic_write);
1062
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1063 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1064 struct mtd_oob_ops *ops)
1065 {
1066 /*
1067 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1068 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1069 * this case.
1070 */
1071 if (!ops->datbuf)
1072 ops->len = 0;
1073
1074 if (!ops->oobbuf)
1075 ops->ooblen = 0;
1076
1077 if (offs < 0 || offs + ops->len > mtd->size)
1078 return -EINVAL;
1079
1080 if (ops->ooblen) {
1081 size_t maxooblen;
1082
1083 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1084 return -EINVAL;
1085
1086 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1087 mtd_div_by_ws(offs, mtd)) *
1088 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1089 if (ops->ooblen > maxooblen)
1090 return -EINVAL;
1091 }
1092
1093 return 0;
1094 }
1095
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1096 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1097 {
1098 int ret_code;
1099 ops->retlen = ops->oobretlen = 0;
1100
1101 ret_code = mtd_check_oob_ops(mtd, from, ops);
1102 if (ret_code)
1103 return ret_code;
1104
1105 /* Check the validity of a potential fallback on mtd->_read */
1106 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1107 return -EOPNOTSUPP;
1108
1109 if (mtd->_read_oob)
1110 ret_code = mtd->_read_oob(mtd, from, ops);
1111 else
1112 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1113 ops->datbuf);
1114
1115 /*
1116 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1117 * similar to mtd->_read(), returning a non-negative integer
1118 * representing max bitflips. In other cases, mtd->_read_oob() may
1119 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1120 */
1121 if (unlikely(ret_code < 0))
1122 return ret_code;
1123 if (mtd->ecc_strength == 0)
1124 return 0; /* device lacks ecc */
1125 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1126 }
1127 EXPORT_SYMBOL_GPL(mtd_read_oob);
1128
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1129 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1130 struct mtd_oob_ops *ops)
1131 {
1132 int ret;
1133
1134 ops->retlen = ops->oobretlen = 0;
1135
1136 if (!(mtd->flags & MTD_WRITEABLE))
1137 return -EROFS;
1138
1139 ret = mtd_check_oob_ops(mtd, to, ops);
1140 if (ret)
1141 return ret;
1142
1143 /* Check the validity of a potential fallback on mtd->_write */
1144 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1145 return -EOPNOTSUPP;
1146
1147 if (mtd->_write_oob)
1148 return mtd->_write_oob(mtd, to, ops);
1149 else
1150 return mtd->_write(mtd, to, ops->len, &ops->retlen,
1151 ops->datbuf);
1152 }
1153 EXPORT_SYMBOL_GPL(mtd_write_oob);
1154
1155 /**
1156 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1157 * @mtd: MTD device structure
1158 * @section: ECC section. Depending on the layout you may have all the ECC
1159 * bytes stored in a single contiguous section, or one section
1160 * per ECC chunk (and sometime several sections for a single ECC
1161 * ECC chunk)
1162 * @oobecc: OOB region struct filled with the appropriate ECC position
1163 * information
1164 *
1165 * This function returns ECC section information in the OOB area. If you want
1166 * to get all the ECC bytes information, then you should call
1167 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1168 *
1169 * Returns zero on success, a negative error code otherwise.
1170 */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1171 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1172 struct mtd_oob_region *oobecc)
1173 {
1174 memset(oobecc, 0, sizeof(*oobecc));
1175
1176 if (!mtd || section < 0)
1177 return -EINVAL;
1178
1179 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1180 return -ENOTSUPP;
1181
1182 return mtd->ooblayout->ecc(mtd, section, oobecc);
1183 }
1184 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1185
1186 /**
1187 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1188 * section
1189 * @mtd: MTD device structure
1190 * @section: Free section you are interested in. Depending on the layout
1191 * you may have all the free bytes stored in a single contiguous
1192 * section, or one section per ECC chunk plus an extra section
1193 * for the remaining bytes (or other funky layout).
1194 * @oobfree: OOB region struct filled with the appropriate free position
1195 * information
1196 *
1197 * This function returns free bytes position in the OOB area. If you want
1198 * to get all the free bytes information, then you should call
1199 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1200 *
1201 * Returns zero on success, a negative error code otherwise.
1202 */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1203 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1204 struct mtd_oob_region *oobfree)
1205 {
1206 memset(oobfree, 0, sizeof(*oobfree));
1207
1208 if (!mtd || section < 0)
1209 return -EINVAL;
1210
1211 if (!mtd->ooblayout || !mtd->ooblayout->rfree)
1212 return -ENOTSUPP;
1213
1214 return mtd->ooblayout->rfree(mtd, section, oobfree);
1215 }
1216 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1217
1218 /**
1219 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1220 * @mtd: mtd info structure
1221 * @byte: the byte we are searching for
1222 * @sectionp: pointer where the section id will be stored
1223 * @oobregion: used to retrieve the ECC position
1224 * @iter: iterator function. Should be either mtd_ooblayout_free or
1225 * mtd_ooblayout_ecc depending on the region type you're searching for
1226 *
1227 * This function returns the section id and oobregion information of a
1228 * specific byte. For example, say you want to know where the 4th ECC byte is
1229 * stored, you'll use:
1230 *
1231 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1232 *
1233 * Returns zero on success, a negative error code otherwise.
1234 */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1235 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1236 int *sectionp, struct mtd_oob_region *oobregion,
1237 int (*iter)(struct mtd_info *,
1238 int section,
1239 struct mtd_oob_region *oobregion))
1240 {
1241 int pos = 0, ret, section = 0;
1242
1243 memset(oobregion, 0, sizeof(*oobregion));
1244
1245 while (1) {
1246 ret = iter(mtd, section, oobregion);
1247 if (ret)
1248 return ret;
1249
1250 if (pos + oobregion->length > byte)
1251 break;
1252
1253 pos += oobregion->length;
1254 section++;
1255 }
1256
1257 /*
1258 * Adjust region info to make it start at the beginning at the
1259 * 'start' ECC byte.
1260 */
1261 oobregion->offset += byte - pos;
1262 oobregion->length -= byte - pos;
1263 *sectionp = section;
1264
1265 return 0;
1266 }
1267
1268 /**
1269 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1270 * ECC byte
1271 * @mtd: mtd info structure
1272 * @eccbyte: the byte we are searching for
1273 * @sectionp: pointer where the section id will be stored
1274 * @oobregion: OOB region information
1275 *
1276 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1277 * byte.
1278 *
1279 * Returns zero on success, a negative error code otherwise.
1280 */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1281 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1282 int *section,
1283 struct mtd_oob_region *oobregion)
1284 {
1285 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1286 mtd_ooblayout_ecc);
1287 }
1288 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1289
1290 /**
1291 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1292 * @mtd: mtd info structure
1293 * @buf: destination buffer to store OOB bytes
1294 * @oobbuf: OOB buffer
1295 * @start: first byte to retrieve
1296 * @nbytes: number of bytes to retrieve
1297 * @iter: section iterator
1298 *
1299 * Extract bytes attached to a specific category (ECC or free)
1300 * from the OOB buffer and copy them into buf.
1301 *
1302 * Returns zero on success, a negative error code otherwise.
1303 */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1304 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1305 const u8 *oobbuf, int start, int nbytes,
1306 int (*iter)(struct mtd_info *,
1307 int section,
1308 struct mtd_oob_region *oobregion))
1309 {
1310 struct mtd_oob_region oobregion;
1311 int section, ret;
1312
1313 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1314 &oobregion, iter);
1315
1316 while (!ret) {
1317 int cnt;
1318
1319 cnt = min_t(int, nbytes, oobregion.length);
1320 memcpy(buf, oobbuf + oobregion.offset, cnt);
1321 buf += cnt;
1322 nbytes -= cnt;
1323
1324 if (!nbytes)
1325 break;
1326
1327 ret = iter(mtd, ++section, &oobregion);
1328 }
1329
1330 return ret;
1331 }
1332
1333 /**
1334 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1335 * @mtd: mtd info structure
1336 * @buf: source buffer to get OOB bytes from
1337 * @oobbuf: OOB buffer
1338 * @start: first OOB byte to set
1339 * @nbytes: number of OOB bytes to set
1340 * @iter: section iterator
1341 *
1342 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1343 * is selected by passing the appropriate iterator.
1344 *
1345 * Returns zero on success, a negative error code otherwise.
1346 */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1347 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1348 u8 *oobbuf, int start, int nbytes,
1349 int (*iter)(struct mtd_info *,
1350 int section,
1351 struct mtd_oob_region *oobregion))
1352 {
1353 struct mtd_oob_region oobregion;
1354 int section, ret;
1355
1356 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1357 &oobregion, iter);
1358
1359 while (!ret) {
1360 int cnt;
1361
1362 cnt = min_t(int, nbytes, oobregion.length);
1363 memcpy(oobbuf + oobregion.offset, buf, cnt);
1364 buf += cnt;
1365 nbytes -= cnt;
1366
1367 if (!nbytes)
1368 break;
1369
1370 ret = iter(mtd, ++section, &oobregion);
1371 }
1372
1373 return ret;
1374 }
1375
1376 /**
1377 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1378 * @mtd: mtd info structure
1379 * @iter: category iterator
1380 *
1381 * Count the number of bytes in a given category.
1382 *
1383 * Returns a positive value on success, a negative error code otherwise.
1384 */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1385 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1386 int (*iter)(struct mtd_info *,
1387 int section,
1388 struct mtd_oob_region *oobregion))
1389 {
1390 struct mtd_oob_region oobregion;
1391 int section = 0, ret, nbytes = 0;
1392
1393 while (1) {
1394 ret = iter(mtd, section++, &oobregion);
1395 if (ret) {
1396 if (ret == -ERANGE)
1397 ret = nbytes;
1398 break;
1399 }
1400
1401 nbytes += oobregion.length;
1402 }
1403
1404 return ret;
1405 }
1406
1407 /**
1408 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1409 * @mtd: mtd info structure
1410 * @eccbuf: destination buffer to store ECC bytes
1411 * @oobbuf: OOB buffer
1412 * @start: first ECC byte to retrieve
1413 * @nbytes: number of ECC bytes to retrieve
1414 *
1415 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1416 *
1417 * Returns zero on success, a negative error code otherwise.
1418 */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1419 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1420 const u8 *oobbuf, int start, int nbytes)
1421 {
1422 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1423 mtd_ooblayout_ecc);
1424 }
1425 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1426
1427 /**
1428 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1429 * @mtd: mtd info structure
1430 * @eccbuf: source buffer to get ECC bytes from
1431 * @oobbuf: OOB buffer
1432 * @start: first ECC byte to set
1433 * @nbytes: number of ECC bytes to set
1434 *
1435 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1436 *
1437 * Returns zero on success, a negative error code otherwise.
1438 */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)1439 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1440 u8 *oobbuf, int start, int nbytes)
1441 {
1442 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1443 mtd_ooblayout_ecc);
1444 }
1445 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1446
1447 /**
1448 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1449 * @mtd: mtd info structure
1450 * @databuf: destination buffer to store ECC bytes
1451 * @oobbuf: OOB buffer
1452 * @start: first ECC byte to retrieve
1453 * @nbytes: number of ECC bytes to retrieve
1454 *
1455 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1456 *
1457 * Returns zero on success, a negative error code otherwise.
1458 */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)1459 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1460 const u8 *oobbuf, int start, int nbytes)
1461 {
1462 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1463 mtd_ooblayout_free);
1464 }
1465 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1466
1467 /**
1468 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1469 * @mtd: mtd info structure
1470 * @eccbuf: source buffer to get data bytes from
1471 * @oobbuf: OOB buffer
1472 * @start: first ECC byte to set
1473 * @nbytes: number of ECC bytes to set
1474 *
1475 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1476 *
1477 * Returns zero on success, a negative error code otherwise.
1478 */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)1479 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1480 u8 *oobbuf, int start, int nbytes)
1481 {
1482 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1483 mtd_ooblayout_free);
1484 }
1485 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1486
1487 /**
1488 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1489 * @mtd: mtd info structure
1490 *
1491 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1492 *
1493 * Returns zero on success, a negative error code otherwise.
1494 */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)1495 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1496 {
1497 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1498 }
1499 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1500
1501 /**
1502 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1503 * @mtd: mtd info structure
1504 *
1505 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1506 *
1507 * Returns zero on success, a negative error code otherwise.
1508 */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)1509 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1510 {
1511 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1512 }
1513 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1514
1515 /*
1516 * Method to access the protection register area, present in some flash
1517 * devices. The user data is one time programmable but the factory data is read
1518 * only.
1519 */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1520 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1521 struct otp_info *buf)
1522 {
1523 if (!mtd->_get_fact_prot_info)
1524 return -EOPNOTSUPP;
1525 if (!len)
1526 return 0;
1527 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1528 }
1529 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1530
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1531 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1532 size_t *retlen, u_char *buf)
1533 {
1534 *retlen = 0;
1535 if (!mtd->_read_fact_prot_reg)
1536 return -EOPNOTSUPP;
1537 if (!len)
1538 return 0;
1539 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1540 }
1541 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1542
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1543 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1544 struct otp_info *buf)
1545 {
1546 if (!mtd->_get_user_prot_info)
1547 return -EOPNOTSUPP;
1548 if (!len)
1549 return 0;
1550 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1551 }
1552 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1553
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1554 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1555 size_t *retlen, u_char *buf)
1556 {
1557 *retlen = 0;
1558 if (!mtd->_read_user_prot_reg)
1559 return -EOPNOTSUPP;
1560 if (!len)
1561 return 0;
1562 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1563 }
1564 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1565
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)1566 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1567 size_t *retlen, u_char *buf)
1568 {
1569 int ret;
1570
1571 *retlen = 0;
1572 if (!mtd->_write_user_prot_reg)
1573 return -EOPNOTSUPP;
1574 if (!len)
1575 return 0;
1576 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1577 if (ret)
1578 return ret;
1579
1580 /*
1581 * If no data could be written at all, we are out of memory and
1582 * must return -ENOSPC.
1583 */
1584 return (*retlen) ? 0 : -ENOSPC;
1585 }
1586 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1587
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1588 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1589 {
1590 if (!mtd->_lock_user_prot_reg)
1591 return -EOPNOTSUPP;
1592 if (!len)
1593 return 0;
1594 return mtd->_lock_user_prot_reg(mtd, from, len);
1595 }
1596 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1597
1598 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1599 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1600 {
1601 if (!mtd->_lock)
1602 return -EOPNOTSUPP;
1603 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1604 return -EINVAL;
1605 if (!len)
1606 return 0;
1607 return mtd->_lock(mtd, ofs, len);
1608 }
1609 EXPORT_SYMBOL_GPL(mtd_lock);
1610
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1611 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1612 {
1613 if (!mtd->_unlock)
1614 return -EOPNOTSUPP;
1615 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1616 return -EINVAL;
1617 if (!len)
1618 return 0;
1619 return mtd->_unlock(mtd, ofs, len);
1620 }
1621 EXPORT_SYMBOL_GPL(mtd_unlock);
1622
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)1623 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1624 {
1625 if (!mtd->_is_locked)
1626 return -EOPNOTSUPP;
1627 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1628 return -EINVAL;
1629 if (!len)
1630 return 0;
1631 return mtd->_is_locked(mtd, ofs, len);
1632 }
1633 EXPORT_SYMBOL_GPL(mtd_is_locked);
1634
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)1635 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1636 {
1637 if (ofs < 0 || ofs > mtd->size)
1638 return -EINVAL;
1639 if (!mtd->_block_isreserved)
1640 return 0;
1641 return mtd->_block_isreserved(mtd, ofs);
1642 }
1643 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1644
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)1645 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1646 {
1647 if (ofs < 0 || ofs > mtd->size)
1648 return -EINVAL;
1649 if (!mtd->_block_isbad)
1650 return 0;
1651 return mtd->_block_isbad(mtd, ofs);
1652 }
1653 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1654
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)1655 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1656 {
1657 if (!mtd->_block_markbad)
1658 return -EOPNOTSUPP;
1659 if (ofs < 0 || ofs > mtd->size)
1660 return -EINVAL;
1661 if (!(mtd->flags & MTD_WRITEABLE))
1662 return -EROFS;
1663 return mtd->_block_markbad(mtd, ofs);
1664 }
1665 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1666
1667 #ifndef __UBOOT__
1668 /*
1669 * default_mtd_writev - the default writev method
1670 * @mtd: mtd device description object pointer
1671 * @vecs: the vectors to write
1672 * @count: count of vectors in @vecs
1673 * @to: the MTD device offset to write to
1674 * @retlen: on exit contains the count of bytes written to the MTD device.
1675 *
1676 * This function returns zero in case of success and a negative error code in
1677 * case of failure.
1678 */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1679 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1680 unsigned long count, loff_t to, size_t *retlen)
1681 {
1682 unsigned long i;
1683 size_t totlen = 0, thislen;
1684 int ret = 0;
1685
1686 for (i = 0; i < count; i++) {
1687 if (!vecs[i].iov_len)
1688 continue;
1689 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1690 vecs[i].iov_base);
1691 totlen += thislen;
1692 if (ret || thislen != vecs[i].iov_len)
1693 break;
1694 to += vecs[i].iov_len;
1695 }
1696 *retlen = totlen;
1697 return ret;
1698 }
1699
1700 /*
1701 * mtd_writev - the vector-based MTD write method
1702 * @mtd: mtd device description object pointer
1703 * @vecs: the vectors to write
1704 * @count: count of vectors in @vecs
1705 * @to: the MTD device offset to write to
1706 * @retlen: on exit contains the count of bytes written to the MTD device.
1707 *
1708 * This function returns zero in case of success and a negative error code in
1709 * case of failure.
1710 */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1711 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1712 unsigned long count, loff_t to, size_t *retlen)
1713 {
1714 *retlen = 0;
1715 if (!(mtd->flags & MTD_WRITEABLE))
1716 return -EROFS;
1717 if (!mtd->_writev)
1718 return default_mtd_writev(mtd, vecs, count, to, retlen);
1719 return mtd->_writev(mtd, vecs, count, to, retlen);
1720 }
1721 EXPORT_SYMBOL_GPL(mtd_writev);
1722
1723 /**
1724 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1725 * @mtd: mtd device description object pointer
1726 * @size: a pointer to the ideal or maximum size of the allocation, points
1727 * to the actual allocation size on success.
1728 *
1729 * This routine attempts to allocate a contiguous kernel buffer up to
1730 * the specified size, backing off the size of the request exponentially
1731 * until the request succeeds or until the allocation size falls below
1732 * the system page size. This attempts to make sure it does not adversely
1733 * impact system performance, so when allocating more than one page, we
1734 * ask the memory allocator to avoid re-trying, swapping, writing back
1735 * or performing I/O.
1736 *
1737 * Note, this function also makes sure that the allocated buffer is aligned to
1738 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1739 *
1740 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1741 * to handle smaller (i.e. degraded) buffer allocations under low- or
1742 * fragmented-memory situations where such reduced allocations, from a
1743 * requested ideal, are allowed.
1744 *
1745 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1746 */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)1747 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1748 {
1749 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1750 __GFP_NORETRY | __GFP_NO_KSWAPD;
1751 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1752 void *kbuf;
1753
1754 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1755
1756 while (*size > min_alloc) {
1757 kbuf = kmalloc(*size, flags);
1758 if (kbuf)
1759 return kbuf;
1760
1761 *size >>= 1;
1762 *size = ALIGN(*size, mtd->writesize);
1763 }
1764
1765 /*
1766 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1767 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1768 */
1769 return kmalloc(*size, GFP_KERNEL);
1770 }
1771 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1772 #endif
1773
1774 #ifdef CONFIG_PROC_FS
1775
1776 /*====================================================================*/
1777 /* Support for /proc/mtd */
1778
mtd_proc_show(struct seq_file * m,void * v)1779 static int mtd_proc_show(struct seq_file *m, void *v)
1780 {
1781 struct mtd_info *mtd;
1782
1783 seq_puts(m, "dev: size erasesize name\n");
1784 mutex_lock(&mtd_table_mutex);
1785 mtd_for_each_device(mtd) {
1786 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1787 mtd->index, (unsigned long long)mtd->size,
1788 mtd->erasesize, mtd->name);
1789 }
1790 mutex_unlock(&mtd_table_mutex);
1791 return 0;
1792 }
1793
mtd_proc_open(struct inode * inode,struct file * file)1794 static int mtd_proc_open(struct inode *inode, struct file *file)
1795 {
1796 return single_open(file, mtd_proc_show, NULL);
1797 }
1798
1799 static const struct file_operations mtd_proc_ops = {
1800 .open = mtd_proc_open,
1801 .read = seq_read,
1802 .llseek = seq_lseek,
1803 .release = single_release,
1804 };
1805 #endif /* CONFIG_PROC_FS */
1806
1807 /*====================================================================*/
1808 /* Init code */
1809
1810 #ifndef __UBOOT__
mtd_bdi_init(struct backing_dev_info * bdi,const char * name)1811 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1812 {
1813 int ret;
1814
1815 ret = bdi_init(bdi);
1816 if (!ret)
1817 ret = bdi_register(bdi, NULL, "%s", name);
1818
1819 if (ret)
1820 bdi_destroy(bdi);
1821
1822 return ret;
1823 }
1824
1825 static struct proc_dir_entry *proc_mtd;
1826
init_mtd(void)1827 static int __init init_mtd(void)
1828 {
1829 int ret;
1830
1831 ret = class_register(&mtd_class);
1832 if (ret)
1833 goto err_reg;
1834
1835 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1836 if (ret)
1837 goto err_bdi1;
1838
1839 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1840 if (ret)
1841 goto err_bdi2;
1842
1843 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1844 if (ret)
1845 goto err_bdi3;
1846
1847 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1848
1849 ret = init_mtdchar();
1850 if (ret)
1851 goto out_procfs;
1852
1853 return 0;
1854
1855 out_procfs:
1856 if (proc_mtd)
1857 remove_proc_entry("mtd", NULL);
1858 err_bdi3:
1859 bdi_destroy(&mtd_bdi_ro_mappable);
1860 err_bdi2:
1861 bdi_destroy(&mtd_bdi_unmappable);
1862 err_bdi1:
1863 class_unregister(&mtd_class);
1864 err_reg:
1865 pr_err("Error registering mtd class or bdi: %d\n", ret);
1866 return ret;
1867 }
1868
cleanup_mtd(void)1869 static void __exit cleanup_mtd(void)
1870 {
1871 cleanup_mtdchar();
1872 if (proc_mtd)
1873 remove_proc_entry("mtd", NULL);
1874 class_unregister(&mtd_class);
1875 bdi_destroy(&mtd_bdi_unmappable);
1876 bdi_destroy(&mtd_bdi_ro_mappable);
1877 bdi_destroy(&mtd_bdi_rw_mappable);
1878 }
1879
1880 module_init(init_mtd);
1881 module_exit(cleanup_mtd);
1882 #endif
1883
1884 MODULE_LICENSE("GPL");
1885 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1886 MODULE_DESCRIPTION("Core MTD registration and access routines");
1887