1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  *
9  */
10 
11 #ifndef __UBOOT__
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/ptrace.h>
15 #include <linux/seq_file.h>
16 #include <linux/string.h>
17 #include <linux/timer.h>
18 #include <linux/major.h>
19 #include <linux/fs.h>
20 #include <linux/err.h>
21 #include <linux/ioctl.h>
22 #include <linux/init.h>
23 #include <linux/proc_fs.h>
24 #include <linux/idr.h>
25 #include <linux/backing-dev.h>
26 #include <linux/gfp.h>
27 #include <linux/slab.h>
28 #else
29 #include <linux/bitops.h>
30 #include <linux/bug.h>
31 #include <linux/err.h>
32 #include <ubi_uboot.h>
33 #endif
34 
35 #include <linux/log2.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/partitions.h>
38 
39 #include "mtdcore.h"
40 
41 #ifndef __UBOOT__
42 /*
43  * backing device capabilities for non-mappable devices (such as NAND flash)
44  * - permits private mappings, copies are taken of the data
45  */
46 static struct backing_dev_info mtd_bdi_unmappable = {
47 	.capabilities	= BDI_CAP_MAP_COPY,
48 };
49 
50 /*
51  * backing device capabilities for R/O mappable devices (such as ROM)
52  * - permits private mappings, copies are taken of the data
53  * - permits non-writable shared mappings
54  */
55 static struct backing_dev_info mtd_bdi_ro_mappable = {
56 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
57 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
58 };
59 
60 /*
61  * backing device capabilities for writable mappable devices (such as RAM)
62  * - permits private mappings, copies are taken of the data
63  * - permits non-writable shared mappings
64  */
65 static struct backing_dev_info mtd_bdi_rw_mappable = {
66 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
67 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
68 			   BDI_CAP_WRITE_MAP),
69 };
70 
71 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
72 static int mtd_cls_resume(struct device *dev);
73 
74 static struct class mtd_class = {
75 	.name = "mtd",
76 	.owner = THIS_MODULE,
77 	.suspend = mtd_cls_suspend,
78 	.resume = mtd_cls_resume,
79 };
80 #else
81 #define MAX_IDR_ID	64
82 
83 struct idr_layer {
84 	int	used;
85 	void	*ptr;
86 };
87 
88 struct idr {
89 	struct idr_layer id[MAX_IDR_ID];
90 	bool updated;
91 };
92 
93 #define DEFINE_IDR(name)	struct idr name;
94 
idr_remove(struct idr * idp,int id)95 void idr_remove(struct idr *idp, int id)
96 {
97 	if (idp->id[id].used) {
98 		idp->id[id].used = 0;
99 		idp->updated = true;
100 	}
101 
102 	return;
103 }
idr_find(struct idr * idp,int id)104 void *idr_find(struct idr *idp, int id)
105 {
106 	if (idp->id[id].used)
107 		return idp->id[id].ptr;
108 
109 	return NULL;
110 }
111 
idr_get_next(struct idr * idp,int * next)112 void *idr_get_next(struct idr *idp, int *next)
113 {
114 	void *ret;
115 	int id = *next;
116 
117 	ret = idr_find(idp, id);
118 	if (ret) {
119 		id ++;
120 		if (!idp->id[id].used)
121 			id = 0;
122 		*next = id;
123 	} else {
124 		*next = 0;
125 	}
126 
127 	return ret;
128 }
129 
idr_alloc(struct idr * idp,void * ptr,int start,int end,gfp_t gfp_mask)130 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
131 {
132 	struct idr_layer *idl;
133 	int i = 0;
134 
135 	while (i < MAX_IDR_ID) {
136 		idl = &idp->id[i];
137 		if (idl->used == 0) {
138 			idl->used = 1;
139 			idl->ptr = ptr;
140 			idp->updated = true;
141 			return i;
142 		}
143 		i++;
144 	}
145 	return -ENOSPC;
146 }
147 #endif
148 
149 static DEFINE_IDR(mtd_idr);
150 
151 /* These are exported solely for the purpose of mtd_blkdevs.c. You
152    should not use them for _anything_ else */
153 DEFINE_MUTEX(mtd_table_mutex);
154 EXPORT_SYMBOL_GPL(mtd_table_mutex);
155 
__mtd_next_device(int i)156 struct mtd_info *__mtd_next_device(int i)
157 {
158 	return idr_get_next(&mtd_idr, &i);
159 }
160 EXPORT_SYMBOL_GPL(__mtd_next_device);
161 
mtd_dev_list_updated(void)162 bool mtd_dev_list_updated(void)
163 {
164 	if (mtd_idr.updated) {
165 		mtd_idr.updated = false;
166 		return true;
167 	}
168 
169 	return false;
170 }
171 
172 #ifndef __UBOOT__
173 static LIST_HEAD(mtd_notifiers);
174 
175 
176 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
177 
178 /* REVISIT once MTD uses the driver model better, whoever allocates
179  * the mtd_info will probably want to use the release() hook...
180  */
mtd_release(struct device * dev)181 static void mtd_release(struct device *dev)
182 {
183 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
184 	dev_t index = MTD_DEVT(mtd->index);
185 
186 	/* remove /dev/mtdXro node if needed */
187 	if (index)
188 		device_destroy(&mtd_class, index + 1);
189 }
190 
mtd_cls_suspend(struct device * dev,pm_message_t state)191 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
192 {
193 	struct mtd_info *mtd = dev_get_drvdata(dev);
194 
195 	return mtd ? mtd_suspend(mtd) : 0;
196 }
197 
mtd_cls_resume(struct device * dev)198 static int mtd_cls_resume(struct device *dev)
199 {
200 	struct mtd_info *mtd = dev_get_drvdata(dev);
201 
202 	if (mtd)
203 		mtd_resume(mtd);
204 	return 0;
205 }
206 
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)207 static ssize_t mtd_type_show(struct device *dev,
208 		struct device_attribute *attr, char *buf)
209 {
210 	struct mtd_info *mtd = dev_get_drvdata(dev);
211 	char *type;
212 
213 	switch (mtd->type) {
214 	case MTD_ABSENT:
215 		type = "absent";
216 		break;
217 	case MTD_RAM:
218 		type = "ram";
219 		break;
220 	case MTD_ROM:
221 		type = "rom";
222 		break;
223 	case MTD_NORFLASH:
224 		type = "nor";
225 		break;
226 	case MTD_NANDFLASH:
227 		type = "nand";
228 		break;
229 	case MTD_DATAFLASH:
230 		type = "dataflash";
231 		break;
232 	case MTD_UBIVOLUME:
233 		type = "ubi";
234 		break;
235 	case MTD_MLCNANDFLASH:
236 		type = "mlc-nand";
237 		break;
238 	default:
239 		type = "unknown";
240 	}
241 
242 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
243 }
244 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
245 
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)246 static ssize_t mtd_flags_show(struct device *dev,
247 		struct device_attribute *attr, char *buf)
248 {
249 	struct mtd_info *mtd = dev_get_drvdata(dev);
250 
251 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
252 
253 }
254 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
255 
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)256 static ssize_t mtd_size_show(struct device *dev,
257 		struct device_attribute *attr, char *buf)
258 {
259 	struct mtd_info *mtd = dev_get_drvdata(dev);
260 
261 	return snprintf(buf, PAGE_SIZE, "%llu\n",
262 		(unsigned long long)mtd->size);
263 
264 }
265 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
266 
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)267 static ssize_t mtd_erasesize_show(struct device *dev,
268 		struct device_attribute *attr, char *buf)
269 {
270 	struct mtd_info *mtd = dev_get_drvdata(dev);
271 
272 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
273 
274 }
275 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
276 
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)277 static ssize_t mtd_writesize_show(struct device *dev,
278 		struct device_attribute *attr, char *buf)
279 {
280 	struct mtd_info *mtd = dev_get_drvdata(dev);
281 
282 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
283 
284 }
285 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
286 
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)287 static ssize_t mtd_subpagesize_show(struct device *dev,
288 		struct device_attribute *attr, char *buf)
289 {
290 	struct mtd_info *mtd = dev_get_drvdata(dev);
291 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
292 
293 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
294 
295 }
296 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
297 
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)298 static ssize_t mtd_oobsize_show(struct device *dev,
299 		struct device_attribute *attr, char *buf)
300 {
301 	struct mtd_info *mtd = dev_get_drvdata(dev);
302 
303 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
304 
305 }
306 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
307 
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)308 static ssize_t mtd_numeraseregions_show(struct device *dev,
309 		struct device_attribute *attr, char *buf)
310 {
311 	struct mtd_info *mtd = dev_get_drvdata(dev);
312 
313 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
314 
315 }
316 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
317 	NULL);
318 
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)319 static ssize_t mtd_name_show(struct device *dev,
320 		struct device_attribute *attr, char *buf)
321 {
322 	struct mtd_info *mtd = dev_get_drvdata(dev);
323 
324 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
325 
326 }
327 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
328 
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)329 static ssize_t mtd_ecc_strength_show(struct device *dev,
330 				     struct device_attribute *attr, char *buf)
331 {
332 	struct mtd_info *mtd = dev_get_drvdata(dev);
333 
334 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
335 }
336 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
337 
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)338 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
339 					  struct device_attribute *attr,
340 					  char *buf)
341 {
342 	struct mtd_info *mtd = dev_get_drvdata(dev);
343 
344 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
345 }
346 
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)347 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
348 					   struct device_attribute *attr,
349 					   const char *buf, size_t count)
350 {
351 	struct mtd_info *mtd = dev_get_drvdata(dev);
352 	unsigned int bitflip_threshold;
353 	int retval;
354 
355 	retval = kstrtouint(buf, 0, &bitflip_threshold);
356 	if (retval)
357 		return retval;
358 
359 	mtd->bitflip_threshold = bitflip_threshold;
360 	return count;
361 }
362 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
363 		   mtd_bitflip_threshold_show,
364 		   mtd_bitflip_threshold_store);
365 
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)366 static ssize_t mtd_ecc_step_size_show(struct device *dev,
367 		struct device_attribute *attr, char *buf)
368 {
369 	struct mtd_info *mtd = dev_get_drvdata(dev);
370 
371 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
372 
373 }
374 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
375 
376 static struct attribute *mtd_attrs[] = {
377 	&dev_attr_type.attr,
378 	&dev_attr_flags.attr,
379 	&dev_attr_size.attr,
380 	&dev_attr_erasesize.attr,
381 	&dev_attr_writesize.attr,
382 	&dev_attr_subpagesize.attr,
383 	&dev_attr_oobsize.attr,
384 	&dev_attr_numeraseregions.attr,
385 	&dev_attr_name.attr,
386 	&dev_attr_ecc_strength.attr,
387 	&dev_attr_ecc_step_size.attr,
388 	&dev_attr_bitflip_threshold.attr,
389 	NULL,
390 };
391 ATTRIBUTE_GROUPS(mtd);
392 
393 static struct device_type mtd_devtype = {
394 	.name		= "mtd",
395 	.groups		= mtd_groups,
396 	.release	= mtd_release,
397 };
398 #endif
399 
400 /**
401  *	add_mtd_device - register an MTD device
402  *	@mtd: pointer to new MTD device info structure
403  *
404  *	Add a device to the list of MTD devices present in the system, and
405  *	notify each currently active MTD 'user' of its arrival. Returns
406  *	zero on success or 1 on failure, which currently will only happen
407  *	if there is insufficient memory or a sysfs error.
408  */
409 
add_mtd_device(struct mtd_info * mtd)410 int add_mtd_device(struct mtd_info *mtd)
411 {
412 #ifndef __UBOOT__
413 	struct mtd_notifier *not;
414 #endif
415 	int i, error;
416 
417 #ifndef __UBOOT__
418 	if (!mtd->backing_dev_info) {
419 		switch (mtd->type) {
420 		case MTD_RAM:
421 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
422 			break;
423 		case MTD_ROM:
424 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
425 			break;
426 		default:
427 			mtd->backing_dev_info = &mtd_bdi_unmappable;
428 			break;
429 		}
430 	}
431 #endif
432 
433 	BUG_ON(mtd->writesize == 0);
434 	mutex_lock(&mtd_table_mutex);
435 
436 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
437 	if (i < 0)
438 		goto fail_locked;
439 
440 	mtd->index = i;
441 	mtd->usecount = 0;
442 
443 	INIT_LIST_HEAD(&mtd->partitions);
444 
445 	/* default value if not set by driver */
446 	if (mtd->bitflip_threshold == 0)
447 		mtd->bitflip_threshold = mtd->ecc_strength;
448 
449 	if (is_power_of_2(mtd->erasesize))
450 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
451 	else
452 		mtd->erasesize_shift = 0;
453 
454 	if (is_power_of_2(mtd->writesize))
455 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
456 	else
457 		mtd->writesize_shift = 0;
458 
459 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
460 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
461 
462 	/* Some chips always power up locked. Unlock them now */
463 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
464 		error = mtd_unlock(mtd, 0, mtd->size);
465 		if (error && error != -EOPNOTSUPP)
466 			printk(KERN_WARNING
467 			       "%s: unlock failed, writes may not work\n",
468 			       mtd->name);
469 	}
470 
471 #ifndef __UBOOT__
472 	/* Caller should have set dev.parent to match the
473 	 * physical device.
474 	 */
475 	mtd->dev.type = &mtd_devtype;
476 	mtd->dev.class = &mtd_class;
477 	mtd->dev.devt = MTD_DEVT(i);
478 	dev_set_name(&mtd->dev, "mtd%d", i);
479 	dev_set_drvdata(&mtd->dev, mtd);
480 	if (device_register(&mtd->dev) != 0)
481 		goto fail_added;
482 
483 	if (MTD_DEVT(i))
484 		device_create(&mtd_class, mtd->dev.parent,
485 			      MTD_DEVT(i) + 1,
486 			      NULL, "mtd%dro", i);
487 
488 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
489 	/* No need to get a refcount on the module containing
490 	   the notifier, since we hold the mtd_table_mutex */
491 	list_for_each_entry(not, &mtd_notifiers, list)
492 		not->add(mtd);
493 #else
494 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
495 #endif
496 
497 	mutex_unlock(&mtd_table_mutex);
498 	/* We _know_ we aren't being removed, because
499 	   our caller is still holding us here. So none
500 	   of this try_ nonsense, and no bitching about it
501 	   either. :) */
502 	__module_get(THIS_MODULE);
503 	return 0;
504 
505 #ifndef __UBOOT__
506 fail_added:
507 	idr_remove(&mtd_idr, i);
508 #endif
509 fail_locked:
510 	mutex_unlock(&mtd_table_mutex);
511 	return 1;
512 }
513 
514 /**
515  *	del_mtd_device - unregister an MTD device
516  *	@mtd: pointer to MTD device info structure
517  *
518  *	Remove a device from the list of MTD devices present in the system,
519  *	and notify each currently active MTD 'user' of its departure.
520  *	Returns zero on success or 1 on failure, which currently will happen
521  *	if the requested device does not appear to be present in the list.
522  */
523 
del_mtd_device(struct mtd_info * mtd)524 int del_mtd_device(struct mtd_info *mtd)
525 {
526 	int ret;
527 #ifndef __UBOOT__
528 	struct mtd_notifier *not;
529 #endif
530 
531 	ret = del_mtd_partitions(mtd);
532 	if (ret) {
533 		debug("Failed to delete MTD partitions attached to %s (err %d)\n",
534 		      mtd->name, ret);
535 		return ret;
536 	}
537 
538 	mutex_lock(&mtd_table_mutex);
539 
540 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
541 		ret = -ENODEV;
542 		goto out_error;
543 	}
544 
545 #ifndef __UBOOT__
546 	/* No need to get a refcount on the module containing
547 		the notifier, since we hold the mtd_table_mutex */
548 	list_for_each_entry(not, &mtd_notifiers, list)
549 		not->remove(mtd);
550 #endif
551 
552 	if (mtd->usecount) {
553 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
554 		       mtd->index, mtd->name, mtd->usecount);
555 		ret = -EBUSY;
556 	} else {
557 #ifndef __UBOOT__
558 		device_unregister(&mtd->dev);
559 #endif
560 
561 		idr_remove(&mtd_idr, mtd->index);
562 
563 		module_put(THIS_MODULE);
564 		ret = 0;
565 	}
566 
567 out_error:
568 	mutex_unlock(&mtd_table_mutex);
569 	return ret;
570 }
571 
572 #ifndef __UBOOT__
573 /**
574  * mtd_device_parse_register - parse partitions and register an MTD device.
575  *
576  * @mtd: the MTD device to register
577  * @types: the list of MTD partition probes to try, see
578  *         'parse_mtd_partitions()' for more information
579  * @parser_data: MTD partition parser-specific data
580  * @parts: fallback partition information to register, if parsing fails;
581  *         only valid if %nr_parts > %0
582  * @nr_parts: the number of partitions in parts, if zero then the full
583  *            MTD device is registered if no partition info is found
584  *
585  * This function aggregates MTD partitions parsing (done by
586  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
587  * basically follows the most common pattern found in many MTD drivers:
588  *
589  * * It first tries to probe partitions on MTD device @mtd using parsers
590  *   specified in @types (if @types is %NULL, then the default list of parsers
591  *   is used, see 'parse_mtd_partitions()' for more information). If none are
592  *   found this functions tries to fallback to information specified in
593  *   @parts/@nr_parts.
594  * * If any partitioning info was found, this function registers the found
595  *   partitions.
596  * * If no partitions were found this function just registers the MTD device
597  *   @mtd and exits.
598  *
599  * Returns zero in case of success and a negative error code in case of failure.
600  */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)601 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
602 			      struct mtd_part_parser_data *parser_data,
603 			      const struct mtd_partition *parts,
604 			      int nr_parts)
605 {
606 	int err;
607 	struct mtd_partition *real_parts;
608 
609 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
610 	if (err <= 0 && nr_parts && parts) {
611 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
612 				     GFP_KERNEL);
613 		if (!real_parts)
614 			err = -ENOMEM;
615 		else
616 			err = nr_parts;
617 	}
618 
619 	if (err > 0) {
620 		err = add_mtd_partitions(mtd, real_parts, err);
621 		kfree(real_parts);
622 	} else if (err == 0) {
623 		err = add_mtd_device(mtd);
624 		if (err == 1)
625 			err = -ENODEV;
626 	}
627 
628 	return err;
629 }
630 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
631 
632 /**
633  * mtd_device_unregister - unregister an existing MTD device.
634  *
635  * @master: the MTD device to unregister.  This will unregister both the master
636  *          and any partitions if registered.
637  */
mtd_device_unregister(struct mtd_info * master)638 int mtd_device_unregister(struct mtd_info *master)
639 {
640 	int err;
641 
642 	err = del_mtd_partitions(master);
643 	if (err)
644 		return err;
645 
646 	if (!device_is_registered(&master->dev))
647 		return 0;
648 
649 	return del_mtd_device(master);
650 }
651 EXPORT_SYMBOL_GPL(mtd_device_unregister);
652 
653 /**
654  *	register_mtd_user - register a 'user' of MTD devices.
655  *	@new: pointer to notifier info structure
656  *
657  *	Registers a pair of callbacks function to be called upon addition
658  *	or removal of MTD devices. Causes the 'add' callback to be immediately
659  *	invoked for each MTD device currently present in the system.
660  */
register_mtd_user(struct mtd_notifier * new)661 void register_mtd_user (struct mtd_notifier *new)
662 {
663 	struct mtd_info *mtd;
664 
665 	mutex_lock(&mtd_table_mutex);
666 
667 	list_add(&new->list, &mtd_notifiers);
668 
669 	__module_get(THIS_MODULE);
670 
671 	mtd_for_each_device(mtd)
672 		new->add(mtd);
673 
674 	mutex_unlock(&mtd_table_mutex);
675 }
676 EXPORT_SYMBOL_GPL(register_mtd_user);
677 
678 /**
679  *	unregister_mtd_user - unregister a 'user' of MTD devices.
680  *	@old: pointer to notifier info structure
681  *
682  *	Removes a callback function pair from the list of 'users' to be
683  *	notified upon addition or removal of MTD devices. Causes the
684  *	'remove' callback to be immediately invoked for each MTD device
685  *	currently present in the system.
686  */
unregister_mtd_user(struct mtd_notifier * old)687 int unregister_mtd_user (struct mtd_notifier *old)
688 {
689 	struct mtd_info *mtd;
690 
691 	mutex_lock(&mtd_table_mutex);
692 
693 	module_put(THIS_MODULE);
694 
695 	mtd_for_each_device(mtd)
696 		old->remove(mtd);
697 
698 	list_del(&old->list);
699 	mutex_unlock(&mtd_table_mutex);
700 	return 0;
701 }
702 EXPORT_SYMBOL_GPL(unregister_mtd_user);
703 #endif
704 
705 /**
706  *	get_mtd_device - obtain a validated handle for an MTD device
707  *	@mtd: last known address of the required MTD device
708  *	@num: internal device number of the required MTD device
709  *
710  *	Given a number and NULL address, return the num'th entry in the device
711  *	table, if any.	Given an address and num == -1, search the device table
712  *	for a device with that address and return if it's still present. Given
713  *	both, return the num'th driver only if its address matches. Return
714  *	error code if not.
715  */
get_mtd_device(struct mtd_info * mtd,int num)716 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
717 {
718 	struct mtd_info *ret = NULL, *other;
719 	int err = -ENODEV;
720 
721 	mutex_lock(&mtd_table_mutex);
722 
723 	if (num == -1) {
724 		mtd_for_each_device(other) {
725 			if (other == mtd) {
726 				ret = mtd;
727 				break;
728 			}
729 		}
730 	} else if (num >= 0) {
731 		ret = idr_find(&mtd_idr, num);
732 		if (mtd && mtd != ret)
733 			ret = NULL;
734 	}
735 
736 	if (!ret) {
737 		ret = ERR_PTR(err);
738 		goto out;
739 	}
740 
741 	err = __get_mtd_device(ret);
742 	if (err)
743 		ret = ERR_PTR(err);
744 out:
745 	mutex_unlock(&mtd_table_mutex);
746 	return ret;
747 }
748 EXPORT_SYMBOL_GPL(get_mtd_device);
749 
750 
__get_mtd_device(struct mtd_info * mtd)751 int __get_mtd_device(struct mtd_info *mtd)
752 {
753 	int err;
754 
755 	if (!try_module_get(mtd->owner))
756 		return -ENODEV;
757 
758 	if (mtd->_get_device) {
759 		err = mtd->_get_device(mtd);
760 
761 		if (err) {
762 			module_put(mtd->owner);
763 			return err;
764 		}
765 	}
766 	mtd->usecount++;
767 	return 0;
768 }
769 EXPORT_SYMBOL_GPL(__get_mtd_device);
770 
771 #if CONFIG_IS_ENABLED(DM) && CONFIG_IS_ENABLED(OF_CONTROL)
mtd_device_matches_name(struct mtd_info * mtd,const char * name)772 static bool mtd_device_matches_name(struct mtd_info *mtd, const char *name)
773 {
774 	struct udevice *dev = NULL;
775 	bool is_part;
776 
777 	/*
778 	 * If the first character of mtd name is '/', try interpreting as OF
779 	 * path. Otherwise try comparing by mtd->name and mtd->dev->name.
780 	 */
781 	if (*name == '/')
782 		device_get_global_by_ofnode(ofnode_path(name), &dev);
783 
784 	is_part = mtd_is_partition(mtd);
785 
786 	return (!is_part && dev && mtd->dev == dev) ||
787 	       !strcmp(name, mtd->name) ||
788 	       (is_part && mtd->dev && !strcmp(name, mtd->dev->name));
789 }
790 #else
mtd_device_matches_name(struct mtd_info * mtd,const char * name)791 static bool mtd_device_matches_name(struct mtd_info *mtd, const char *name)
792 {
793 	return !strcmp(name, mtd->name);
794 }
795 #endif
796 
797 /**
798  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
799  *	device name
800  *	@name: MTD device name to open
801  *
802  *	This function returns MTD device description structure in case of
803  *	success and an error code in case of failure.
804  */
get_mtd_device_nm(const char * name)805 struct mtd_info *get_mtd_device_nm(const char *name)
806 {
807 	int err = -ENODEV;
808 	struct mtd_info *mtd = NULL, *other;
809 
810 	mutex_lock(&mtd_table_mutex);
811 
812 	mtd_for_each_device(other) {
813 #ifdef __UBOOT__
814 		if (mtd_device_matches_name(other, name)) {
815 			if (mtd)
816 				printf("\nWarning: MTD name \"%s\" is not unique!\n\n",
817 				       name);
818 			mtd = other;
819 		}
820 #else /* !__UBOOT__ */
821 		if (!strcmp(name, other->name)) {
822 			mtd = other;
823 			break;
824 		}
825 #endif /* !__UBOOT__ */
826 	}
827 
828 	if (!mtd)
829 		goto out_unlock;
830 
831 	err = __get_mtd_device(mtd);
832 	if (err)
833 		goto out_unlock;
834 
835 	mutex_unlock(&mtd_table_mutex);
836 	return mtd;
837 
838 out_unlock:
839 	mutex_unlock(&mtd_table_mutex);
840 	return ERR_PTR(err);
841 }
842 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
843 
844 #if defined(CONFIG_CMD_MTDPARTS_SPREAD)
845 /**
846  * mtd_get_len_incl_bad
847  *
848  * Check if length including bad blocks fits into device.
849  *
850  * @param mtd an MTD device
851  * @param offset offset in flash
852  * @param length image length
853  * @return image length including bad blocks in *len_incl_bad and whether or not
854  *         the length returned was truncated in *truncated
855  */
mtd_get_len_incl_bad(struct mtd_info * mtd,uint64_t offset,const uint64_t length,uint64_t * len_incl_bad,int * truncated)856 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
857 			  const uint64_t length, uint64_t *len_incl_bad,
858 			  int *truncated)
859 {
860 	*truncated = 0;
861 	*len_incl_bad = 0;
862 
863 	if (!mtd->_block_isbad) {
864 		*len_incl_bad = length;
865 		return;
866 	}
867 
868 	uint64_t len_excl_bad = 0;
869 	uint64_t block_len;
870 
871 	while (len_excl_bad < length) {
872 		if (offset >= mtd->size) {
873 			*truncated = 1;
874 			return;
875 		}
876 
877 		block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
878 
879 		if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
880 			len_excl_bad += block_len;
881 
882 		*len_incl_bad += block_len;
883 		offset       += block_len;
884 	}
885 }
886 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
887 
put_mtd_device(struct mtd_info * mtd)888 void put_mtd_device(struct mtd_info *mtd)
889 {
890 	mutex_lock(&mtd_table_mutex);
891 	__put_mtd_device(mtd);
892 	mutex_unlock(&mtd_table_mutex);
893 
894 }
895 EXPORT_SYMBOL_GPL(put_mtd_device);
896 
__put_mtd_device(struct mtd_info * mtd)897 void __put_mtd_device(struct mtd_info *mtd)
898 {
899 	--mtd->usecount;
900 	BUG_ON(mtd->usecount < 0);
901 
902 	if (mtd->_put_device)
903 		mtd->_put_device(mtd);
904 
905 	module_put(mtd->owner);
906 }
907 EXPORT_SYMBOL_GPL(__put_mtd_device);
908 
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)909 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
910 {
911 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
912 		return -EINVAL;
913 	if (!(mtd->flags & MTD_WRITEABLE))
914 		return -EROFS;
915 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
916 	if (!instr->len) {
917 		instr->state = MTD_ERASE_DONE;
918 		return 0;
919 	}
920 	return mtd->_erase(mtd, instr);
921 }
922 EXPORT_SYMBOL_GPL(mtd_erase);
923 
924 #ifndef __UBOOT__
925 /*
926  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
927  */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)928 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
929 	      void **virt, resource_size_t *phys)
930 {
931 	*retlen = 0;
932 	*virt = NULL;
933 	if (phys)
934 		*phys = 0;
935 	if (!mtd->_point)
936 		return -EOPNOTSUPP;
937 	if (from < 0 || from > mtd->size || len > mtd->size - from)
938 		return -EINVAL;
939 	if (!len)
940 		return 0;
941 	return mtd->_point(mtd, from, len, retlen, virt, phys);
942 }
943 EXPORT_SYMBOL_GPL(mtd_point);
944 
945 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)946 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
947 {
948 	if (!mtd->_point)
949 		return -EOPNOTSUPP;
950 	if (from < 0 || from > mtd->size || len > mtd->size - from)
951 		return -EINVAL;
952 	if (!len)
953 		return 0;
954 	return mtd->_unpoint(mtd, from, len);
955 }
956 EXPORT_SYMBOL_GPL(mtd_unpoint);
957 #endif
958 
959 /*
960  * Allow NOMMU mmap() to directly map the device (if not NULL)
961  * - return the address to which the offset maps
962  * - return -ENOSYS to indicate refusal to do the mapping
963  */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)964 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
965 				    unsigned long offset, unsigned long flags)
966 {
967 	if (!mtd->_get_unmapped_area)
968 		return -EOPNOTSUPP;
969 	if (offset > mtd->size || len > mtd->size - offset)
970 		return -EINVAL;
971 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
972 }
973 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
974 
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)975 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
976 	     u_char *buf)
977 {
978 	int ret_code;
979 	*retlen = 0;
980 	if (from < 0 || from > mtd->size || len > mtd->size - from)
981 		return -EINVAL;
982 	if (!len)
983 		return 0;
984 
985 	/*
986 	 * In the absence of an error, drivers return a non-negative integer
987 	 * representing the maximum number of bitflips that were corrected on
988 	 * any one ecc region (if applicable; zero otherwise).
989 	 */
990 	if (mtd->_read) {
991 		ret_code = mtd->_read(mtd, from, len, retlen, buf);
992 	} else if (mtd->_read_oob) {
993 		struct mtd_oob_ops ops = {
994 			.len = len,
995 			.datbuf = buf,
996 		};
997 
998 		ret_code = mtd->_read_oob(mtd, from, &ops);
999 		*retlen = ops.retlen;
1000 	} else {
1001 		return -ENOTSUPP;
1002 	}
1003 
1004 	if (unlikely(ret_code < 0))
1005 		return ret_code;
1006 	if (mtd->ecc_strength == 0)
1007 		return 0;	/* device lacks ecc */
1008 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1009 }
1010 EXPORT_SYMBOL_GPL(mtd_read);
1011 
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1012 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1013 	      const u_char *buf)
1014 {
1015 	*retlen = 0;
1016 	if (to < 0 || to > mtd->size || len > mtd->size - to)
1017 		return -EINVAL;
1018 	if ((!mtd->_write && !mtd->_write_oob) ||
1019 	    !(mtd->flags & MTD_WRITEABLE))
1020 		return -EROFS;
1021 	if (!len)
1022 		return 0;
1023 
1024 	if (!mtd->_write) {
1025 		struct mtd_oob_ops ops = {
1026 			.len = len,
1027 			.datbuf = (u8 *)buf,
1028 		};
1029 		int ret;
1030 
1031 		ret = mtd->_write_oob(mtd, to, &ops);
1032 		*retlen = ops.retlen;
1033 		return ret;
1034 	}
1035 
1036 	return mtd->_write(mtd, to, len, retlen, buf);
1037 }
1038 EXPORT_SYMBOL_GPL(mtd_write);
1039 
1040 /*
1041  * In blackbox flight recorder like scenarios we want to make successful writes
1042  * in interrupt context. panic_write() is only intended to be called when its
1043  * known the kernel is about to panic and we need the write to succeed. Since
1044  * the kernel is not going to be running for much longer, this function can
1045  * break locks and delay to ensure the write succeeds (but not sleep).
1046  */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1047 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1048 		    const u_char *buf)
1049 {
1050 	*retlen = 0;
1051 	if (!mtd->_panic_write)
1052 		return -EOPNOTSUPP;
1053 	if (to < 0 || to > mtd->size || len > mtd->size - to)
1054 		return -EINVAL;
1055 	if (!(mtd->flags & MTD_WRITEABLE))
1056 		return -EROFS;
1057 	if (!len)
1058 		return 0;
1059 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1060 }
1061 EXPORT_SYMBOL_GPL(mtd_panic_write);
1062 
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1063 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1064 			     struct mtd_oob_ops *ops)
1065 {
1066 	/*
1067 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1068 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1069 	 *  this case.
1070 	 */
1071 	if (!ops->datbuf)
1072 		ops->len = 0;
1073 
1074 	if (!ops->oobbuf)
1075 		ops->ooblen = 0;
1076 
1077 	if (offs < 0 || offs + ops->len > mtd->size)
1078 		return -EINVAL;
1079 
1080 	if (ops->ooblen) {
1081 		size_t maxooblen;
1082 
1083 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1084 			return -EINVAL;
1085 
1086 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1087 				      mtd_div_by_ws(offs, mtd)) *
1088 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1089 		if (ops->ooblen > maxooblen)
1090 			return -EINVAL;
1091 	}
1092 
1093 	return 0;
1094 }
1095 
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1096 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1097 {
1098 	int ret_code;
1099 	ops->retlen = ops->oobretlen = 0;
1100 
1101 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1102 	if (ret_code)
1103 		return ret_code;
1104 
1105 	/* Check the validity of a potential fallback on mtd->_read */
1106 	if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1107 		return -EOPNOTSUPP;
1108 
1109 	if (mtd->_read_oob)
1110 		ret_code = mtd->_read_oob(mtd, from, ops);
1111 	else
1112 		ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1113 				      ops->datbuf);
1114 
1115 	/*
1116 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1117 	 * similar to mtd->_read(), returning a non-negative integer
1118 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1119 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1120 	 */
1121 	if (unlikely(ret_code < 0))
1122 		return ret_code;
1123 	if (mtd->ecc_strength == 0)
1124 		return 0;	/* device lacks ecc */
1125 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1126 }
1127 EXPORT_SYMBOL_GPL(mtd_read_oob);
1128 
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1129 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1130 				struct mtd_oob_ops *ops)
1131 {
1132 	int ret;
1133 
1134 	ops->retlen = ops->oobretlen = 0;
1135 
1136 	if (!(mtd->flags & MTD_WRITEABLE))
1137 		return -EROFS;
1138 
1139 	ret = mtd_check_oob_ops(mtd, to, ops);
1140 	if (ret)
1141 		return ret;
1142 
1143 	/* Check the validity of a potential fallback on mtd->_write */
1144 	if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1145 		return -EOPNOTSUPP;
1146 
1147 	if (mtd->_write_oob)
1148 		return mtd->_write_oob(mtd, to, ops);
1149 	else
1150 		return mtd->_write(mtd, to, ops->len, &ops->retlen,
1151 				   ops->datbuf);
1152 }
1153 EXPORT_SYMBOL_GPL(mtd_write_oob);
1154 
1155 /**
1156  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1157  * @mtd: MTD device structure
1158  * @section: ECC section. Depending on the layout you may have all the ECC
1159  *	     bytes stored in a single contiguous section, or one section
1160  *	     per ECC chunk (and sometime several sections for a single ECC
1161  *	     ECC chunk)
1162  * @oobecc: OOB region struct filled with the appropriate ECC position
1163  *	    information
1164  *
1165  * This function returns ECC section information in the OOB area. If you want
1166  * to get all the ECC bytes information, then you should call
1167  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1168  *
1169  * Returns zero on success, a negative error code otherwise.
1170  */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1171 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1172 		      struct mtd_oob_region *oobecc)
1173 {
1174 	memset(oobecc, 0, sizeof(*oobecc));
1175 
1176 	if (!mtd || section < 0)
1177 		return -EINVAL;
1178 
1179 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1180 		return -ENOTSUPP;
1181 
1182 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1183 }
1184 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1185 
1186 /**
1187  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1188  *			section
1189  * @mtd: MTD device structure
1190  * @section: Free section you are interested in. Depending on the layout
1191  *	     you may have all the free bytes stored in a single contiguous
1192  *	     section, or one section per ECC chunk plus an extra section
1193  *	     for the remaining bytes (or other funky layout).
1194  * @oobfree: OOB region struct filled with the appropriate free position
1195  *	     information
1196  *
1197  * This function returns free bytes position in the OOB area. If you want
1198  * to get all the free bytes information, then you should call
1199  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1200  *
1201  * Returns zero on success, a negative error code otherwise.
1202  */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1203 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1204 		       struct mtd_oob_region *oobfree)
1205 {
1206 	memset(oobfree, 0, sizeof(*oobfree));
1207 
1208 	if (!mtd || section < 0)
1209 		return -EINVAL;
1210 
1211 	if (!mtd->ooblayout || !mtd->ooblayout->rfree)
1212 		return -ENOTSUPP;
1213 
1214 	return mtd->ooblayout->rfree(mtd, section, oobfree);
1215 }
1216 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1217 
1218 /**
1219  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1220  * @mtd: mtd info structure
1221  * @byte: the byte we are searching for
1222  * @sectionp: pointer where the section id will be stored
1223  * @oobregion: used to retrieve the ECC position
1224  * @iter: iterator function. Should be either mtd_ooblayout_free or
1225  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1226  *
1227  * This function returns the section id and oobregion information of a
1228  * specific byte. For example, say you want to know where the 4th ECC byte is
1229  * stored, you'll use:
1230  *
1231  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1232  *
1233  * Returns zero on success, a negative error code otherwise.
1234  */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1235 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1236 				int *sectionp, struct mtd_oob_region *oobregion,
1237 				int (*iter)(struct mtd_info *,
1238 					    int section,
1239 					    struct mtd_oob_region *oobregion))
1240 {
1241 	int pos = 0, ret, section = 0;
1242 
1243 	memset(oobregion, 0, sizeof(*oobregion));
1244 
1245 	while (1) {
1246 		ret = iter(mtd, section, oobregion);
1247 		if (ret)
1248 			return ret;
1249 
1250 		if (pos + oobregion->length > byte)
1251 			break;
1252 
1253 		pos += oobregion->length;
1254 		section++;
1255 	}
1256 
1257 	/*
1258 	 * Adjust region info to make it start at the beginning at the
1259 	 * 'start' ECC byte.
1260 	 */
1261 	oobregion->offset += byte - pos;
1262 	oobregion->length -= byte - pos;
1263 	*sectionp = section;
1264 
1265 	return 0;
1266 }
1267 
1268 /**
1269  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1270  *				  ECC byte
1271  * @mtd: mtd info structure
1272  * @eccbyte: the byte we are searching for
1273  * @sectionp: pointer where the section id will be stored
1274  * @oobregion: OOB region information
1275  *
1276  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1277  * byte.
1278  *
1279  * Returns zero on success, a negative error code otherwise.
1280  */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1281 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1282 				 int *section,
1283 				 struct mtd_oob_region *oobregion)
1284 {
1285 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1286 					 mtd_ooblayout_ecc);
1287 }
1288 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1289 
1290 /**
1291  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1292  * @mtd: mtd info structure
1293  * @buf: destination buffer to store OOB bytes
1294  * @oobbuf: OOB buffer
1295  * @start: first byte to retrieve
1296  * @nbytes: number of bytes to retrieve
1297  * @iter: section iterator
1298  *
1299  * Extract bytes attached to a specific category (ECC or free)
1300  * from the OOB buffer and copy them into buf.
1301  *
1302  * Returns zero on success, a negative error code otherwise.
1303  */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1304 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1305 				const u8 *oobbuf, int start, int nbytes,
1306 				int (*iter)(struct mtd_info *,
1307 					    int section,
1308 					    struct mtd_oob_region *oobregion))
1309 {
1310 	struct mtd_oob_region oobregion;
1311 	int section, ret;
1312 
1313 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1314 					&oobregion, iter);
1315 
1316 	while (!ret) {
1317 		int cnt;
1318 
1319 		cnt = min_t(int, nbytes, oobregion.length);
1320 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1321 		buf += cnt;
1322 		nbytes -= cnt;
1323 
1324 		if (!nbytes)
1325 			break;
1326 
1327 		ret = iter(mtd, ++section, &oobregion);
1328 	}
1329 
1330 	return ret;
1331 }
1332 
1333 /**
1334  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1335  * @mtd: mtd info structure
1336  * @buf: source buffer to get OOB bytes from
1337  * @oobbuf: OOB buffer
1338  * @start: first OOB byte to set
1339  * @nbytes: number of OOB bytes to set
1340  * @iter: section iterator
1341  *
1342  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1343  * is selected by passing the appropriate iterator.
1344  *
1345  * Returns zero on success, a negative error code otherwise.
1346  */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1347 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1348 				u8 *oobbuf, int start, int nbytes,
1349 				int (*iter)(struct mtd_info *,
1350 					    int section,
1351 					    struct mtd_oob_region *oobregion))
1352 {
1353 	struct mtd_oob_region oobregion;
1354 	int section, ret;
1355 
1356 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1357 					&oobregion, iter);
1358 
1359 	while (!ret) {
1360 		int cnt;
1361 
1362 		cnt = min_t(int, nbytes, oobregion.length);
1363 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1364 		buf += cnt;
1365 		nbytes -= cnt;
1366 
1367 		if (!nbytes)
1368 			break;
1369 
1370 		ret = iter(mtd, ++section, &oobregion);
1371 	}
1372 
1373 	return ret;
1374 }
1375 
1376 /**
1377  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1378  * @mtd: mtd info structure
1379  * @iter: category iterator
1380  *
1381  * Count the number of bytes in a given category.
1382  *
1383  * Returns a positive value on success, a negative error code otherwise.
1384  */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1385 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1386 				int (*iter)(struct mtd_info *,
1387 					    int section,
1388 					    struct mtd_oob_region *oobregion))
1389 {
1390 	struct mtd_oob_region oobregion;
1391 	int section = 0, ret, nbytes = 0;
1392 
1393 	while (1) {
1394 		ret = iter(mtd, section++, &oobregion);
1395 		if (ret) {
1396 			if (ret == -ERANGE)
1397 				ret = nbytes;
1398 			break;
1399 		}
1400 
1401 		nbytes += oobregion.length;
1402 	}
1403 
1404 	return ret;
1405 }
1406 
1407 /**
1408  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1409  * @mtd: mtd info structure
1410  * @eccbuf: destination buffer to store ECC bytes
1411  * @oobbuf: OOB buffer
1412  * @start: first ECC byte to retrieve
1413  * @nbytes: number of ECC bytes to retrieve
1414  *
1415  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1416  *
1417  * Returns zero on success, a negative error code otherwise.
1418  */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1419 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1420 			       const u8 *oobbuf, int start, int nbytes)
1421 {
1422 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1423 				       mtd_ooblayout_ecc);
1424 }
1425 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1426 
1427 /**
1428  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1429  * @mtd: mtd info structure
1430  * @eccbuf: source buffer to get ECC bytes from
1431  * @oobbuf: OOB buffer
1432  * @start: first ECC byte to set
1433  * @nbytes: number of ECC bytes to set
1434  *
1435  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1436  *
1437  * Returns zero on success, a negative error code otherwise.
1438  */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)1439 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1440 			       u8 *oobbuf, int start, int nbytes)
1441 {
1442 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1443 				       mtd_ooblayout_ecc);
1444 }
1445 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1446 
1447 /**
1448  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1449  * @mtd: mtd info structure
1450  * @databuf: destination buffer to store ECC bytes
1451  * @oobbuf: OOB buffer
1452  * @start: first ECC byte to retrieve
1453  * @nbytes: number of ECC bytes to retrieve
1454  *
1455  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1456  *
1457  * Returns zero on success, a negative error code otherwise.
1458  */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)1459 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1460 				const u8 *oobbuf, int start, int nbytes)
1461 {
1462 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1463 				       mtd_ooblayout_free);
1464 }
1465 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1466 
1467 /**
1468  * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1469  * @mtd: mtd info structure
1470  * @eccbuf: source buffer to get data bytes from
1471  * @oobbuf: OOB buffer
1472  * @start: first ECC byte to set
1473  * @nbytes: number of ECC bytes to set
1474  *
1475  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1476  *
1477  * Returns zero on success, a negative error code otherwise.
1478  */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)1479 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1480 				u8 *oobbuf, int start, int nbytes)
1481 {
1482 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1483 				       mtd_ooblayout_free);
1484 }
1485 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1486 
1487 /**
1488  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1489  * @mtd: mtd info structure
1490  *
1491  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1492  *
1493  * Returns zero on success, a negative error code otherwise.
1494  */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)1495 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1496 {
1497 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1498 }
1499 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1500 
1501 /**
1502  * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1503  * @mtd: mtd info structure
1504  *
1505  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1506  *
1507  * Returns zero on success, a negative error code otherwise.
1508  */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)1509 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1510 {
1511 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1512 }
1513 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1514 
1515 /*
1516  * Method to access the protection register area, present in some flash
1517  * devices. The user data is one time programmable but the factory data is read
1518  * only.
1519  */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1520 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1521 			   struct otp_info *buf)
1522 {
1523 	if (!mtd->_get_fact_prot_info)
1524 		return -EOPNOTSUPP;
1525 	if (!len)
1526 		return 0;
1527 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1528 }
1529 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1530 
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1531 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1532 			   size_t *retlen, u_char *buf)
1533 {
1534 	*retlen = 0;
1535 	if (!mtd->_read_fact_prot_reg)
1536 		return -EOPNOTSUPP;
1537 	if (!len)
1538 		return 0;
1539 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1540 }
1541 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1542 
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1543 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1544 			   struct otp_info *buf)
1545 {
1546 	if (!mtd->_get_user_prot_info)
1547 		return -EOPNOTSUPP;
1548 	if (!len)
1549 		return 0;
1550 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1551 }
1552 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1553 
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1554 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1555 			   size_t *retlen, u_char *buf)
1556 {
1557 	*retlen = 0;
1558 	if (!mtd->_read_user_prot_reg)
1559 		return -EOPNOTSUPP;
1560 	if (!len)
1561 		return 0;
1562 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1563 }
1564 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1565 
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)1566 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1567 			    size_t *retlen, u_char *buf)
1568 {
1569 	int ret;
1570 
1571 	*retlen = 0;
1572 	if (!mtd->_write_user_prot_reg)
1573 		return -EOPNOTSUPP;
1574 	if (!len)
1575 		return 0;
1576 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1577 	if (ret)
1578 		return ret;
1579 
1580 	/*
1581 	 * If no data could be written at all, we are out of memory and
1582 	 * must return -ENOSPC.
1583 	 */
1584 	return (*retlen) ? 0 : -ENOSPC;
1585 }
1586 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1587 
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1588 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1589 {
1590 	if (!mtd->_lock_user_prot_reg)
1591 		return -EOPNOTSUPP;
1592 	if (!len)
1593 		return 0;
1594 	return mtd->_lock_user_prot_reg(mtd, from, len);
1595 }
1596 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1597 
1598 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1599 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1600 {
1601 	if (!mtd->_lock)
1602 		return -EOPNOTSUPP;
1603 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1604 		return -EINVAL;
1605 	if (!len)
1606 		return 0;
1607 	return mtd->_lock(mtd, ofs, len);
1608 }
1609 EXPORT_SYMBOL_GPL(mtd_lock);
1610 
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1611 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1612 {
1613 	if (!mtd->_unlock)
1614 		return -EOPNOTSUPP;
1615 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1616 		return -EINVAL;
1617 	if (!len)
1618 		return 0;
1619 	return mtd->_unlock(mtd, ofs, len);
1620 }
1621 EXPORT_SYMBOL_GPL(mtd_unlock);
1622 
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)1623 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1624 {
1625 	if (!mtd->_is_locked)
1626 		return -EOPNOTSUPP;
1627 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1628 		return -EINVAL;
1629 	if (!len)
1630 		return 0;
1631 	return mtd->_is_locked(mtd, ofs, len);
1632 }
1633 EXPORT_SYMBOL_GPL(mtd_is_locked);
1634 
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)1635 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1636 {
1637 	if (ofs < 0 || ofs > mtd->size)
1638 		return -EINVAL;
1639 	if (!mtd->_block_isreserved)
1640 		return 0;
1641 	return mtd->_block_isreserved(mtd, ofs);
1642 }
1643 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1644 
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)1645 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1646 {
1647 	if (ofs < 0 || ofs > mtd->size)
1648 		return -EINVAL;
1649 	if (!mtd->_block_isbad)
1650 		return 0;
1651 	return mtd->_block_isbad(mtd, ofs);
1652 }
1653 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1654 
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)1655 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1656 {
1657 	if (!mtd->_block_markbad)
1658 		return -EOPNOTSUPP;
1659 	if (ofs < 0 || ofs > mtd->size)
1660 		return -EINVAL;
1661 	if (!(mtd->flags & MTD_WRITEABLE))
1662 		return -EROFS;
1663 	return mtd->_block_markbad(mtd, ofs);
1664 }
1665 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1666 
1667 #ifndef __UBOOT__
1668 /*
1669  * default_mtd_writev - the default writev method
1670  * @mtd: mtd device description object pointer
1671  * @vecs: the vectors to write
1672  * @count: count of vectors in @vecs
1673  * @to: the MTD device offset to write to
1674  * @retlen: on exit contains the count of bytes written to the MTD device.
1675  *
1676  * This function returns zero in case of success and a negative error code in
1677  * case of failure.
1678  */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1679 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1680 			      unsigned long count, loff_t to, size_t *retlen)
1681 {
1682 	unsigned long i;
1683 	size_t totlen = 0, thislen;
1684 	int ret = 0;
1685 
1686 	for (i = 0; i < count; i++) {
1687 		if (!vecs[i].iov_len)
1688 			continue;
1689 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1690 				vecs[i].iov_base);
1691 		totlen += thislen;
1692 		if (ret || thislen != vecs[i].iov_len)
1693 			break;
1694 		to += vecs[i].iov_len;
1695 	}
1696 	*retlen = totlen;
1697 	return ret;
1698 }
1699 
1700 /*
1701  * mtd_writev - the vector-based MTD write method
1702  * @mtd: mtd device description object pointer
1703  * @vecs: the vectors to write
1704  * @count: count of vectors in @vecs
1705  * @to: the MTD device offset to write to
1706  * @retlen: on exit contains the count of bytes written to the MTD device.
1707  *
1708  * This function returns zero in case of success and a negative error code in
1709  * case of failure.
1710  */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1711 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1712 	       unsigned long count, loff_t to, size_t *retlen)
1713 {
1714 	*retlen = 0;
1715 	if (!(mtd->flags & MTD_WRITEABLE))
1716 		return -EROFS;
1717 	if (!mtd->_writev)
1718 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1719 	return mtd->_writev(mtd, vecs, count, to, retlen);
1720 }
1721 EXPORT_SYMBOL_GPL(mtd_writev);
1722 
1723 /**
1724  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1725  * @mtd: mtd device description object pointer
1726  * @size: a pointer to the ideal or maximum size of the allocation, points
1727  *        to the actual allocation size on success.
1728  *
1729  * This routine attempts to allocate a contiguous kernel buffer up to
1730  * the specified size, backing off the size of the request exponentially
1731  * until the request succeeds or until the allocation size falls below
1732  * the system page size. This attempts to make sure it does not adversely
1733  * impact system performance, so when allocating more than one page, we
1734  * ask the memory allocator to avoid re-trying, swapping, writing back
1735  * or performing I/O.
1736  *
1737  * Note, this function also makes sure that the allocated buffer is aligned to
1738  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1739  *
1740  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1741  * to handle smaller (i.e. degraded) buffer allocations under low- or
1742  * fragmented-memory situations where such reduced allocations, from a
1743  * requested ideal, are allowed.
1744  *
1745  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1746  */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)1747 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1748 {
1749 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1750 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1751 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1752 	void *kbuf;
1753 
1754 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1755 
1756 	while (*size > min_alloc) {
1757 		kbuf = kmalloc(*size, flags);
1758 		if (kbuf)
1759 			return kbuf;
1760 
1761 		*size >>= 1;
1762 		*size = ALIGN(*size, mtd->writesize);
1763 	}
1764 
1765 	/*
1766 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1767 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1768 	 */
1769 	return kmalloc(*size, GFP_KERNEL);
1770 }
1771 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1772 #endif
1773 
1774 #ifdef CONFIG_PROC_FS
1775 
1776 /*====================================================================*/
1777 /* Support for /proc/mtd */
1778 
mtd_proc_show(struct seq_file * m,void * v)1779 static int mtd_proc_show(struct seq_file *m, void *v)
1780 {
1781 	struct mtd_info *mtd;
1782 
1783 	seq_puts(m, "dev:    size   erasesize  name\n");
1784 	mutex_lock(&mtd_table_mutex);
1785 	mtd_for_each_device(mtd) {
1786 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1787 			   mtd->index, (unsigned long long)mtd->size,
1788 			   mtd->erasesize, mtd->name);
1789 	}
1790 	mutex_unlock(&mtd_table_mutex);
1791 	return 0;
1792 }
1793 
mtd_proc_open(struct inode * inode,struct file * file)1794 static int mtd_proc_open(struct inode *inode, struct file *file)
1795 {
1796 	return single_open(file, mtd_proc_show, NULL);
1797 }
1798 
1799 static const struct file_operations mtd_proc_ops = {
1800 	.open		= mtd_proc_open,
1801 	.read		= seq_read,
1802 	.llseek		= seq_lseek,
1803 	.release	= single_release,
1804 };
1805 #endif /* CONFIG_PROC_FS */
1806 
1807 /*====================================================================*/
1808 /* Init code */
1809 
1810 #ifndef __UBOOT__
mtd_bdi_init(struct backing_dev_info * bdi,const char * name)1811 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1812 {
1813 	int ret;
1814 
1815 	ret = bdi_init(bdi);
1816 	if (!ret)
1817 		ret = bdi_register(bdi, NULL, "%s", name);
1818 
1819 	if (ret)
1820 		bdi_destroy(bdi);
1821 
1822 	return ret;
1823 }
1824 
1825 static struct proc_dir_entry *proc_mtd;
1826 
init_mtd(void)1827 static int __init init_mtd(void)
1828 {
1829 	int ret;
1830 
1831 	ret = class_register(&mtd_class);
1832 	if (ret)
1833 		goto err_reg;
1834 
1835 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1836 	if (ret)
1837 		goto err_bdi1;
1838 
1839 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1840 	if (ret)
1841 		goto err_bdi2;
1842 
1843 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1844 	if (ret)
1845 		goto err_bdi3;
1846 
1847 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1848 
1849 	ret = init_mtdchar();
1850 	if (ret)
1851 		goto out_procfs;
1852 
1853 	return 0;
1854 
1855 out_procfs:
1856 	if (proc_mtd)
1857 		remove_proc_entry("mtd", NULL);
1858 err_bdi3:
1859 	bdi_destroy(&mtd_bdi_ro_mappable);
1860 err_bdi2:
1861 	bdi_destroy(&mtd_bdi_unmappable);
1862 err_bdi1:
1863 	class_unregister(&mtd_class);
1864 err_reg:
1865 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1866 	return ret;
1867 }
1868 
cleanup_mtd(void)1869 static void __exit cleanup_mtd(void)
1870 {
1871 	cleanup_mtdchar();
1872 	if (proc_mtd)
1873 		remove_proc_entry("mtd", NULL);
1874 	class_unregister(&mtd_class);
1875 	bdi_destroy(&mtd_bdi_unmappable);
1876 	bdi_destroy(&mtd_bdi_ro_mappable);
1877 	bdi_destroy(&mtd_bdi_rw_mappable);
1878 }
1879 
1880 module_init(init_mtd);
1881 module_exit(cleanup_mtd);
1882 #endif
1883 
1884 MODULE_LICENSE("GPL");
1885 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1886 MODULE_DESCRIPTION("Core MTD registration and access routines");
1887