1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
74
75 #include "../workqueue_internal.h"
76
77 #ifdef CONFIG_CGROUP_SCHED
78 #include <linux/cgroup.h>
79 #include <linux/psi.h>
80 #endif
81
82 #ifdef CONFIG_SCHED_DEBUG
83 # include <linux/static_key.h>
84 #endif
85
86 #ifdef CONFIG_PARAVIRT
87 # include <asm/paravirt.h>
88 # include <asm/paravirt_api_clock.h>
89 #endif
90
91 #include "cpupri.h"
92 #include "cpudeadline.h"
93
94 #ifdef CONFIG_SCHED_DEBUG
95 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
96 #else
97 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
98 #endif
99
100 struct rq;
101 struct cpuidle_state;
102
103 /* task_struct::on_rq states: */
104 #define TASK_ON_RQ_QUEUED 1
105 #define TASK_ON_RQ_MIGRATING 2
106
107 extern __read_mostly int scheduler_running;
108
109 extern unsigned long calc_load_update;
110 extern atomic_long_t calc_load_tasks;
111
112 extern unsigned int sysctl_sched_child_runs_first;
113
114 extern void calc_global_load_tick(struct rq *this_rq);
115 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
116
117 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
118
119 extern unsigned int sysctl_sched_rt_period;
120 extern int sysctl_sched_rt_runtime;
121 extern int sched_rr_timeslice;
122
123 /*
124 * Helpers for converting nanosecond timing to jiffy resolution
125 */
126 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
127
128 /*
129 * Increase resolution of nice-level calculations for 64-bit architectures.
130 * The extra resolution improves shares distribution and load balancing of
131 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
132 * hierarchies, especially on larger systems. This is not a user-visible change
133 * and does not change the user-interface for setting shares/weights.
134 *
135 * We increase resolution only if we have enough bits to allow this increased
136 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
137 * are pretty high and the returns do not justify the increased costs.
138 *
139 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
140 * increase coverage and consistency always enable it on 64-bit platforms.
141 */
142 #ifdef CONFIG_64BIT
143 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
144 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
145 # define scale_load_down(w) \
146 ({ \
147 unsigned long __w = (w); \
148 if (__w) \
149 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
150 __w; \
151 })
152 #else
153 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
154 # define scale_load(w) (w)
155 # define scale_load_down(w) (w)
156 #endif
157
158 /*
159 * Task weight (visible to users) and its load (invisible to users) have
160 * independent resolution, but they should be well calibrated. We use
161 * scale_load() and scale_load_down(w) to convert between them. The
162 * following must be true:
163 *
164 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
165 *
166 */
167 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
168
169 /*
170 * Single value that decides SCHED_DEADLINE internal math precision.
171 * 10 -> just above 1us
172 * 9 -> just above 0.5us
173 */
174 #define DL_SCALE 10
175
176 /*
177 * Single value that denotes runtime == period, ie unlimited time.
178 */
179 #define RUNTIME_INF ((u64)~0ULL)
180
idle_policy(int policy)181 static inline int idle_policy(int policy)
182 {
183 return policy == SCHED_IDLE;
184 }
fair_policy(int policy)185 static inline int fair_policy(int policy)
186 {
187 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
188 }
189
rt_policy(int policy)190 static inline int rt_policy(int policy)
191 {
192 return policy == SCHED_FIFO || policy == SCHED_RR;
193 }
194
dl_policy(int policy)195 static inline int dl_policy(int policy)
196 {
197 return policy == SCHED_DEADLINE;
198 }
valid_policy(int policy)199 static inline bool valid_policy(int policy)
200 {
201 return idle_policy(policy) || fair_policy(policy) ||
202 rt_policy(policy) || dl_policy(policy);
203 }
204
task_has_idle_policy(struct task_struct * p)205 static inline int task_has_idle_policy(struct task_struct *p)
206 {
207 return idle_policy(p->policy);
208 }
209
task_has_rt_policy(struct task_struct * p)210 static inline int task_has_rt_policy(struct task_struct *p)
211 {
212 return rt_policy(p->policy);
213 }
214
task_has_dl_policy(struct task_struct * p)215 static inline int task_has_dl_policy(struct task_struct *p)
216 {
217 return dl_policy(p->policy);
218 }
219
220 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
221
update_avg(u64 * avg,u64 sample)222 static inline void update_avg(u64 *avg, u64 sample)
223 {
224 s64 diff = sample - *avg;
225 *avg += diff / 8;
226 }
227
228 /*
229 * Shifting a value by an exponent greater *or equal* to the size of said value
230 * is UB; cap at size-1.
231 */
232 #define shr_bound(val, shift) \
233 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
234
235 /*
236 * !! For sched_setattr_nocheck() (kernel) only !!
237 *
238 * This is actually gross. :(
239 *
240 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
241 * tasks, but still be able to sleep. We need this on platforms that cannot
242 * atomically change clock frequency. Remove once fast switching will be
243 * available on such platforms.
244 *
245 * SUGOV stands for SchedUtil GOVernor.
246 */
247 #define SCHED_FLAG_SUGOV 0x10000000
248
249 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
250
dl_entity_is_special(const struct sched_dl_entity * dl_se)251 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
252 {
253 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
254 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
255 #else
256 return false;
257 #endif
258 }
259
260 /*
261 * Tells if entity @a should preempt entity @b.
262 */
dl_entity_preempt(const struct sched_dl_entity * a,const struct sched_dl_entity * b)263 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
264 const struct sched_dl_entity *b)
265 {
266 return dl_entity_is_special(a) ||
267 dl_time_before(a->deadline, b->deadline);
268 }
269
270 /*
271 * This is the priority-queue data structure of the RT scheduling class:
272 */
273 struct rt_prio_array {
274 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
275 struct list_head queue[MAX_RT_PRIO];
276 };
277
278 struct rt_bandwidth {
279 /* nests inside the rq lock: */
280 raw_spinlock_t rt_runtime_lock;
281 ktime_t rt_period;
282 u64 rt_runtime;
283 struct hrtimer rt_period_timer;
284 unsigned int rt_period_active;
285 };
286
287 void __dl_clear_params(struct task_struct *p);
288
289 struct dl_bandwidth {
290 raw_spinlock_t dl_runtime_lock;
291 u64 dl_runtime;
292 u64 dl_period;
293 };
294
dl_bandwidth_enabled(void)295 static inline int dl_bandwidth_enabled(void)
296 {
297 return sysctl_sched_rt_runtime >= 0;
298 }
299
300 /*
301 * To keep the bandwidth of -deadline tasks under control
302 * we need some place where:
303 * - store the maximum -deadline bandwidth of each cpu;
304 * - cache the fraction of bandwidth that is currently allocated in
305 * each root domain;
306 *
307 * This is all done in the data structure below. It is similar to the
308 * one used for RT-throttling (rt_bandwidth), with the main difference
309 * that, since here we are only interested in admission control, we
310 * do not decrease any runtime while the group "executes", neither we
311 * need a timer to replenish it.
312 *
313 * With respect to SMP, bandwidth is given on a per root domain basis,
314 * meaning that:
315 * - bw (< 100%) is the deadline bandwidth of each CPU;
316 * - total_bw is the currently allocated bandwidth in each root domain;
317 */
318 struct dl_bw {
319 raw_spinlock_t lock;
320 u64 bw;
321 u64 total_bw;
322 };
323
324 extern void init_dl_bw(struct dl_bw *dl_b);
325 extern int sched_dl_global_validate(void);
326 extern void sched_dl_do_global(void);
327 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
328 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
329 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
330 extern bool __checkparam_dl(const struct sched_attr *attr);
331 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
332 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
333 extern int dl_cpu_busy(int cpu, struct task_struct *p);
334
335 #ifdef CONFIG_CGROUP_SCHED
336
337 struct cfs_rq;
338 struct rt_rq;
339
340 extern struct list_head task_groups;
341
342 struct cfs_bandwidth {
343 #ifdef CONFIG_CFS_BANDWIDTH
344 raw_spinlock_t lock;
345 ktime_t period;
346 u64 quota;
347 u64 runtime;
348 u64 burst;
349 u64 runtime_snap;
350 s64 hierarchical_quota;
351
352 u8 idle;
353 u8 period_active;
354 u8 slack_started;
355 struct hrtimer period_timer;
356 struct hrtimer slack_timer;
357 struct list_head throttled_cfs_rq;
358
359 /* Statistics: */
360 int nr_periods;
361 int nr_throttled;
362 int nr_burst;
363 u64 throttled_time;
364 u64 burst_time;
365 #endif
366 };
367
368 /* Task group related information */
369 struct task_group {
370 struct cgroup_subsys_state css;
371
372 #ifdef CONFIG_FAIR_GROUP_SCHED
373 /* schedulable entities of this group on each CPU */
374 struct sched_entity **se;
375 /* runqueue "owned" by this group on each CPU */
376 struct cfs_rq **cfs_rq;
377 unsigned long shares;
378
379 /* A positive value indicates that this is a SCHED_IDLE group. */
380 int idle;
381
382 #ifdef CONFIG_SMP
383 /*
384 * load_avg can be heavily contended at clock tick time, so put
385 * it in its own cacheline separated from the fields above which
386 * will also be accessed at each tick.
387 */
388 atomic_long_t load_avg ____cacheline_aligned;
389 #endif
390 #endif
391
392 #ifdef CONFIG_RT_GROUP_SCHED
393 struct sched_rt_entity **rt_se;
394 struct rt_rq **rt_rq;
395
396 struct rt_bandwidth rt_bandwidth;
397 #endif
398
399 struct rcu_head rcu;
400 struct list_head list;
401
402 struct task_group *parent;
403 struct list_head siblings;
404 struct list_head children;
405
406 #ifdef CONFIG_SCHED_AUTOGROUP
407 struct autogroup *autogroup;
408 #endif
409
410 struct cfs_bandwidth cfs_bandwidth;
411
412 #ifdef CONFIG_UCLAMP_TASK_GROUP
413 /* The two decimal precision [%] value requested from user-space */
414 unsigned int uclamp_pct[UCLAMP_CNT];
415 /* Clamp values requested for a task group */
416 struct uclamp_se uclamp_req[UCLAMP_CNT];
417 /* Effective clamp values used for a task group */
418 struct uclamp_se uclamp[UCLAMP_CNT];
419 #endif
420
421 };
422
423 #ifdef CONFIG_FAIR_GROUP_SCHED
424 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
425
426 /*
427 * A weight of 0 or 1 can cause arithmetics problems.
428 * A weight of a cfs_rq is the sum of weights of which entities
429 * are queued on this cfs_rq, so a weight of a entity should not be
430 * too large, so as the shares value of a task group.
431 * (The default weight is 1024 - so there's no practical
432 * limitation from this.)
433 */
434 #define MIN_SHARES (1UL << 1)
435 #define MAX_SHARES (1UL << 18)
436 #endif
437
438 typedef int (*tg_visitor)(struct task_group *, void *);
439
440 extern int walk_tg_tree_from(struct task_group *from,
441 tg_visitor down, tg_visitor up, void *data);
442
443 /*
444 * Iterate the full tree, calling @down when first entering a node and @up when
445 * leaving it for the final time.
446 *
447 * Caller must hold rcu_lock or sufficient equivalent.
448 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)449 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
450 {
451 return walk_tg_tree_from(&root_task_group, down, up, data);
452 }
453
454 extern int tg_nop(struct task_group *tg, void *data);
455
456 extern void free_fair_sched_group(struct task_group *tg);
457 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
458 extern void online_fair_sched_group(struct task_group *tg);
459 extern void unregister_fair_sched_group(struct task_group *tg);
460 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
461 struct sched_entity *se, int cpu,
462 struct sched_entity *parent);
463 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
464
465 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
466 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
467 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
468
469 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
470 struct sched_rt_entity *rt_se, int cpu,
471 struct sched_rt_entity *parent);
472 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
473 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
474 extern long sched_group_rt_runtime(struct task_group *tg);
475 extern long sched_group_rt_period(struct task_group *tg);
476 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
477
478 extern struct task_group *sched_create_group(struct task_group *parent);
479 extern void sched_online_group(struct task_group *tg,
480 struct task_group *parent);
481 extern void sched_destroy_group(struct task_group *tg);
482 extern void sched_release_group(struct task_group *tg);
483
484 extern void sched_move_task(struct task_struct *tsk);
485
486 #ifdef CONFIG_FAIR_GROUP_SCHED
487 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
488
489 extern int sched_group_set_idle(struct task_group *tg, long idle);
490
491 #ifdef CONFIG_SMP
492 extern void set_task_rq_fair(struct sched_entity *se,
493 struct cfs_rq *prev, struct cfs_rq *next);
494 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)495 static inline void set_task_rq_fair(struct sched_entity *se,
496 struct cfs_rq *prev, struct cfs_rq *next) { }
497 #endif /* CONFIG_SMP */
498 #endif /* CONFIG_FAIR_GROUP_SCHED */
499
500 #else /* CONFIG_CGROUP_SCHED */
501
502 struct cfs_bandwidth { };
503
504 #endif /* CONFIG_CGROUP_SCHED */
505
506 extern void unregister_rt_sched_group(struct task_group *tg);
507 extern void free_rt_sched_group(struct task_group *tg);
508 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
509
510 /*
511 * u64_u32_load/u64_u32_store
512 *
513 * Use a copy of a u64 value to protect against data race. This is only
514 * applicable for 32-bits architectures.
515 */
516 #ifdef CONFIG_64BIT
517 # define u64_u32_load_copy(var, copy) var
518 # define u64_u32_store_copy(var, copy, val) (var = val)
519 #else
520 # define u64_u32_load_copy(var, copy) \
521 ({ \
522 u64 __val, __val_copy; \
523 do { \
524 __val_copy = copy; \
525 /* \
526 * paired with u64_u32_store_copy(), ordering access \
527 * to var and copy. \
528 */ \
529 smp_rmb(); \
530 __val = var; \
531 } while (__val != __val_copy); \
532 __val; \
533 })
534 # define u64_u32_store_copy(var, copy, val) \
535 do { \
536 typeof(val) __val = (val); \
537 var = __val; \
538 /* \
539 * paired with u64_u32_load_copy(), ordering access to var and \
540 * copy. \
541 */ \
542 smp_wmb(); \
543 copy = __val; \
544 } while (0)
545 #endif
546 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy)
547 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
548
549 /* CFS-related fields in a runqueue */
550 struct cfs_rq {
551 struct load_weight load;
552 unsigned int nr_running;
553 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
554 unsigned int idle_nr_running; /* SCHED_IDLE */
555 unsigned int idle_h_nr_running; /* SCHED_IDLE */
556
557 u64 exec_clock;
558 u64 min_vruntime;
559 #ifdef CONFIG_SCHED_CORE
560 unsigned int forceidle_seq;
561 u64 min_vruntime_fi;
562 #endif
563
564 #ifndef CONFIG_64BIT
565 u64 min_vruntime_copy;
566 #endif
567
568 struct rb_root_cached tasks_timeline;
569
570 /*
571 * 'curr' points to currently running entity on this cfs_rq.
572 * It is set to NULL otherwise (i.e when none are currently running).
573 */
574 struct sched_entity *curr;
575 struct sched_entity *next;
576 struct sched_entity *last;
577 struct sched_entity *skip;
578
579 #ifdef CONFIG_SCHED_DEBUG
580 unsigned int nr_spread_over;
581 #endif
582
583 #ifdef CONFIG_SMP
584 /*
585 * CFS load tracking
586 */
587 struct sched_avg avg;
588 #ifndef CONFIG_64BIT
589 u64 last_update_time_copy;
590 #endif
591 struct {
592 raw_spinlock_t lock ____cacheline_aligned;
593 int nr;
594 unsigned long load_avg;
595 unsigned long util_avg;
596 unsigned long runnable_avg;
597 } removed;
598
599 #ifdef CONFIG_FAIR_GROUP_SCHED
600 unsigned long tg_load_avg_contrib;
601 long propagate;
602 long prop_runnable_sum;
603
604 /*
605 * h_load = weight * f(tg)
606 *
607 * Where f(tg) is the recursive weight fraction assigned to
608 * this group.
609 */
610 unsigned long h_load;
611 u64 last_h_load_update;
612 struct sched_entity *h_load_next;
613 #endif /* CONFIG_FAIR_GROUP_SCHED */
614 #endif /* CONFIG_SMP */
615
616 #ifdef CONFIG_FAIR_GROUP_SCHED
617 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
618
619 /*
620 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
621 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
622 * (like users, containers etc.)
623 *
624 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
625 * This list is used during load balance.
626 */
627 int on_list;
628 struct list_head leaf_cfs_rq_list;
629 struct task_group *tg; /* group that "owns" this runqueue */
630
631 /* Locally cached copy of our task_group's idle value */
632 int idle;
633
634 #ifdef CONFIG_CFS_BANDWIDTH
635 int runtime_enabled;
636 s64 runtime_remaining;
637
638 u64 throttled_pelt_idle;
639 #ifndef CONFIG_64BIT
640 u64 throttled_pelt_idle_copy;
641 #endif
642 u64 throttled_clock;
643 u64 throttled_clock_pelt;
644 u64 throttled_clock_pelt_time;
645 int throttled;
646 int throttle_count;
647 struct list_head throttled_list;
648 #ifdef CONFIG_SMP
649 struct list_head throttled_csd_list;
650 #endif
651 #endif /* CONFIG_CFS_BANDWIDTH */
652 #endif /* CONFIG_FAIR_GROUP_SCHED */
653 };
654
rt_bandwidth_enabled(void)655 static inline int rt_bandwidth_enabled(void)
656 {
657 return sysctl_sched_rt_runtime >= 0;
658 }
659
660 /* RT IPI pull logic requires IRQ_WORK */
661 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
662 # define HAVE_RT_PUSH_IPI
663 #endif
664
665 /* Real-Time classes' related field in a runqueue: */
666 struct rt_rq {
667 struct rt_prio_array active;
668 unsigned int rt_nr_running;
669 unsigned int rr_nr_running;
670 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
671 struct {
672 int curr; /* highest queued rt task prio */
673 #ifdef CONFIG_SMP
674 int next; /* next highest */
675 #endif
676 } highest_prio;
677 #endif
678 #ifdef CONFIG_SMP
679 unsigned int rt_nr_migratory;
680 unsigned int rt_nr_total;
681 int overloaded;
682 struct plist_head pushable_tasks;
683
684 #endif /* CONFIG_SMP */
685 int rt_queued;
686
687 int rt_throttled;
688 u64 rt_time;
689 u64 rt_runtime;
690 /* Nests inside the rq lock: */
691 raw_spinlock_t rt_runtime_lock;
692
693 #ifdef CONFIG_RT_GROUP_SCHED
694 unsigned int rt_nr_boosted;
695
696 struct rq *rq;
697 struct task_group *tg;
698 #endif
699 };
700
rt_rq_is_runnable(struct rt_rq * rt_rq)701 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
702 {
703 return rt_rq->rt_queued && rt_rq->rt_nr_running;
704 }
705
706 /* Deadline class' related fields in a runqueue */
707 struct dl_rq {
708 /* runqueue is an rbtree, ordered by deadline */
709 struct rb_root_cached root;
710
711 unsigned int dl_nr_running;
712
713 #ifdef CONFIG_SMP
714 /*
715 * Deadline values of the currently executing and the
716 * earliest ready task on this rq. Caching these facilitates
717 * the decision whether or not a ready but not running task
718 * should migrate somewhere else.
719 */
720 struct {
721 u64 curr;
722 u64 next;
723 } earliest_dl;
724
725 unsigned int dl_nr_migratory;
726 int overloaded;
727
728 /*
729 * Tasks on this rq that can be pushed away. They are kept in
730 * an rb-tree, ordered by tasks' deadlines, with caching
731 * of the leftmost (earliest deadline) element.
732 */
733 struct rb_root_cached pushable_dl_tasks_root;
734 #else
735 struct dl_bw dl_bw;
736 #endif
737 /*
738 * "Active utilization" for this runqueue: increased when a
739 * task wakes up (becomes TASK_RUNNING) and decreased when a
740 * task blocks
741 */
742 u64 running_bw;
743
744 /*
745 * Utilization of the tasks "assigned" to this runqueue (including
746 * the tasks that are in runqueue and the tasks that executed on this
747 * CPU and blocked). Increased when a task moves to this runqueue, and
748 * decreased when the task moves away (migrates, changes scheduling
749 * policy, or terminates).
750 * This is needed to compute the "inactive utilization" for the
751 * runqueue (inactive utilization = this_bw - running_bw).
752 */
753 u64 this_bw;
754 u64 extra_bw;
755
756 /*
757 * Inverse of the fraction of CPU utilization that can be reclaimed
758 * by the GRUB algorithm.
759 */
760 u64 bw_ratio;
761 };
762
763 #ifdef CONFIG_FAIR_GROUP_SCHED
764 /* An entity is a task if it doesn't "own" a runqueue */
765 #define entity_is_task(se) (!se->my_q)
766
se_update_runnable(struct sched_entity * se)767 static inline void se_update_runnable(struct sched_entity *se)
768 {
769 if (!entity_is_task(se))
770 se->runnable_weight = se->my_q->h_nr_running;
771 }
772
se_runnable(struct sched_entity * se)773 static inline long se_runnable(struct sched_entity *se)
774 {
775 if (entity_is_task(se))
776 return !!se->on_rq;
777 else
778 return se->runnable_weight;
779 }
780
781 #else
782 #define entity_is_task(se) 1
783
se_update_runnable(struct sched_entity * se)784 static inline void se_update_runnable(struct sched_entity *se) {}
785
se_runnable(struct sched_entity * se)786 static inline long se_runnable(struct sched_entity *se)
787 {
788 return !!se->on_rq;
789 }
790 #endif
791
792 #ifdef CONFIG_SMP
793 /*
794 * XXX we want to get rid of these helpers and use the full load resolution.
795 */
se_weight(struct sched_entity * se)796 static inline long se_weight(struct sched_entity *se)
797 {
798 return scale_load_down(se->load.weight);
799 }
800
801
sched_asym_prefer(int a,int b)802 static inline bool sched_asym_prefer(int a, int b)
803 {
804 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
805 }
806
807 struct perf_domain {
808 struct em_perf_domain *em_pd;
809 struct perf_domain *next;
810 struct rcu_head rcu;
811 };
812
813 /* Scheduling group status flags */
814 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
815 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
816
817 /*
818 * We add the notion of a root-domain which will be used to define per-domain
819 * variables. Each exclusive cpuset essentially defines an island domain by
820 * fully partitioning the member CPUs from any other cpuset. Whenever a new
821 * exclusive cpuset is created, we also create and attach a new root-domain
822 * object.
823 *
824 */
825 struct root_domain {
826 atomic_t refcount;
827 atomic_t rto_count;
828 struct rcu_head rcu;
829 cpumask_var_t span;
830 cpumask_var_t online;
831
832 /*
833 * Indicate pullable load on at least one CPU, e.g:
834 * - More than one runnable task
835 * - Running task is misfit
836 */
837 int overload;
838
839 /* Indicate one or more cpus over-utilized (tipping point) */
840 int overutilized;
841
842 /*
843 * The bit corresponding to a CPU gets set here if such CPU has more
844 * than one runnable -deadline task (as it is below for RT tasks).
845 */
846 cpumask_var_t dlo_mask;
847 atomic_t dlo_count;
848 struct dl_bw dl_bw;
849 struct cpudl cpudl;
850
851 /*
852 * Indicate whether a root_domain's dl_bw has been checked or
853 * updated. It's monotonously increasing value.
854 *
855 * Also, some corner cases, like 'wrap around' is dangerous, but given
856 * that u64 is 'big enough'. So that shouldn't be a concern.
857 */
858 u64 visit_gen;
859
860 #ifdef HAVE_RT_PUSH_IPI
861 /*
862 * For IPI pull requests, loop across the rto_mask.
863 */
864 struct irq_work rto_push_work;
865 raw_spinlock_t rto_lock;
866 /* These are only updated and read within rto_lock */
867 int rto_loop;
868 int rto_cpu;
869 /* These atomics are updated outside of a lock */
870 atomic_t rto_loop_next;
871 atomic_t rto_loop_start;
872 #endif
873 /*
874 * The "RT overload" flag: it gets set if a CPU has more than
875 * one runnable RT task.
876 */
877 cpumask_var_t rto_mask;
878 struct cpupri cpupri;
879
880 unsigned long max_cpu_capacity;
881
882 /*
883 * NULL-terminated list of performance domains intersecting with the
884 * CPUs of the rd. Protected by RCU.
885 */
886 struct perf_domain __rcu *pd;
887 };
888
889 extern void init_defrootdomain(void);
890 extern int sched_init_domains(const struct cpumask *cpu_map);
891 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
892 extern void sched_get_rd(struct root_domain *rd);
893 extern void sched_put_rd(struct root_domain *rd);
894
895 #ifdef HAVE_RT_PUSH_IPI
896 extern void rto_push_irq_work_func(struct irq_work *work);
897 #endif
898 #endif /* CONFIG_SMP */
899
900 #ifdef CONFIG_UCLAMP_TASK
901 /*
902 * struct uclamp_bucket - Utilization clamp bucket
903 * @value: utilization clamp value for tasks on this clamp bucket
904 * @tasks: number of RUNNABLE tasks on this clamp bucket
905 *
906 * Keep track of how many tasks are RUNNABLE for a given utilization
907 * clamp value.
908 */
909 struct uclamp_bucket {
910 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
911 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
912 };
913
914 /*
915 * struct uclamp_rq - rq's utilization clamp
916 * @value: currently active clamp values for a rq
917 * @bucket: utilization clamp buckets affecting a rq
918 *
919 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
920 * A clamp value is affecting a rq when there is at least one task RUNNABLE
921 * (or actually running) with that value.
922 *
923 * There are up to UCLAMP_CNT possible different clamp values, currently there
924 * are only two: minimum utilization and maximum utilization.
925 *
926 * All utilization clamping values are MAX aggregated, since:
927 * - for util_min: we want to run the CPU at least at the max of the minimum
928 * utilization required by its currently RUNNABLE tasks.
929 * - for util_max: we want to allow the CPU to run up to the max of the
930 * maximum utilization allowed by its currently RUNNABLE tasks.
931 *
932 * Since on each system we expect only a limited number of different
933 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
934 * the metrics required to compute all the per-rq utilization clamp values.
935 */
936 struct uclamp_rq {
937 unsigned int value;
938 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
939 };
940
941 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
942 #endif /* CONFIG_UCLAMP_TASK */
943
944 struct rq;
945 struct balance_callback {
946 struct balance_callback *next;
947 void (*func)(struct rq *rq);
948 };
949
950 /*
951 * This is the main, per-CPU runqueue data structure.
952 *
953 * Locking rule: those places that want to lock multiple runqueues
954 * (such as the load balancing or the thread migration code), lock
955 * acquire operations must be ordered by ascending &runqueue.
956 */
957 struct rq {
958 /* runqueue lock: */
959 raw_spinlock_t __lock;
960
961 /*
962 * nr_running and cpu_load should be in the same cacheline because
963 * remote CPUs use both these fields when doing load calculation.
964 */
965 unsigned int nr_running;
966 #ifdef CONFIG_NUMA_BALANCING
967 unsigned int nr_numa_running;
968 unsigned int nr_preferred_running;
969 unsigned int numa_migrate_on;
970 #endif
971 #ifdef CONFIG_NO_HZ_COMMON
972 #ifdef CONFIG_SMP
973 unsigned long last_blocked_load_update_tick;
974 unsigned int has_blocked_load;
975 call_single_data_t nohz_csd;
976 #endif /* CONFIG_SMP */
977 unsigned int nohz_tick_stopped;
978 atomic_t nohz_flags;
979 #endif /* CONFIG_NO_HZ_COMMON */
980
981 #ifdef CONFIG_SMP
982 unsigned int ttwu_pending;
983 #endif
984 u64 nr_switches;
985
986 #ifdef CONFIG_UCLAMP_TASK
987 /* Utilization clamp values based on CPU's RUNNABLE tasks */
988 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
989 unsigned int uclamp_flags;
990 #define UCLAMP_FLAG_IDLE 0x01
991 #endif
992
993 struct cfs_rq cfs;
994 struct rt_rq rt;
995 struct dl_rq dl;
996
997 #ifdef CONFIG_FAIR_GROUP_SCHED
998 /* list of leaf cfs_rq on this CPU: */
999 struct list_head leaf_cfs_rq_list;
1000 struct list_head *tmp_alone_branch;
1001 #endif /* CONFIG_FAIR_GROUP_SCHED */
1002
1003 /*
1004 * This is part of a global counter where only the total sum
1005 * over all CPUs matters. A task can increase this counter on
1006 * one CPU and if it got migrated afterwards it may decrease
1007 * it on another CPU. Always updated under the runqueue lock:
1008 */
1009 unsigned int nr_uninterruptible;
1010
1011 struct task_struct __rcu *curr;
1012 struct task_struct *idle;
1013 struct task_struct *stop;
1014 unsigned long next_balance;
1015 struct mm_struct *prev_mm;
1016
1017 unsigned int clock_update_flags;
1018 u64 clock;
1019 /* Ensure that all clocks are in the same cache line */
1020 u64 clock_task ____cacheline_aligned;
1021 u64 clock_pelt;
1022 unsigned long lost_idle_time;
1023 u64 clock_pelt_idle;
1024 u64 clock_idle;
1025 #ifndef CONFIG_64BIT
1026 u64 clock_pelt_idle_copy;
1027 u64 clock_idle_copy;
1028 #endif
1029
1030 atomic_t nr_iowait;
1031
1032 #ifdef CONFIG_SCHED_DEBUG
1033 u64 last_seen_need_resched_ns;
1034 int ticks_without_resched;
1035 #endif
1036
1037 #ifdef CONFIG_MEMBARRIER
1038 int membarrier_state;
1039 #endif
1040
1041 #ifdef CONFIG_SMP
1042 struct root_domain *rd;
1043 struct sched_domain __rcu *sd;
1044
1045 unsigned long cpu_capacity;
1046 unsigned long cpu_capacity_orig;
1047
1048 struct balance_callback *balance_callback;
1049
1050 unsigned char nohz_idle_balance;
1051 unsigned char idle_balance;
1052
1053 unsigned long misfit_task_load;
1054
1055 /* For active balancing */
1056 int active_balance;
1057 int push_cpu;
1058 struct cpu_stop_work active_balance_work;
1059
1060 /* CPU of this runqueue: */
1061 int cpu;
1062 int online;
1063
1064 struct list_head cfs_tasks;
1065
1066 struct sched_avg avg_rt;
1067 struct sched_avg avg_dl;
1068 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1069 struct sched_avg avg_irq;
1070 #endif
1071 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1072 struct sched_avg avg_thermal;
1073 #endif
1074 u64 idle_stamp;
1075 u64 avg_idle;
1076
1077 unsigned long wake_stamp;
1078 u64 wake_avg_idle;
1079
1080 /* This is used to determine avg_idle's max value */
1081 u64 max_idle_balance_cost;
1082
1083 #ifdef CONFIG_HOTPLUG_CPU
1084 struct rcuwait hotplug_wait;
1085 #endif
1086 #endif /* CONFIG_SMP */
1087
1088 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1089 u64 prev_irq_time;
1090 #endif
1091 #ifdef CONFIG_PARAVIRT
1092 u64 prev_steal_time;
1093 #endif
1094 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1095 u64 prev_steal_time_rq;
1096 #endif
1097
1098 /* calc_load related fields */
1099 unsigned long calc_load_update;
1100 long calc_load_active;
1101
1102 #ifdef CONFIG_SCHED_HRTICK
1103 #ifdef CONFIG_SMP
1104 call_single_data_t hrtick_csd;
1105 #endif
1106 struct hrtimer hrtick_timer;
1107 ktime_t hrtick_time;
1108 #endif
1109
1110 #ifdef CONFIG_SCHEDSTATS
1111 /* latency stats */
1112 struct sched_info rq_sched_info;
1113 unsigned long long rq_cpu_time;
1114 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1115
1116 /* sys_sched_yield() stats */
1117 unsigned int yld_count;
1118
1119 /* schedule() stats */
1120 unsigned int sched_count;
1121 unsigned int sched_goidle;
1122
1123 /* try_to_wake_up() stats */
1124 unsigned int ttwu_count;
1125 unsigned int ttwu_local;
1126 #endif
1127
1128 #ifdef CONFIG_CPU_IDLE
1129 /* Must be inspected within a rcu lock section */
1130 struct cpuidle_state *idle_state;
1131 #endif
1132
1133 #ifdef CONFIG_SMP
1134 unsigned int nr_pinned;
1135 #endif
1136 unsigned int push_busy;
1137 struct cpu_stop_work push_work;
1138
1139 #ifdef CONFIG_SCHED_CORE
1140 /* per rq */
1141 struct rq *core;
1142 struct task_struct *core_pick;
1143 unsigned int core_enabled;
1144 unsigned int core_sched_seq;
1145 struct rb_root core_tree;
1146
1147 /* shared state -- careful with sched_core_cpu_deactivate() */
1148 unsigned int core_task_seq;
1149 unsigned int core_pick_seq;
1150 unsigned long core_cookie;
1151 unsigned int core_forceidle_count;
1152 unsigned int core_forceidle_seq;
1153 unsigned int core_forceidle_occupation;
1154 u64 core_forceidle_start;
1155 #endif
1156
1157 /* Scratch cpumask to be temporarily used under rq_lock */
1158 cpumask_var_t scratch_mask;
1159
1160 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1161 call_single_data_t cfsb_csd;
1162 struct list_head cfsb_csd_list;
1163 #endif
1164 };
1165
1166 #ifdef CONFIG_FAIR_GROUP_SCHED
1167
1168 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1169 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1170 {
1171 return cfs_rq->rq;
1172 }
1173
1174 #else
1175
rq_of(struct cfs_rq * cfs_rq)1176 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1177 {
1178 return container_of(cfs_rq, struct rq, cfs);
1179 }
1180 #endif
1181
cpu_of(struct rq * rq)1182 static inline int cpu_of(struct rq *rq)
1183 {
1184 #ifdef CONFIG_SMP
1185 return rq->cpu;
1186 #else
1187 return 0;
1188 #endif
1189 }
1190
1191 #define MDF_PUSH 0x01
1192
is_migration_disabled(struct task_struct * p)1193 static inline bool is_migration_disabled(struct task_struct *p)
1194 {
1195 #ifdef CONFIG_SMP
1196 return p->migration_disabled;
1197 #else
1198 return false;
1199 #endif
1200 }
1201
1202 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1203
1204 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1205 #define this_rq() this_cpu_ptr(&runqueues)
1206 #define task_rq(p) cpu_rq(task_cpu(p))
1207 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1208 #define raw_rq() raw_cpu_ptr(&runqueues)
1209
1210 struct sched_group;
1211 #ifdef CONFIG_SCHED_CORE
1212 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1213
1214 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1215
sched_core_enabled(struct rq * rq)1216 static inline bool sched_core_enabled(struct rq *rq)
1217 {
1218 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1219 }
1220
sched_core_disabled(void)1221 static inline bool sched_core_disabled(void)
1222 {
1223 return !static_branch_unlikely(&__sched_core_enabled);
1224 }
1225
1226 /*
1227 * Be careful with this function; not for general use. The return value isn't
1228 * stable unless you actually hold a relevant rq->__lock.
1229 */
rq_lockp(struct rq * rq)1230 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1231 {
1232 if (sched_core_enabled(rq))
1233 return &rq->core->__lock;
1234
1235 return &rq->__lock;
1236 }
1237
__rq_lockp(struct rq * rq)1238 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1239 {
1240 if (rq->core_enabled)
1241 return &rq->core->__lock;
1242
1243 return &rq->__lock;
1244 }
1245
1246 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1247 bool fi);
1248
1249 /*
1250 * Helpers to check if the CPU's core cookie matches with the task's cookie
1251 * when core scheduling is enabled.
1252 * A special case is that the task's cookie always matches with CPU's core
1253 * cookie if the CPU is in an idle core.
1254 */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1255 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1256 {
1257 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1258 if (!sched_core_enabled(rq))
1259 return true;
1260
1261 return rq->core->core_cookie == p->core_cookie;
1262 }
1263
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1264 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1265 {
1266 bool idle_core = true;
1267 int cpu;
1268
1269 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1270 if (!sched_core_enabled(rq))
1271 return true;
1272
1273 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1274 if (!available_idle_cpu(cpu)) {
1275 idle_core = false;
1276 break;
1277 }
1278 }
1279
1280 /*
1281 * A CPU in an idle core is always the best choice for tasks with
1282 * cookies.
1283 */
1284 return idle_core || rq->core->core_cookie == p->core_cookie;
1285 }
1286
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1287 static inline bool sched_group_cookie_match(struct rq *rq,
1288 struct task_struct *p,
1289 struct sched_group *group)
1290 {
1291 int cpu;
1292
1293 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1294 if (!sched_core_enabled(rq))
1295 return true;
1296
1297 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1298 if (sched_core_cookie_match(cpu_rq(cpu), p))
1299 return true;
1300 }
1301 return false;
1302 }
1303
sched_core_enqueued(struct task_struct * p)1304 static inline bool sched_core_enqueued(struct task_struct *p)
1305 {
1306 return !RB_EMPTY_NODE(&p->core_node);
1307 }
1308
1309 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1310 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1311
1312 extern void sched_core_get(void);
1313 extern void sched_core_put(void);
1314
1315 #else /* !CONFIG_SCHED_CORE */
1316
sched_core_enabled(struct rq * rq)1317 static inline bool sched_core_enabled(struct rq *rq)
1318 {
1319 return false;
1320 }
1321
sched_core_disabled(void)1322 static inline bool sched_core_disabled(void)
1323 {
1324 return true;
1325 }
1326
rq_lockp(struct rq * rq)1327 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1328 {
1329 return &rq->__lock;
1330 }
1331
__rq_lockp(struct rq * rq)1332 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1333 {
1334 return &rq->__lock;
1335 }
1336
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1337 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1338 {
1339 return true;
1340 }
1341
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1342 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1343 {
1344 return true;
1345 }
1346
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1347 static inline bool sched_group_cookie_match(struct rq *rq,
1348 struct task_struct *p,
1349 struct sched_group *group)
1350 {
1351 return true;
1352 }
1353 #endif /* CONFIG_SCHED_CORE */
1354
lockdep_assert_rq_held(struct rq * rq)1355 static inline void lockdep_assert_rq_held(struct rq *rq)
1356 {
1357 lockdep_assert_held(__rq_lockp(rq));
1358 }
1359
1360 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1361 extern bool raw_spin_rq_trylock(struct rq *rq);
1362 extern void raw_spin_rq_unlock(struct rq *rq);
1363
raw_spin_rq_lock(struct rq * rq)1364 static inline void raw_spin_rq_lock(struct rq *rq)
1365 {
1366 raw_spin_rq_lock_nested(rq, 0);
1367 }
1368
raw_spin_rq_lock_irq(struct rq * rq)1369 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1370 {
1371 local_irq_disable();
1372 raw_spin_rq_lock(rq);
1373 }
1374
raw_spin_rq_unlock_irq(struct rq * rq)1375 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1376 {
1377 raw_spin_rq_unlock(rq);
1378 local_irq_enable();
1379 }
1380
_raw_spin_rq_lock_irqsave(struct rq * rq)1381 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1382 {
1383 unsigned long flags;
1384 local_irq_save(flags);
1385 raw_spin_rq_lock(rq);
1386 return flags;
1387 }
1388
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1389 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1390 {
1391 raw_spin_rq_unlock(rq);
1392 local_irq_restore(flags);
1393 }
1394
1395 #define raw_spin_rq_lock_irqsave(rq, flags) \
1396 do { \
1397 flags = _raw_spin_rq_lock_irqsave(rq); \
1398 } while (0)
1399
1400 #ifdef CONFIG_SCHED_SMT
1401 extern void __update_idle_core(struct rq *rq);
1402
update_idle_core(struct rq * rq)1403 static inline void update_idle_core(struct rq *rq)
1404 {
1405 if (static_branch_unlikely(&sched_smt_present))
1406 __update_idle_core(rq);
1407 }
1408
1409 #else
update_idle_core(struct rq * rq)1410 static inline void update_idle_core(struct rq *rq) { }
1411 #endif
1412
1413 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)1414 static inline struct task_struct *task_of(struct sched_entity *se)
1415 {
1416 SCHED_WARN_ON(!entity_is_task(se));
1417 return container_of(se, struct task_struct, se);
1418 }
1419
task_cfs_rq(struct task_struct * p)1420 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1421 {
1422 return p->se.cfs_rq;
1423 }
1424
1425 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(const struct sched_entity * se)1426 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1427 {
1428 return se->cfs_rq;
1429 }
1430
1431 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1432 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1433 {
1434 return grp->my_q;
1435 }
1436
1437 #else
1438
1439 #define task_of(_se) container_of(_se, struct task_struct, se)
1440
task_cfs_rq(const struct task_struct * p)1441 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1442 {
1443 return &task_rq(p)->cfs;
1444 }
1445
cfs_rq_of(const struct sched_entity * se)1446 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1447 {
1448 const struct task_struct *p = task_of(se);
1449 struct rq *rq = task_rq(p);
1450
1451 return &rq->cfs;
1452 }
1453
1454 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1455 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1456 {
1457 return NULL;
1458 }
1459 #endif
1460
1461 extern void update_rq_clock(struct rq *rq);
1462
1463 /*
1464 * rq::clock_update_flags bits
1465 *
1466 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1467 * call to __schedule(). This is an optimisation to avoid
1468 * neighbouring rq clock updates.
1469 *
1470 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1471 * in effect and calls to update_rq_clock() are being ignored.
1472 *
1473 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1474 * made to update_rq_clock() since the last time rq::lock was pinned.
1475 *
1476 * If inside of __schedule(), clock_update_flags will have been
1477 * shifted left (a left shift is a cheap operation for the fast path
1478 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1479 *
1480 * if (rq-clock_update_flags >= RQCF_UPDATED)
1481 *
1482 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1483 * one position though, because the next rq_unpin_lock() will shift it
1484 * back.
1485 */
1486 #define RQCF_REQ_SKIP 0x01
1487 #define RQCF_ACT_SKIP 0x02
1488 #define RQCF_UPDATED 0x04
1489
assert_clock_updated(struct rq * rq)1490 static inline void assert_clock_updated(struct rq *rq)
1491 {
1492 /*
1493 * The only reason for not seeing a clock update since the
1494 * last rq_pin_lock() is if we're currently skipping updates.
1495 */
1496 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1497 }
1498
rq_clock(struct rq * rq)1499 static inline u64 rq_clock(struct rq *rq)
1500 {
1501 lockdep_assert_rq_held(rq);
1502 assert_clock_updated(rq);
1503
1504 return rq->clock;
1505 }
1506
rq_clock_task(struct rq * rq)1507 static inline u64 rq_clock_task(struct rq *rq)
1508 {
1509 lockdep_assert_rq_held(rq);
1510 assert_clock_updated(rq);
1511
1512 return rq->clock_task;
1513 }
1514
1515 /**
1516 * By default the decay is the default pelt decay period.
1517 * The decay shift can change the decay period in
1518 * multiples of 32.
1519 * Decay shift Decay period(ms)
1520 * 0 32
1521 * 1 64
1522 * 2 128
1523 * 3 256
1524 * 4 512
1525 */
1526 extern int sched_thermal_decay_shift;
1527
rq_clock_thermal(struct rq * rq)1528 static inline u64 rq_clock_thermal(struct rq *rq)
1529 {
1530 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1531 }
1532
rq_clock_skip_update(struct rq * rq)1533 static inline void rq_clock_skip_update(struct rq *rq)
1534 {
1535 lockdep_assert_rq_held(rq);
1536 rq->clock_update_flags |= RQCF_REQ_SKIP;
1537 }
1538
1539 /*
1540 * See rt task throttling, which is the only time a skip
1541 * request is canceled.
1542 */
rq_clock_cancel_skipupdate(struct rq * rq)1543 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1544 {
1545 lockdep_assert_rq_held(rq);
1546 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1547 }
1548
1549 struct rq_flags {
1550 unsigned long flags;
1551 struct pin_cookie cookie;
1552 #ifdef CONFIG_SCHED_DEBUG
1553 /*
1554 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1555 * current pin context is stashed here in case it needs to be
1556 * restored in rq_repin_lock().
1557 */
1558 unsigned int clock_update_flags;
1559 #endif
1560 };
1561
1562 extern struct balance_callback balance_push_callback;
1563
1564 /*
1565 * Lockdep annotation that avoids accidental unlocks; it's like a
1566 * sticky/continuous lockdep_assert_held().
1567 *
1568 * This avoids code that has access to 'struct rq *rq' (basically everything in
1569 * the scheduler) from accidentally unlocking the rq if they do not also have a
1570 * copy of the (on-stack) 'struct rq_flags rf'.
1571 *
1572 * Also see Documentation/locking/lockdep-design.rst.
1573 */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1574 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1575 {
1576 rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1577
1578 #ifdef CONFIG_SCHED_DEBUG
1579 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1580 rf->clock_update_flags = 0;
1581 #ifdef CONFIG_SMP
1582 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1583 #endif
1584 #endif
1585 }
1586
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1587 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1588 {
1589 #ifdef CONFIG_SCHED_DEBUG
1590 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1591 rf->clock_update_flags = RQCF_UPDATED;
1592 #endif
1593
1594 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1595 }
1596
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1597 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1598 {
1599 lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1600
1601 #ifdef CONFIG_SCHED_DEBUG
1602 /*
1603 * Restore the value we stashed in @rf for this pin context.
1604 */
1605 rq->clock_update_flags |= rf->clock_update_flags;
1606 #endif
1607 }
1608
1609 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1610 __acquires(rq->lock);
1611
1612 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1613 __acquires(p->pi_lock)
1614 __acquires(rq->lock);
1615
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1616 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1617 __releases(rq->lock)
1618 {
1619 rq_unpin_lock(rq, rf);
1620 raw_spin_rq_unlock(rq);
1621 }
1622
1623 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1624 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1625 __releases(rq->lock)
1626 __releases(p->pi_lock)
1627 {
1628 rq_unpin_lock(rq, rf);
1629 raw_spin_rq_unlock(rq);
1630 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1631 }
1632
1633 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1634 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1635 __acquires(rq->lock)
1636 {
1637 raw_spin_rq_lock_irqsave(rq, rf->flags);
1638 rq_pin_lock(rq, rf);
1639 }
1640
1641 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1642 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1643 __acquires(rq->lock)
1644 {
1645 raw_spin_rq_lock_irq(rq);
1646 rq_pin_lock(rq, rf);
1647 }
1648
1649 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1650 rq_lock(struct rq *rq, struct rq_flags *rf)
1651 __acquires(rq->lock)
1652 {
1653 raw_spin_rq_lock(rq);
1654 rq_pin_lock(rq, rf);
1655 }
1656
1657 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1658 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1659 __releases(rq->lock)
1660 {
1661 rq_unpin_lock(rq, rf);
1662 raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1663 }
1664
1665 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1666 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1667 __releases(rq->lock)
1668 {
1669 rq_unpin_lock(rq, rf);
1670 raw_spin_rq_unlock_irq(rq);
1671 }
1672
1673 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1674 rq_unlock(struct rq *rq, struct rq_flags *rf)
1675 __releases(rq->lock)
1676 {
1677 rq_unpin_lock(rq, rf);
1678 raw_spin_rq_unlock(rq);
1679 }
1680
1681 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1682 this_rq_lock_irq(struct rq_flags *rf)
1683 __acquires(rq->lock)
1684 {
1685 struct rq *rq;
1686
1687 local_irq_disable();
1688 rq = this_rq();
1689 rq_lock(rq, rf);
1690 return rq;
1691 }
1692
1693 #ifdef CONFIG_NUMA
1694 enum numa_topology_type {
1695 NUMA_DIRECT,
1696 NUMA_GLUELESS_MESH,
1697 NUMA_BACKPLANE,
1698 };
1699 extern enum numa_topology_type sched_numa_topology_type;
1700 extern int sched_max_numa_distance;
1701 extern bool find_numa_distance(int distance);
1702 extern void sched_init_numa(int offline_node);
1703 extern void sched_update_numa(int cpu, bool online);
1704 extern void sched_domains_numa_masks_set(unsigned int cpu);
1705 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1706 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1707 #else
sched_init_numa(int offline_node)1708 static inline void sched_init_numa(int offline_node) { }
sched_update_numa(int cpu,bool online)1709 static inline void sched_update_numa(int cpu, bool online) { }
sched_domains_numa_masks_set(unsigned int cpu)1710 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1711 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1712 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1713 {
1714 return nr_cpu_ids;
1715 }
1716 #endif
1717
1718 #ifdef CONFIG_NUMA_BALANCING
1719 /* The regions in numa_faults array from task_struct */
1720 enum numa_faults_stats {
1721 NUMA_MEM = 0,
1722 NUMA_CPU,
1723 NUMA_MEMBUF,
1724 NUMA_CPUBUF
1725 };
1726 extern void sched_setnuma(struct task_struct *p, int node);
1727 extern int migrate_task_to(struct task_struct *p, int cpu);
1728 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1729 int cpu, int scpu);
1730 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1731 #else
1732 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1733 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1734 {
1735 }
1736 #endif /* CONFIG_NUMA_BALANCING */
1737
1738 #ifdef CONFIG_SMP
1739
1740 static inline void
queue_balance_callback(struct rq * rq,struct balance_callback * head,void (* func)(struct rq * rq))1741 queue_balance_callback(struct rq *rq,
1742 struct balance_callback *head,
1743 void (*func)(struct rq *rq))
1744 {
1745 lockdep_assert_rq_held(rq);
1746
1747 /*
1748 * Don't (re)queue an already queued item; nor queue anything when
1749 * balance_push() is active, see the comment with
1750 * balance_push_callback.
1751 */
1752 if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1753 return;
1754
1755 head->func = func;
1756 head->next = rq->balance_callback;
1757 rq->balance_callback = head;
1758 }
1759
1760 #define rcu_dereference_check_sched_domain(p) \
1761 rcu_dereference_check((p), \
1762 lockdep_is_held(&sched_domains_mutex))
1763
1764 /*
1765 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1766 * See destroy_sched_domains: call_rcu for details.
1767 *
1768 * The domain tree of any CPU may only be accessed from within
1769 * preempt-disabled sections.
1770 */
1771 #define for_each_domain(cpu, __sd) \
1772 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1773 __sd; __sd = __sd->parent)
1774
1775 /**
1776 * highest_flag_domain - Return highest sched_domain containing flag.
1777 * @cpu: The CPU whose highest level of sched domain is to
1778 * be returned.
1779 * @flag: The flag to check for the highest sched_domain
1780 * for the given CPU.
1781 *
1782 * Returns the highest sched_domain of a CPU which contains the given flag.
1783 */
highest_flag_domain(int cpu,int flag)1784 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1785 {
1786 struct sched_domain *sd, *hsd = NULL;
1787
1788 for_each_domain(cpu, sd) {
1789 if (!(sd->flags & flag))
1790 break;
1791 hsd = sd;
1792 }
1793
1794 return hsd;
1795 }
1796
lowest_flag_domain(int cpu,int flag)1797 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1798 {
1799 struct sched_domain *sd;
1800
1801 for_each_domain(cpu, sd) {
1802 if (sd->flags & flag)
1803 break;
1804 }
1805
1806 return sd;
1807 }
1808
1809 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1810 DECLARE_PER_CPU(int, sd_llc_size);
1811 DECLARE_PER_CPU(int, sd_llc_id);
1812 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1813 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1814 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1815 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1816 extern struct static_key_false sched_asym_cpucapacity;
1817
sched_asym_cpucap_active(void)1818 static __always_inline bool sched_asym_cpucap_active(void)
1819 {
1820 return static_branch_unlikely(&sched_asym_cpucapacity);
1821 }
1822
1823 struct sched_group_capacity {
1824 atomic_t ref;
1825 /*
1826 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1827 * for a single CPU.
1828 */
1829 unsigned long capacity;
1830 unsigned long min_capacity; /* Min per-CPU capacity in group */
1831 unsigned long max_capacity; /* Max per-CPU capacity in group */
1832 unsigned long next_update;
1833 int imbalance; /* XXX unrelated to capacity but shared group state */
1834
1835 #ifdef CONFIG_SCHED_DEBUG
1836 int id;
1837 #endif
1838
1839 unsigned long cpumask[]; /* Balance mask */
1840 };
1841
1842 struct sched_group {
1843 struct sched_group *next; /* Must be a circular list */
1844 atomic_t ref;
1845
1846 unsigned int group_weight;
1847 struct sched_group_capacity *sgc;
1848 int asym_prefer_cpu; /* CPU of highest priority in group */
1849 int flags;
1850
1851 /*
1852 * The CPUs this group covers.
1853 *
1854 * NOTE: this field is variable length. (Allocated dynamically
1855 * by attaching extra space to the end of the structure,
1856 * depending on how many CPUs the kernel has booted up with)
1857 */
1858 unsigned long cpumask[];
1859 };
1860
sched_group_span(struct sched_group * sg)1861 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1862 {
1863 return to_cpumask(sg->cpumask);
1864 }
1865
1866 /*
1867 * See build_balance_mask().
1868 */
group_balance_mask(struct sched_group * sg)1869 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1870 {
1871 return to_cpumask(sg->sgc->cpumask);
1872 }
1873
1874 extern int group_balance_cpu(struct sched_group *sg);
1875
1876 #ifdef CONFIG_SCHED_DEBUG
1877 void update_sched_domain_debugfs(void);
1878 void dirty_sched_domain_sysctl(int cpu);
1879 #else
update_sched_domain_debugfs(void)1880 static inline void update_sched_domain_debugfs(void)
1881 {
1882 }
dirty_sched_domain_sysctl(int cpu)1883 static inline void dirty_sched_domain_sysctl(int cpu)
1884 {
1885 }
1886 #endif
1887
1888 extern int sched_update_scaling(void);
1889
task_user_cpus(struct task_struct * p)1890 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1891 {
1892 if (!p->user_cpus_ptr)
1893 return cpu_possible_mask; /* &init_task.cpus_mask */
1894 return p->user_cpus_ptr;
1895 }
1896 #endif /* CONFIG_SMP */
1897
1898 #include "stats.h"
1899
1900 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1901
1902 extern void __sched_core_account_forceidle(struct rq *rq);
1903
sched_core_account_forceidle(struct rq * rq)1904 static inline void sched_core_account_forceidle(struct rq *rq)
1905 {
1906 if (schedstat_enabled())
1907 __sched_core_account_forceidle(rq);
1908 }
1909
1910 extern void __sched_core_tick(struct rq *rq);
1911
sched_core_tick(struct rq * rq)1912 static inline void sched_core_tick(struct rq *rq)
1913 {
1914 if (sched_core_enabled(rq) && schedstat_enabled())
1915 __sched_core_tick(rq);
1916 }
1917
1918 #else
1919
sched_core_account_forceidle(struct rq * rq)1920 static inline void sched_core_account_forceidle(struct rq *rq) {}
1921
sched_core_tick(struct rq * rq)1922 static inline void sched_core_tick(struct rq *rq) {}
1923
1924 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1925
1926 #ifdef CONFIG_CGROUP_SCHED
1927
1928 /*
1929 * Return the group to which this tasks belongs.
1930 *
1931 * We cannot use task_css() and friends because the cgroup subsystem
1932 * changes that value before the cgroup_subsys::attach() method is called,
1933 * therefore we cannot pin it and might observe the wrong value.
1934 *
1935 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1936 * core changes this before calling sched_move_task().
1937 *
1938 * Instead we use a 'copy' which is updated from sched_move_task() while
1939 * holding both task_struct::pi_lock and rq::lock.
1940 */
task_group(struct task_struct * p)1941 static inline struct task_group *task_group(struct task_struct *p)
1942 {
1943 return p->sched_task_group;
1944 }
1945
1946 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1947 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1948 {
1949 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1950 struct task_group *tg = task_group(p);
1951 #endif
1952
1953 #ifdef CONFIG_FAIR_GROUP_SCHED
1954 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1955 p->se.cfs_rq = tg->cfs_rq[cpu];
1956 p->se.parent = tg->se[cpu];
1957 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
1958 #endif
1959
1960 #ifdef CONFIG_RT_GROUP_SCHED
1961 p->rt.rt_rq = tg->rt_rq[cpu];
1962 p->rt.parent = tg->rt_se[cpu];
1963 #endif
1964 }
1965
1966 #else /* CONFIG_CGROUP_SCHED */
1967
set_task_rq(struct task_struct * p,unsigned int cpu)1968 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1969 static inline struct task_group *task_group(struct task_struct *p)
1970 {
1971 return NULL;
1972 }
1973
1974 #endif /* CONFIG_CGROUP_SCHED */
1975
__set_task_cpu(struct task_struct * p,unsigned int cpu)1976 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1977 {
1978 set_task_rq(p, cpu);
1979 #ifdef CONFIG_SMP
1980 /*
1981 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1982 * successfully executed on another CPU. We must ensure that updates of
1983 * per-task data have been completed by this moment.
1984 */
1985 smp_wmb();
1986 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1987 p->wake_cpu = cpu;
1988 #endif
1989 }
1990
1991 /*
1992 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1993 */
1994 #ifdef CONFIG_SCHED_DEBUG
1995 # define const_debug __read_mostly
1996 #else
1997 # define const_debug const
1998 #endif
1999
2000 #define SCHED_FEAT(name, enabled) \
2001 __SCHED_FEAT_##name ,
2002
2003 enum {
2004 #include "features.h"
2005 __SCHED_FEAT_NR,
2006 };
2007
2008 #undef SCHED_FEAT
2009
2010 #ifdef CONFIG_SCHED_DEBUG
2011
2012 /*
2013 * To support run-time toggling of sched features, all the translation units
2014 * (but core.c) reference the sysctl_sched_features defined in core.c.
2015 */
2016 extern const_debug unsigned int sysctl_sched_features;
2017
2018 #ifdef CONFIG_JUMP_LABEL
2019 #define SCHED_FEAT(name, enabled) \
2020 static __always_inline bool static_branch_##name(struct static_key *key) \
2021 { \
2022 return static_key_##enabled(key); \
2023 }
2024
2025 #include "features.h"
2026 #undef SCHED_FEAT
2027
2028 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2029 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2030
2031 #else /* !CONFIG_JUMP_LABEL */
2032
2033 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2034
2035 #endif /* CONFIG_JUMP_LABEL */
2036
2037 #else /* !SCHED_DEBUG */
2038
2039 /*
2040 * Each translation unit has its own copy of sysctl_sched_features to allow
2041 * constants propagation at compile time and compiler optimization based on
2042 * features default.
2043 */
2044 #define SCHED_FEAT(name, enabled) \
2045 (1UL << __SCHED_FEAT_##name) * enabled |
2046 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2047 #include "features.h"
2048 0;
2049 #undef SCHED_FEAT
2050
2051 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2052
2053 #endif /* SCHED_DEBUG */
2054
2055 extern struct static_key_false sched_numa_balancing;
2056 extern struct static_key_false sched_schedstats;
2057
global_rt_period(void)2058 static inline u64 global_rt_period(void)
2059 {
2060 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2061 }
2062
global_rt_runtime(void)2063 static inline u64 global_rt_runtime(void)
2064 {
2065 if (sysctl_sched_rt_runtime < 0)
2066 return RUNTIME_INF;
2067
2068 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2069 }
2070
task_current(struct rq * rq,struct task_struct * p)2071 static inline int task_current(struct rq *rq, struct task_struct *p)
2072 {
2073 return rq->curr == p;
2074 }
2075
task_on_cpu(struct rq * rq,struct task_struct * p)2076 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2077 {
2078 #ifdef CONFIG_SMP
2079 return p->on_cpu;
2080 #else
2081 return task_current(rq, p);
2082 #endif
2083 }
2084
task_on_rq_queued(struct task_struct * p)2085 static inline int task_on_rq_queued(struct task_struct *p)
2086 {
2087 return p->on_rq == TASK_ON_RQ_QUEUED;
2088 }
2089
task_on_rq_migrating(struct task_struct * p)2090 static inline int task_on_rq_migrating(struct task_struct *p)
2091 {
2092 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2093 }
2094
2095 /* Wake flags. The first three directly map to some SD flag value */
2096 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2097 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2098 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
2099
2100 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
2101 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2102
2103 #ifdef CONFIG_SMP
2104 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2105 static_assert(WF_FORK == SD_BALANCE_FORK);
2106 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2107 #endif
2108
2109 /*
2110 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2111 * of tasks with abnormal "nice" values across CPUs the contribution that
2112 * each task makes to its run queue's load is weighted according to its
2113 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2114 * scaled version of the new time slice allocation that they receive on time
2115 * slice expiry etc.
2116 */
2117
2118 #define WEIGHT_IDLEPRIO 3
2119 #define WMULT_IDLEPRIO 1431655765
2120
2121 extern const int sched_prio_to_weight[40];
2122 extern const u32 sched_prio_to_wmult[40];
2123
2124 /*
2125 * {de,en}queue flags:
2126 *
2127 * DEQUEUE_SLEEP - task is no longer runnable
2128 * ENQUEUE_WAKEUP - task just became runnable
2129 *
2130 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2131 * are in a known state which allows modification. Such pairs
2132 * should preserve as much state as possible.
2133 *
2134 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2135 * in the runqueue.
2136 *
2137 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
2138 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2139 * ENQUEUE_MIGRATED - the task was migrated during wakeup
2140 *
2141 */
2142
2143 #define DEQUEUE_SLEEP 0x01
2144 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
2145 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
2146 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
2147
2148 #define ENQUEUE_WAKEUP 0x01
2149 #define ENQUEUE_RESTORE 0x02
2150 #define ENQUEUE_MOVE 0x04
2151 #define ENQUEUE_NOCLOCK 0x08
2152
2153 #define ENQUEUE_HEAD 0x10
2154 #define ENQUEUE_REPLENISH 0x20
2155 #ifdef CONFIG_SMP
2156 #define ENQUEUE_MIGRATED 0x40
2157 #else
2158 #define ENQUEUE_MIGRATED 0x00
2159 #endif
2160
2161 #define RETRY_TASK ((void *)-1UL)
2162
2163 struct affinity_context {
2164 const struct cpumask *new_mask;
2165 struct cpumask *user_mask;
2166 unsigned int flags;
2167 };
2168
2169 struct sched_class {
2170
2171 #ifdef CONFIG_UCLAMP_TASK
2172 int uclamp_enabled;
2173 #endif
2174
2175 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2176 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2177 void (*yield_task) (struct rq *rq);
2178 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2179
2180 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2181
2182 struct task_struct *(*pick_next_task)(struct rq *rq);
2183
2184 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2185 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2186
2187 #ifdef CONFIG_SMP
2188 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2189 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2190
2191 struct task_struct * (*pick_task)(struct rq *rq);
2192
2193 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2194
2195 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2196
2197 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2198
2199 void (*rq_online)(struct rq *rq);
2200 void (*rq_offline)(struct rq *rq);
2201
2202 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2203 #endif
2204
2205 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2206 void (*task_fork)(struct task_struct *p);
2207 void (*task_dead)(struct task_struct *p);
2208
2209 /*
2210 * The switched_from() call is allowed to drop rq->lock, therefore we
2211 * cannot assume the switched_from/switched_to pair is serialized by
2212 * rq->lock. They are however serialized by p->pi_lock.
2213 */
2214 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2215 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
2216 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2217 int oldprio);
2218
2219 unsigned int (*get_rr_interval)(struct rq *rq,
2220 struct task_struct *task);
2221
2222 void (*update_curr)(struct rq *rq);
2223
2224 #ifdef CONFIG_FAIR_GROUP_SCHED
2225 void (*task_change_group)(struct task_struct *p);
2226 #endif
2227 };
2228
put_prev_task(struct rq * rq,struct task_struct * prev)2229 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2230 {
2231 WARN_ON_ONCE(rq->curr != prev);
2232 prev->sched_class->put_prev_task(rq, prev);
2233 }
2234
set_next_task(struct rq * rq,struct task_struct * next)2235 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2236 {
2237 next->sched_class->set_next_task(rq, next, false);
2238 }
2239
2240
2241 /*
2242 * Helper to define a sched_class instance; each one is placed in a separate
2243 * section which is ordered by the linker script:
2244 *
2245 * include/asm-generic/vmlinux.lds.h
2246 *
2247 * *CAREFUL* they are laid out in *REVERSE* order!!!
2248 *
2249 * Also enforce alignment on the instance, not the type, to guarantee layout.
2250 */
2251 #define DEFINE_SCHED_CLASS(name) \
2252 const struct sched_class name##_sched_class \
2253 __aligned(__alignof__(struct sched_class)) \
2254 __section("__" #name "_sched_class")
2255
2256 /* Defined in include/asm-generic/vmlinux.lds.h */
2257 extern struct sched_class __sched_class_highest[];
2258 extern struct sched_class __sched_class_lowest[];
2259
2260 #define for_class_range(class, _from, _to) \
2261 for (class = (_from); class < (_to); class++)
2262
2263 #define for_each_class(class) \
2264 for_class_range(class, __sched_class_highest, __sched_class_lowest)
2265
2266 #define sched_class_above(_a, _b) ((_a) < (_b))
2267
2268 extern const struct sched_class stop_sched_class;
2269 extern const struct sched_class dl_sched_class;
2270 extern const struct sched_class rt_sched_class;
2271 extern const struct sched_class fair_sched_class;
2272 extern const struct sched_class idle_sched_class;
2273
sched_stop_runnable(struct rq * rq)2274 static inline bool sched_stop_runnable(struct rq *rq)
2275 {
2276 return rq->stop && task_on_rq_queued(rq->stop);
2277 }
2278
sched_dl_runnable(struct rq * rq)2279 static inline bool sched_dl_runnable(struct rq *rq)
2280 {
2281 return rq->dl.dl_nr_running > 0;
2282 }
2283
sched_rt_runnable(struct rq * rq)2284 static inline bool sched_rt_runnable(struct rq *rq)
2285 {
2286 return rq->rt.rt_queued > 0;
2287 }
2288
sched_fair_runnable(struct rq * rq)2289 static inline bool sched_fair_runnable(struct rq *rq)
2290 {
2291 return rq->cfs.nr_running > 0;
2292 }
2293
2294 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2295 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2296
2297 #define SCA_CHECK 0x01
2298 #define SCA_MIGRATE_DISABLE 0x02
2299 #define SCA_MIGRATE_ENABLE 0x04
2300 #define SCA_USER 0x08
2301
2302 #ifdef CONFIG_SMP
2303
2304 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2305
2306 extern void trigger_load_balance(struct rq *rq);
2307
2308 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2309
get_push_task(struct rq * rq)2310 static inline struct task_struct *get_push_task(struct rq *rq)
2311 {
2312 struct task_struct *p = rq->curr;
2313
2314 lockdep_assert_rq_held(rq);
2315
2316 if (rq->push_busy)
2317 return NULL;
2318
2319 if (p->nr_cpus_allowed == 1)
2320 return NULL;
2321
2322 if (p->migration_disabled)
2323 return NULL;
2324
2325 rq->push_busy = true;
2326 return get_task_struct(p);
2327 }
2328
2329 extern int push_cpu_stop(void *arg);
2330
2331 #endif
2332
2333 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2334 static inline void idle_set_state(struct rq *rq,
2335 struct cpuidle_state *idle_state)
2336 {
2337 rq->idle_state = idle_state;
2338 }
2339
idle_get_state(struct rq * rq)2340 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2341 {
2342 SCHED_WARN_ON(!rcu_read_lock_held());
2343
2344 return rq->idle_state;
2345 }
2346 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2347 static inline void idle_set_state(struct rq *rq,
2348 struct cpuidle_state *idle_state)
2349 {
2350 }
2351
idle_get_state(struct rq * rq)2352 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2353 {
2354 return NULL;
2355 }
2356 #endif
2357
2358 extern void schedule_idle(void);
2359
2360 extern void sysrq_sched_debug_show(void);
2361 extern void sched_init_granularity(void);
2362 extern void update_max_interval(void);
2363
2364 extern void init_sched_dl_class(void);
2365 extern void init_sched_rt_class(void);
2366 extern void init_sched_fair_class(void);
2367
2368 extern void reweight_task(struct task_struct *p, int prio);
2369
2370 extern void resched_curr(struct rq *rq);
2371 extern void resched_cpu(int cpu);
2372
2373 extern struct rt_bandwidth def_rt_bandwidth;
2374 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2375 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2376
2377 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2378 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2379 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2380
2381 #define BW_SHIFT 20
2382 #define BW_UNIT (1 << BW_SHIFT)
2383 #define RATIO_SHIFT 8
2384 #define MAX_BW_BITS (64 - BW_SHIFT)
2385 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
2386 unsigned long to_ratio(u64 period, u64 runtime);
2387
2388 extern void init_entity_runnable_average(struct sched_entity *se);
2389 extern void post_init_entity_util_avg(struct task_struct *p);
2390
2391 #ifdef CONFIG_NO_HZ_FULL
2392 extern bool sched_can_stop_tick(struct rq *rq);
2393 extern int __init sched_tick_offload_init(void);
2394
2395 /*
2396 * Tick may be needed by tasks in the runqueue depending on their policy and
2397 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2398 * nohz mode if necessary.
2399 */
sched_update_tick_dependency(struct rq * rq)2400 static inline void sched_update_tick_dependency(struct rq *rq)
2401 {
2402 int cpu = cpu_of(rq);
2403
2404 if (!tick_nohz_full_cpu(cpu))
2405 return;
2406
2407 if (sched_can_stop_tick(rq))
2408 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2409 else
2410 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2411 }
2412 #else
sched_tick_offload_init(void)2413 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2414 static inline void sched_update_tick_dependency(struct rq *rq) { }
2415 #endif
2416
add_nr_running(struct rq * rq,unsigned count)2417 static inline void add_nr_running(struct rq *rq, unsigned count)
2418 {
2419 unsigned prev_nr = rq->nr_running;
2420
2421 rq->nr_running = prev_nr + count;
2422 if (trace_sched_update_nr_running_tp_enabled()) {
2423 call_trace_sched_update_nr_running(rq, count);
2424 }
2425
2426 #ifdef CONFIG_SMP
2427 if (prev_nr < 2 && rq->nr_running >= 2) {
2428 if (!READ_ONCE(rq->rd->overload))
2429 WRITE_ONCE(rq->rd->overload, 1);
2430 }
2431 #endif
2432
2433 sched_update_tick_dependency(rq);
2434 }
2435
sub_nr_running(struct rq * rq,unsigned count)2436 static inline void sub_nr_running(struct rq *rq, unsigned count)
2437 {
2438 rq->nr_running -= count;
2439 if (trace_sched_update_nr_running_tp_enabled()) {
2440 call_trace_sched_update_nr_running(rq, -count);
2441 }
2442
2443 /* Check if we still need preemption */
2444 sched_update_tick_dependency(rq);
2445 }
2446
2447 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2448 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2449
2450 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2451
2452 #ifdef CONFIG_PREEMPT_RT
2453 #define SCHED_NR_MIGRATE_BREAK 8
2454 #else
2455 #define SCHED_NR_MIGRATE_BREAK 32
2456 #endif
2457
2458 extern const_debug unsigned int sysctl_sched_nr_migrate;
2459 extern const_debug unsigned int sysctl_sched_migration_cost;
2460
2461 #ifdef CONFIG_SCHED_DEBUG
2462 extern unsigned int sysctl_sched_latency;
2463 extern unsigned int sysctl_sched_min_granularity;
2464 extern unsigned int sysctl_sched_idle_min_granularity;
2465 extern unsigned int sysctl_sched_wakeup_granularity;
2466 extern int sysctl_resched_latency_warn_ms;
2467 extern int sysctl_resched_latency_warn_once;
2468
2469 extern unsigned int sysctl_sched_tunable_scaling;
2470
2471 extern unsigned int sysctl_numa_balancing_scan_delay;
2472 extern unsigned int sysctl_numa_balancing_scan_period_min;
2473 extern unsigned int sysctl_numa_balancing_scan_period_max;
2474 extern unsigned int sysctl_numa_balancing_scan_size;
2475 extern unsigned int sysctl_numa_balancing_hot_threshold;
2476 #endif
2477
2478 #ifdef CONFIG_SCHED_HRTICK
2479
2480 /*
2481 * Use hrtick when:
2482 * - enabled by features
2483 * - hrtimer is actually high res
2484 */
hrtick_enabled(struct rq * rq)2485 static inline int hrtick_enabled(struct rq *rq)
2486 {
2487 if (!cpu_active(cpu_of(rq)))
2488 return 0;
2489 return hrtimer_is_hres_active(&rq->hrtick_timer);
2490 }
2491
hrtick_enabled_fair(struct rq * rq)2492 static inline int hrtick_enabled_fair(struct rq *rq)
2493 {
2494 if (!sched_feat(HRTICK))
2495 return 0;
2496 return hrtick_enabled(rq);
2497 }
2498
hrtick_enabled_dl(struct rq * rq)2499 static inline int hrtick_enabled_dl(struct rq *rq)
2500 {
2501 if (!sched_feat(HRTICK_DL))
2502 return 0;
2503 return hrtick_enabled(rq);
2504 }
2505
2506 void hrtick_start(struct rq *rq, u64 delay);
2507
2508 #else
2509
hrtick_enabled_fair(struct rq * rq)2510 static inline int hrtick_enabled_fair(struct rq *rq)
2511 {
2512 return 0;
2513 }
2514
hrtick_enabled_dl(struct rq * rq)2515 static inline int hrtick_enabled_dl(struct rq *rq)
2516 {
2517 return 0;
2518 }
2519
hrtick_enabled(struct rq * rq)2520 static inline int hrtick_enabled(struct rq *rq)
2521 {
2522 return 0;
2523 }
2524
2525 #endif /* CONFIG_SCHED_HRTICK */
2526
2527 #ifndef arch_scale_freq_tick
2528 static __always_inline
arch_scale_freq_tick(void)2529 void arch_scale_freq_tick(void)
2530 {
2531 }
2532 #endif
2533
2534 #ifndef arch_scale_freq_capacity
2535 /**
2536 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2537 * @cpu: the CPU in question.
2538 *
2539 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2540 *
2541 * f_curr
2542 * ------ * SCHED_CAPACITY_SCALE
2543 * f_max
2544 */
2545 static __always_inline
arch_scale_freq_capacity(int cpu)2546 unsigned long arch_scale_freq_capacity(int cpu)
2547 {
2548 return SCHED_CAPACITY_SCALE;
2549 }
2550 #endif
2551
2552 #ifdef CONFIG_SCHED_DEBUG
2553 /*
2554 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2555 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2556 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2557 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2558 */
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2559 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2560 {
2561 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2562 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2563 #ifdef CONFIG_SMP
2564 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2565 #endif
2566 }
2567 #else
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2568 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2569 #endif
2570
2571 #ifdef CONFIG_SMP
2572
rq_order_less(struct rq * rq1,struct rq * rq2)2573 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2574 {
2575 #ifdef CONFIG_SCHED_CORE
2576 /*
2577 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2578 * order by core-id first and cpu-id second.
2579 *
2580 * Notably:
2581 *
2582 * double_rq_lock(0,3); will take core-0, core-1 lock
2583 * double_rq_lock(1,2); will take core-1, core-0 lock
2584 *
2585 * when only cpu-id is considered.
2586 */
2587 if (rq1->core->cpu < rq2->core->cpu)
2588 return true;
2589 if (rq1->core->cpu > rq2->core->cpu)
2590 return false;
2591
2592 /*
2593 * __sched_core_flip() relies on SMT having cpu-id lock order.
2594 */
2595 #endif
2596 return rq1->cpu < rq2->cpu;
2597 }
2598
2599 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2600
2601 #ifdef CONFIG_PREEMPTION
2602
2603 /*
2604 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2605 * way at the expense of forcing extra atomic operations in all
2606 * invocations. This assures that the double_lock is acquired using the
2607 * same underlying policy as the spinlock_t on this architecture, which
2608 * reduces latency compared to the unfair variant below. However, it
2609 * also adds more overhead and therefore may reduce throughput.
2610 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2611 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2612 __releases(this_rq->lock)
2613 __acquires(busiest->lock)
2614 __acquires(this_rq->lock)
2615 {
2616 raw_spin_rq_unlock(this_rq);
2617 double_rq_lock(this_rq, busiest);
2618
2619 return 1;
2620 }
2621
2622 #else
2623 /*
2624 * Unfair double_lock_balance: Optimizes throughput at the expense of
2625 * latency by eliminating extra atomic operations when the locks are
2626 * already in proper order on entry. This favors lower CPU-ids and will
2627 * grant the double lock to lower CPUs over higher ids under contention,
2628 * regardless of entry order into the function.
2629 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2630 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2631 __releases(this_rq->lock)
2632 __acquires(busiest->lock)
2633 __acquires(this_rq->lock)
2634 {
2635 if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2636 likely(raw_spin_rq_trylock(busiest))) {
2637 double_rq_clock_clear_update(this_rq, busiest);
2638 return 0;
2639 }
2640
2641 if (rq_order_less(this_rq, busiest)) {
2642 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2643 double_rq_clock_clear_update(this_rq, busiest);
2644 return 0;
2645 }
2646
2647 raw_spin_rq_unlock(this_rq);
2648 double_rq_lock(this_rq, busiest);
2649
2650 return 1;
2651 }
2652
2653 #endif /* CONFIG_PREEMPTION */
2654
2655 /*
2656 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2657 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2658 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2659 {
2660 lockdep_assert_irqs_disabled();
2661
2662 return _double_lock_balance(this_rq, busiest);
2663 }
2664
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2665 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2666 __releases(busiest->lock)
2667 {
2668 if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2669 raw_spin_rq_unlock(busiest);
2670 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2671 }
2672
double_lock(spinlock_t * l1,spinlock_t * l2)2673 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2674 {
2675 if (l1 > l2)
2676 swap(l1, l2);
2677
2678 spin_lock(l1);
2679 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2680 }
2681
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2682 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2683 {
2684 if (l1 > l2)
2685 swap(l1, l2);
2686
2687 spin_lock_irq(l1);
2688 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2689 }
2690
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2691 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2692 {
2693 if (l1 > l2)
2694 swap(l1, l2);
2695
2696 raw_spin_lock(l1);
2697 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2698 }
2699
2700 /*
2701 * double_rq_unlock - safely unlock two runqueues
2702 *
2703 * Note this does not restore interrupts like task_rq_unlock,
2704 * you need to do so manually after calling.
2705 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2706 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2707 __releases(rq1->lock)
2708 __releases(rq2->lock)
2709 {
2710 if (__rq_lockp(rq1) != __rq_lockp(rq2))
2711 raw_spin_rq_unlock(rq2);
2712 else
2713 __release(rq2->lock);
2714 raw_spin_rq_unlock(rq1);
2715 }
2716
2717 extern void set_rq_online (struct rq *rq);
2718 extern void set_rq_offline(struct rq *rq);
2719 extern bool sched_smp_initialized;
2720
2721 #else /* CONFIG_SMP */
2722
2723 /*
2724 * double_rq_lock - safely lock two runqueues
2725 *
2726 * Note this does not disable interrupts like task_rq_lock,
2727 * you need to do so manually before calling.
2728 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2729 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2730 __acquires(rq1->lock)
2731 __acquires(rq2->lock)
2732 {
2733 WARN_ON_ONCE(!irqs_disabled());
2734 WARN_ON_ONCE(rq1 != rq2);
2735 raw_spin_rq_lock(rq1);
2736 __acquire(rq2->lock); /* Fake it out ;) */
2737 double_rq_clock_clear_update(rq1, rq2);
2738 }
2739
2740 /*
2741 * double_rq_unlock - safely unlock two runqueues
2742 *
2743 * Note this does not restore interrupts like task_rq_unlock,
2744 * you need to do so manually after calling.
2745 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2746 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2747 __releases(rq1->lock)
2748 __releases(rq2->lock)
2749 {
2750 WARN_ON_ONCE(rq1 != rq2);
2751 raw_spin_rq_unlock(rq1);
2752 __release(rq2->lock);
2753 }
2754
2755 #endif
2756
2757 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2758 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2759
2760 #ifdef CONFIG_SCHED_DEBUG
2761 extern bool sched_debug_verbose;
2762
2763 extern void print_cfs_stats(struct seq_file *m, int cpu);
2764 extern void print_rt_stats(struct seq_file *m, int cpu);
2765 extern void print_dl_stats(struct seq_file *m, int cpu);
2766 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2767 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2768 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2769
2770 extern void resched_latency_warn(int cpu, u64 latency);
2771 #ifdef CONFIG_NUMA_BALANCING
2772 extern void
2773 show_numa_stats(struct task_struct *p, struct seq_file *m);
2774 extern void
2775 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2776 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2777 #endif /* CONFIG_NUMA_BALANCING */
2778 #else
resched_latency_warn(int cpu,u64 latency)2779 static inline void resched_latency_warn(int cpu, u64 latency) {}
2780 #endif /* CONFIG_SCHED_DEBUG */
2781
2782 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2783 extern void init_rt_rq(struct rt_rq *rt_rq);
2784 extern void init_dl_rq(struct dl_rq *dl_rq);
2785
2786 extern void cfs_bandwidth_usage_inc(void);
2787 extern void cfs_bandwidth_usage_dec(void);
2788
2789 #ifdef CONFIG_NO_HZ_COMMON
2790 #define NOHZ_BALANCE_KICK_BIT 0
2791 #define NOHZ_STATS_KICK_BIT 1
2792 #define NOHZ_NEWILB_KICK_BIT 2
2793 #define NOHZ_NEXT_KICK_BIT 3
2794
2795 /* Run rebalance_domains() */
2796 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2797 /* Update blocked load */
2798 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2799 /* Update blocked load when entering idle */
2800 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT)
2801 /* Update nohz.next_balance */
2802 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT)
2803
2804 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2805
2806 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2807
2808 extern void nohz_balance_exit_idle(struct rq *rq);
2809 #else
nohz_balance_exit_idle(struct rq * rq)2810 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2811 #endif
2812
2813 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2814 extern void nohz_run_idle_balance(int cpu);
2815 #else
nohz_run_idle_balance(int cpu)2816 static inline void nohz_run_idle_balance(int cpu) { }
2817 #endif
2818
2819 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2820 struct irqtime {
2821 u64 total;
2822 u64 tick_delta;
2823 u64 irq_start_time;
2824 struct u64_stats_sync sync;
2825 };
2826
2827 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2828
2829 /*
2830 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2831 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2832 * and never move forward.
2833 */
irq_time_read(int cpu)2834 static inline u64 irq_time_read(int cpu)
2835 {
2836 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2837 unsigned int seq;
2838 u64 total;
2839
2840 do {
2841 seq = __u64_stats_fetch_begin(&irqtime->sync);
2842 total = irqtime->total;
2843 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2844
2845 return total;
2846 }
2847 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2848
2849 #ifdef CONFIG_CPU_FREQ
2850 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2851
2852 /**
2853 * cpufreq_update_util - Take a note about CPU utilization changes.
2854 * @rq: Runqueue to carry out the update for.
2855 * @flags: Update reason flags.
2856 *
2857 * This function is called by the scheduler on the CPU whose utilization is
2858 * being updated.
2859 *
2860 * It can only be called from RCU-sched read-side critical sections.
2861 *
2862 * The way cpufreq is currently arranged requires it to evaluate the CPU
2863 * performance state (frequency/voltage) on a regular basis to prevent it from
2864 * being stuck in a completely inadequate performance level for too long.
2865 * That is not guaranteed to happen if the updates are only triggered from CFS
2866 * and DL, though, because they may not be coming in if only RT tasks are
2867 * active all the time (or there are RT tasks only).
2868 *
2869 * As a workaround for that issue, this function is called periodically by the
2870 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2871 * but that really is a band-aid. Going forward it should be replaced with
2872 * solutions targeted more specifically at RT tasks.
2873 */
cpufreq_update_util(struct rq * rq,unsigned int flags)2874 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2875 {
2876 struct update_util_data *data;
2877
2878 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2879 cpu_of(rq)));
2880 if (data)
2881 data->func(data, rq_clock(rq), flags);
2882 }
2883 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2884 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2885 #endif /* CONFIG_CPU_FREQ */
2886
2887 #ifdef arch_scale_freq_capacity
2888 # ifndef arch_scale_freq_invariant
2889 # define arch_scale_freq_invariant() true
2890 # endif
2891 #else
2892 # define arch_scale_freq_invariant() false
2893 #endif
2894
2895 #ifdef CONFIG_SMP
capacity_orig_of(int cpu)2896 static inline unsigned long capacity_orig_of(int cpu)
2897 {
2898 return cpu_rq(cpu)->cpu_capacity_orig;
2899 }
2900
2901 /**
2902 * enum cpu_util_type - CPU utilization type
2903 * @FREQUENCY_UTIL: Utilization used to select frequency
2904 * @ENERGY_UTIL: Utilization used during energy calculation
2905 *
2906 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2907 * need to be aggregated differently depending on the usage made of them. This
2908 * enum is used within effective_cpu_util() to differentiate the types of
2909 * utilization expected by the callers, and adjust the aggregation accordingly.
2910 */
2911 enum cpu_util_type {
2912 FREQUENCY_UTIL,
2913 ENERGY_UTIL,
2914 };
2915
2916 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2917 enum cpu_util_type type,
2918 struct task_struct *p);
2919
2920 /*
2921 * Verify the fitness of task @p to run on @cpu taking into account the
2922 * CPU original capacity and the runtime/deadline ratio of the task.
2923 *
2924 * The function will return true if the original capacity of @cpu is
2925 * greater than or equal to task's deadline density right shifted by
2926 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
2927 */
dl_task_fits_capacity(struct task_struct * p,int cpu)2928 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
2929 {
2930 unsigned long cap = arch_scale_cpu_capacity(cpu);
2931
2932 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
2933 }
2934
cpu_bw_dl(struct rq * rq)2935 static inline unsigned long cpu_bw_dl(struct rq *rq)
2936 {
2937 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2938 }
2939
cpu_util_dl(struct rq * rq)2940 static inline unsigned long cpu_util_dl(struct rq *rq)
2941 {
2942 return READ_ONCE(rq->avg_dl.util_avg);
2943 }
2944
2945 /**
2946 * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
2947 * @cpu: the CPU to get the utilization for.
2948 *
2949 * The unit of the return value must be the same as the one of CPU capacity
2950 * so that CPU utilization can be compared with CPU capacity.
2951 *
2952 * CPU utilization is the sum of running time of runnable tasks plus the
2953 * recent utilization of currently non-runnable tasks on that CPU.
2954 * It represents the amount of CPU capacity currently used by CFS tasks in
2955 * the range [0..max CPU capacity] with max CPU capacity being the CPU
2956 * capacity at f_max.
2957 *
2958 * The estimated CPU utilization is defined as the maximum between CPU
2959 * utilization and sum of the estimated utilization of the currently
2960 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
2961 * previously-executed tasks, which helps better deduce how busy a CPU will
2962 * be when a long-sleeping task wakes up. The contribution to CPU utilization
2963 * of such a task would be significantly decayed at this point of time.
2964 *
2965 * CPU utilization can be higher than the current CPU capacity
2966 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
2967 * of rounding errors as well as task migrations or wakeups of new tasks.
2968 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
2969 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
2970 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
2971 * capacity. CPU utilization is allowed to overshoot current CPU capacity
2972 * though since this is useful for predicting the CPU capacity required
2973 * after task migrations (scheduler-driven DVFS).
2974 *
2975 * Return: (Estimated) utilization for the specified CPU.
2976 */
cpu_util_cfs(int cpu)2977 static inline unsigned long cpu_util_cfs(int cpu)
2978 {
2979 struct cfs_rq *cfs_rq;
2980 unsigned long util;
2981
2982 cfs_rq = &cpu_rq(cpu)->cfs;
2983 util = READ_ONCE(cfs_rq->avg.util_avg);
2984
2985 if (sched_feat(UTIL_EST)) {
2986 util = max_t(unsigned long, util,
2987 READ_ONCE(cfs_rq->avg.util_est.enqueued));
2988 }
2989
2990 return min(util, capacity_orig_of(cpu));
2991 }
2992
cpu_util_rt(struct rq * rq)2993 static inline unsigned long cpu_util_rt(struct rq *rq)
2994 {
2995 return READ_ONCE(rq->avg_rt.util_avg);
2996 }
2997 #endif
2998
2999 #ifdef CONFIG_UCLAMP_TASK
3000 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3001
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3002 static inline unsigned long uclamp_rq_get(struct rq *rq,
3003 enum uclamp_id clamp_id)
3004 {
3005 return READ_ONCE(rq->uclamp[clamp_id].value);
3006 }
3007
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3008 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3009 unsigned int value)
3010 {
3011 WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3012 }
3013
uclamp_rq_is_idle(struct rq * rq)3014 static inline bool uclamp_rq_is_idle(struct rq *rq)
3015 {
3016 return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3017 }
3018
3019 /**
3020 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3021 * @rq: The rq to clamp against. Must not be NULL.
3022 * @util: The util value to clamp.
3023 * @p: The task to clamp against. Can be NULL if you want to clamp
3024 * against @rq only.
3025 *
3026 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3027 *
3028 * If sched_uclamp_used static key is disabled, then just return the util
3029 * without any clamping since uclamp aggregation at the rq level in the fast
3030 * path is disabled, rendering this operation a NOP.
3031 *
3032 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3033 * will return the correct effective uclamp value of the task even if the
3034 * static key is disabled.
3035 */
3036 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3037 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3038 struct task_struct *p)
3039 {
3040 unsigned long min_util = 0;
3041 unsigned long max_util = 0;
3042
3043 if (!static_branch_likely(&sched_uclamp_used))
3044 return util;
3045
3046 if (p) {
3047 min_util = uclamp_eff_value(p, UCLAMP_MIN);
3048 max_util = uclamp_eff_value(p, UCLAMP_MAX);
3049
3050 /*
3051 * Ignore last runnable task's max clamp, as this task will
3052 * reset it. Similarly, no need to read the rq's min clamp.
3053 */
3054 if (uclamp_rq_is_idle(rq))
3055 goto out;
3056 }
3057
3058 min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3059 max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3060 out:
3061 /*
3062 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3063 * RUNNABLE tasks with _different_ clamps, we can end up with an
3064 * inversion. Fix it now when the clamps are applied.
3065 */
3066 if (unlikely(min_util >= max_util))
3067 return min_util;
3068
3069 return clamp(util, min_util, max_util);
3070 }
3071
3072 /* Is the rq being capped/throttled by uclamp_max? */
uclamp_rq_is_capped(struct rq * rq)3073 static inline bool uclamp_rq_is_capped(struct rq *rq)
3074 {
3075 unsigned long rq_util;
3076 unsigned long max_util;
3077
3078 if (!static_branch_likely(&sched_uclamp_used))
3079 return false;
3080
3081 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3082 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3083
3084 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3085 }
3086
3087 /*
3088 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3089 * by default in the fast path and only gets turned on once userspace performs
3090 * an operation that requires it.
3091 *
3092 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3093 * hence is active.
3094 */
uclamp_is_used(void)3095 static inline bool uclamp_is_used(void)
3096 {
3097 return static_branch_likely(&sched_uclamp_used);
3098 }
3099 #else /* CONFIG_UCLAMP_TASK */
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)3100 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3101 enum uclamp_id clamp_id)
3102 {
3103 if (clamp_id == UCLAMP_MIN)
3104 return 0;
3105
3106 return SCHED_CAPACITY_SCALE;
3107 }
3108
3109 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3110 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3111 struct task_struct *p)
3112 {
3113 return util;
3114 }
3115
uclamp_rq_is_capped(struct rq * rq)3116 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3117
uclamp_is_used(void)3118 static inline bool uclamp_is_used(void)
3119 {
3120 return false;
3121 }
3122
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3123 static inline unsigned long uclamp_rq_get(struct rq *rq,
3124 enum uclamp_id clamp_id)
3125 {
3126 if (clamp_id == UCLAMP_MIN)
3127 return 0;
3128
3129 return SCHED_CAPACITY_SCALE;
3130 }
3131
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3132 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3133 unsigned int value)
3134 {
3135 }
3136
uclamp_rq_is_idle(struct rq * rq)3137 static inline bool uclamp_rq_is_idle(struct rq *rq)
3138 {
3139 return false;
3140 }
3141 #endif /* CONFIG_UCLAMP_TASK */
3142
3143 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)3144 static inline unsigned long cpu_util_irq(struct rq *rq)
3145 {
3146 return rq->avg_irq.util_avg;
3147 }
3148
3149 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3150 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3151 {
3152 util *= (max - irq);
3153 util /= max;
3154
3155 return util;
3156
3157 }
3158 #else
cpu_util_irq(struct rq * rq)3159 static inline unsigned long cpu_util_irq(struct rq *rq)
3160 {
3161 return 0;
3162 }
3163
3164 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3165 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3166 {
3167 return util;
3168 }
3169 #endif
3170
3171 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3172
3173 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3174
3175 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3176
sched_energy_enabled(void)3177 static inline bool sched_energy_enabled(void)
3178 {
3179 return static_branch_unlikely(&sched_energy_present);
3180 }
3181
3182 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3183
3184 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)3185 static inline bool sched_energy_enabled(void) { return false; }
3186
3187 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3188
3189 #ifdef CONFIG_MEMBARRIER
3190 /*
3191 * The scheduler provides memory barriers required by membarrier between:
3192 * - prior user-space memory accesses and store to rq->membarrier_state,
3193 * - store to rq->membarrier_state and following user-space memory accesses.
3194 * In the same way it provides those guarantees around store to rq->curr.
3195 */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3196 static inline void membarrier_switch_mm(struct rq *rq,
3197 struct mm_struct *prev_mm,
3198 struct mm_struct *next_mm)
3199 {
3200 int membarrier_state;
3201
3202 if (prev_mm == next_mm)
3203 return;
3204
3205 membarrier_state = atomic_read(&next_mm->membarrier_state);
3206 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3207 return;
3208
3209 WRITE_ONCE(rq->membarrier_state, membarrier_state);
3210 }
3211 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3212 static inline void membarrier_switch_mm(struct rq *rq,
3213 struct mm_struct *prev_mm,
3214 struct mm_struct *next_mm)
3215 {
3216 }
3217 #endif
3218
3219 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)3220 static inline bool is_per_cpu_kthread(struct task_struct *p)
3221 {
3222 if (!(p->flags & PF_KTHREAD))
3223 return false;
3224
3225 if (p->nr_cpus_allowed != 1)
3226 return false;
3227
3228 return true;
3229 }
3230 #endif
3231
3232 extern void swake_up_all_locked(struct swait_queue_head *q);
3233 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3234
3235 #ifdef CONFIG_PREEMPT_DYNAMIC
3236 extern int preempt_dynamic_mode;
3237 extern int sched_dynamic_mode(const char *str);
3238 extern void sched_dynamic_update(int mode);
3239 #endif
3240
update_current_exec_runtime(struct task_struct * curr,u64 now,u64 delta_exec)3241 static inline void update_current_exec_runtime(struct task_struct *curr,
3242 u64 now, u64 delta_exec)
3243 {
3244 curr->se.sum_exec_runtime += delta_exec;
3245 account_group_exec_runtime(curr, delta_exec);
3246
3247 curr->se.exec_start = now;
3248 cgroup_account_cputime(curr, delta_exec);
3249 }
3250
3251 #ifdef CONFIG_SCHED_MM_CID
__mm_cid_get(struct mm_struct * mm)3252 static inline int __mm_cid_get(struct mm_struct *mm)
3253 {
3254 struct cpumask *cpumask;
3255 int cid;
3256
3257 cpumask = mm_cidmask(mm);
3258 cid = cpumask_first_zero(cpumask);
3259 if (cid >= nr_cpu_ids)
3260 return -1;
3261 __cpumask_set_cpu(cid, cpumask);
3262 return cid;
3263 }
3264
mm_cid_put(struct mm_struct * mm,int cid)3265 static inline void mm_cid_put(struct mm_struct *mm, int cid)
3266 {
3267 lockdep_assert_irqs_disabled();
3268 if (cid < 0)
3269 return;
3270 raw_spin_lock(&mm->cid_lock);
3271 __cpumask_clear_cpu(cid, mm_cidmask(mm));
3272 raw_spin_unlock(&mm->cid_lock);
3273 }
3274
mm_cid_get(struct mm_struct * mm)3275 static inline int mm_cid_get(struct mm_struct *mm)
3276 {
3277 int ret;
3278
3279 lockdep_assert_irqs_disabled();
3280 raw_spin_lock(&mm->cid_lock);
3281 ret = __mm_cid_get(mm);
3282 raw_spin_unlock(&mm->cid_lock);
3283 return ret;
3284 }
3285
switch_mm_cid(struct task_struct * prev,struct task_struct * next)3286 static inline void switch_mm_cid(struct task_struct *prev, struct task_struct *next)
3287 {
3288 if (prev->mm_cid_active) {
3289 if (next->mm_cid_active && next->mm == prev->mm) {
3290 /*
3291 * Context switch between threads in same mm, hand over
3292 * the mm_cid from prev to next.
3293 */
3294 next->mm_cid = prev->mm_cid;
3295 prev->mm_cid = -1;
3296 return;
3297 }
3298 mm_cid_put(prev->mm, prev->mm_cid);
3299 prev->mm_cid = -1;
3300 }
3301 if (next->mm_cid_active)
3302 next->mm_cid = mm_cid_get(next->mm);
3303 }
3304
3305 #else
switch_mm_cid(struct task_struct * prev,struct task_struct * next)3306 static inline void switch_mm_cid(struct task_struct *prev, struct task_struct *next) { }
3307 #endif
3308
3309 #endif /* _KERNEL_SCHED_SCHED_H */
3310