1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49 #include <linux/oom.h>
50 #include <linux/memory.h>
51 #include <linux/random.h>
52 #include <linux/sched/sysctl.h>
53 #include <linux/memory-tiers.h>
54
55 #include <asm/tlbflush.h>
56
57 #include <trace/events/migrate.h>
58
59 #include "internal.h"
60
isolate_movable_page(struct page * page,isolate_mode_t mode)61 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
62 {
63 struct folio *folio = folio_get_nontail_page(page);
64 const struct movable_operations *mops;
65
66 /*
67 * Avoid burning cycles with pages that are yet under __free_pages(),
68 * or just got freed under us.
69 *
70 * In case we 'win' a race for a movable page being freed under us and
71 * raise its refcount preventing __free_pages() from doing its job
72 * the put_page() at the end of this block will take care of
73 * release this page, thus avoiding a nasty leakage.
74 */
75 if (!folio)
76 goto out;
77
78 if (unlikely(folio_test_slab(folio)))
79 goto out_putfolio;
80 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
81 smp_rmb();
82 /*
83 * Check movable flag before taking the page lock because
84 * we use non-atomic bitops on newly allocated page flags so
85 * unconditionally grabbing the lock ruins page's owner side.
86 */
87 if (unlikely(!__folio_test_movable(folio)))
88 goto out_putfolio;
89 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
90 smp_rmb();
91 if (unlikely(folio_test_slab(folio)))
92 goto out_putfolio;
93
94 /*
95 * As movable pages are not isolated from LRU lists, concurrent
96 * compaction threads can race against page migration functions
97 * as well as race against the releasing a page.
98 *
99 * In order to avoid having an already isolated movable page
100 * being (wrongly) re-isolated while it is under migration,
101 * or to avoid attempting to isolate pages being released,
102 * lets be sure we have the page lock
103 * before proceeding with the movable page isolation steps.
104 */
105 if (unlikely(!folio_trylock(folio)))
106 goto out_putfolio;
107
108 if (!folio_test_movable(folio) || folio_test_isolated(folio))
109 goto out_no_isolated;
110
111 mops = folio_movable_ops(folio);
112 VM_BUG_ON_FOLIO(!mops, folio);
113
114 if (!mops->isolate_page(&folio->page, mode))
115 goto out_no_isolated;
116
117 /* Driver shouldn't use PG_isolated bit of page->flags */
118 WARN_ON_ONCE(folio_test_isolated(folio));
119 folio_set_isolated(folio);
120 folio_unlock(folio);
121
122 return true;
123
124 out_no_isolated:
125 folio_unlock(folio);
126 out_putfolio:
127 folio_put(folio);
128 out:
129 return false;
130 }
131
putback_movable_folio(struct folio * folio)132 static void putback_movable_folio(struct folio *folio)
133 {
134 const struct movable_operations *mops = folio_movable_ops(folio);
135
136 mops->putback_page(&folio->page);
137 folio_clear_isolated(folio);
138 }
139
140 /*
141 * Put previously isolated pages back onto the appropriate lists
142 * from where they were once taken off for compaction/migration.
143 *
144 * This function shall be used whenever the isolated pageset has been
145 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
146 * and isolate_hugetlb().
147 */
putback_movable_pages(struct list_head * l)148 void putback_movable_pages(struct list_head *l)
149 {
150 struct folio *folio;
151 struct folio *folio2;
152
153 list_for_each_entry_safe(folio, folio2, l, lru) {
154 if (unlikely(folio_test_hugetlb(folio))) {
155 folio_putback_active_hugetlb(folio);
156 continue;
157 }
158 list_del(&folio->lru);
159 /*
160 * We isolated non-lru movable folio so here we can use
161 * __PageMovable because LRU folio's mapping cannot have
162 * PAGE_MAPPING_MOVABLE.
163 */
164 if (unlikely(__folio_test_movable(folio))) {
165 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
166 folio_lock(folio);
167 if (folio_test_movable(folio))
168 putback_movable_folio(folio);
169 else
170 folio_clear_isolated(folio);
171 folio_unlock(folio);
172 folio_put(folio);
173 } else {
174 node_stat_mod_folio(folio, NR_ISOLATED_ANON +
175 folio_is_file_lru(folio), -folio_nr_pages(folio));
176 folio_putback_lru(folio);
177 }
178 }
179 }
180
181 /*
182 * Restore a potential migration pte to a working pte entry
183 */
remove_migration_pte(struct folio * folio,struct vm_area_struct * vma,unsigned long addr,void * old)184 static bool remove_migration_pte(struct folio *folio,
185 struct vm_area_struct *vma, unsigned long addr, void *old)
186 {
187 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
188
189 while (page_vma_mapped_walk(&pvmw)) {
190 rmap_t rmap_flags = RMAP_NONE;
191 pte_t pte;
192 swp_entry_t entry;
193 struct page *new;
194 unsigned long idx = 0;
195
196 /* pgoff is invalid for ksm pages, but they are never large */
197 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
198 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
199 new = folio_page(folio, idx);
200
201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
202 /* PMD-mapped THP migration entry */
203 if (!pvmw.pte) {
204 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
205 !folio_test_pmd_mappable(folio), folio);
206 remove_migration_pmd(&pvmw, new);
207 continue;
208 }
209 #endif
210
211 folio_get(folio);
212 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
213 if (pte_swp_soft_dirty(*pvmw.pte))
214 pte = pte_mksoft_dirty(pte);
215
216 /*
217 * Recheck VMA as permissions can change since migration started
218 */
219 entry = pte_to_swp_entry(*pvmw.pte);
220 if (!is_migration_entry_young(entry))
221 pte = pte_mkold(pte);
222 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
223 pte = pte_mkdirty(pte);
224 if (is_writable_migration_entry(entry))
225 pte = maybe_mkwrite(pte, vma);
226 else if (pte_swp_uffd_wp(*pvmw.pte))
227 pte = pte_mkuffd_wp(pte);
228 else
229 pte = pte_wrprotect(pte);
230
231 if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
232 rmap_flags |= RMAP_EXCLUSIVE;
233
234 if (unlikely(is_device_private_page(new))) {
235 if (pte_write(pte))
236 entry = make_writable_device_private_entry(
237 page_to_pfn(new));
238 else
239 entry = make_readable_device_private_entry(
240 page_to_pfn(new));
241 pte = swp_entry_to_pte(entry);
242 if (pte_swp_soft_dirty(*pvmw.pte))
243 pte = pte_swp_mksoft_dirty(pte);
244 if (pte_swp_uffd_wp(*pvmw.pte))
245 pte = pte_swp_mkuffd_wp(pte);
246 }
247
248 #ifdef CONFIG_HUGETLB_PAGE
249 if (folio_test_hugetlb(folio)) {
250 unsigned int shift = huge_page_shift(hstate_vma(vma));
251
252 pte = pte_mkhuge(pte);
253 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
254 if (folio_test_anon(folio))
255 hugepage_add_anon_rmap(new, vma, pvmw.address,
256 rmap_flags);
257 else
258 page_dup_file_rmap(new, true);
259 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
260 } else
261 #endif
262 {
263 if (folio_test_anon(folio))
264 page_add_anon_rmap(new, vma, pvmw.address,
265 rmap_flags);
266 else
267 page_add_file_rmap(new, vma, false);
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 }
270 if (vma->vm_flags & VM_LOCKED)
271 mlock_drain_local();
272
273 trace_remove_migration_pte(pvmw.address, pte_val(pte),
274 compound_order(new));
275
276 /* No need to invalidate - it was non-present before */
277 update_mmu_cache(vma, pvmw.address, pvmw.pte);
278 }
279
280 return true;
281 }
282
283 /*
284 * Get rid of all migration entries and replace them by
285 * references to the indicated page.
286 */
remove_migration_ptes(struct folio * src,struct folio * dst,bool locked)287 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
288 {
289 struct rmap_walk_control rwc = {
290 .rmap_one = remove_migration_pte,
291 .arg = src,
292 };
293
294 if (locked)
295 rmap_walk_locked(dst, &rwc);
296 else
297 rmap_walk(dst, &rwc);
298 }
299
300 /*
301 * Something used the pte of a page under migration. We need to
302 * get to the page and wait until migration is finished.
303 * When we return from this function the fault will be retried.
304 */
__migration_entry_wait(struct mm_struct * mm,pte_t * ptep,spinlock_t * ptl)305 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
306 spinlock_t *ptl)
307 {
308 pte_t pte;
309 swp_entry_t entry;
310
311 spin_lock(ptl);
312 pte = *ptep;
313 if (!is_swap_pte(pte))
314 goto out;
315
316 entry = pte_to_swp_entry(pte);
317 if (!is_migration_entry(entry))
318 goto out;
319
320 migration_entry_wait_on_locked(entry, ptep, ptl);
321 return;
322 out:
323 pte_unmap_unlock(ptep, ptl);
324 }
325
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)326 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
327 unsigned long address)
328 {
329 spinlock_t *ptl = pte_lockptr(mm, pmd);
330 pte_t *ptep = pte_offset_map(pmd, address);
331 __migration_entry_wait(mm, ptep, ptl);
332 }
333
334 #ifdef CONFIG_HUGETLB_PAGE
335 /*
336 * The vma read lock must be held upon entry. Holding that lock prevents either
337 * the pte or the ptl from being freed.
338 *
339 * This function will release the vma lock before returning.
340 */
__migration_entry_wait_huge(struct vm_area_struct * vma,pte_t * ptep,spinlock_t * ptl)341 void __migration_entry_wait_huge(struct vm_area_struct *vma,
342 pte_t *ptep, spinlock_t *ptl)
343 {
344 pte_t pte;
345
346 hugetlb_vma_assert_locked(vma);
347 spin_lock(ptl);
348 pte = huge_ptep_get(ptep);
349
350 if (unlikely(!is_hugetlb_entry_migration(pte))) {
351 spin_unlock(ptl);
352 hugetlb_vma_unlock_read(vma);
353 } else {
354 /*
355 * If migration entry existed, safe to release vma lock
356 * here because the pgtable page won't be freed without the
357 * pgtable lock released. See comment right above pgtable
358 * lock release in migration_entry_wait_on_locked().
359 */
360 hugetlb_vma_unlock_read(vma);
361 migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl);
362 }
363 }
364
migration_entry_wait_huge(struct vm_area_struct * vma,pte_t * pte)365 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte)
366 {
367 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte);
368
369 __migration_entry_wait_huge(vma, pte, ptl);
370 }
371 #endif
372
373 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_migration_entry_wait(struct mm_struct * mm,pmd_t * pmd)374 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
375 {
376 spinlock_t *ptl;
377
378 ptl = pmd_lock(mm, pmd);
379 if (!is_pmd_migration_entry(*pmd))
380 goto unlock;
381 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
382 return;
383 unlock:
384 spin_unlock(ptl);
385 }
386 #endif
387
folio_expected_refs(struct address_space * mapping,struct folio * folio)388 static int folio_expected_refs(struct address_space *mapping,
389 struct folio *folio)
390 {
391 int refs = 1;
392 if (!mapping)
393 return refs;
394
395 refs += folio_nr_pages(folio);
396 if (folio_test_private(folio))
397 refs++;
398
399 return refs;
400 }
401
402 /*
403 * Replace the page in the mapping.
404 *
405 * The number of remaining references must be:
406 * 1 for anonymous pages without a mapping
407 * 2 for pages with a mapping
408 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
409 */
folio_migrate_mapping(struct address_space * mapping,struct folio * newfolio,struct folio * folio,int extra_count)410 int folio_migrate_mapping(struct address_space *mapping,
411 struct folio *newfolio, struct folio *folio, int extra_count)
412 {
413 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
414 struct zone *oldzone, *newzone;
415 int dirty;
416 int expected_count = folio_expected_refs(mapping, folio) + extra_count;
417 long nr = folio_nr_pages(folio);
418
419 if (!mapping) {
420 /* Anonymous page without mapping */
421 if (folio_ref_count(folio) != expected_count)
422 return -EAGAIN;
423
424 /* No turning back from here */
425 newfolio->index = folio->index;
426 newfolio->mapping = folio->mapping;
427 if (folio_test_swapbacked(folio))
428 __folio_set_swapbacked(newfolio);
429
430 return MIGRATEPAGE_SUCCESS;
431 }
432
433 oldzone = folio_zone(folio);
434 newzone = folio_zone(newfolio);
435
436 xas_lock_irq(&xas);
437 if (!folio_ref_freeze(folio, expected_count)) {
438 xas_unlock_irq(&xas);
439 return -EAGAIN;
440 }
441
442 /*
443 * Now we know that no one else is looking at the folio:
444 * no turning back from here.
445 */
446 newfolio->index = folio->index;
447 newfolio->mapping = folio->mapping;
448 folio_ref_add(newfolio, nr); /* add cache reference */
449 if (folio_test_swapbacked(folio)) {
450 __folio_set_swapbacked(newfolio);
451 if (folio_test_swapcache(folio)) {
452 folio_set_swapcache(newfolio);
453 newfolio->private = folio_get_private(folio);
454 }
455 } else {
456 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
457 }
458
459 /* Move dirty while page refs frozen and newpage not yet exposed */
460 dirty = folio_test_dirty(folio);
461 if (dirty) {
462 folio_clear_dirty(folio);
463 folio_set_dirty(newfolio);
464 }
465
466 xas_store(&xas, newfolio);
467
468 /*
469 * Drop cache reference from old page by unfreezing
470 * to one less reference.
471 * We know this isn't the last reference.
472 */
473 folio_ref_unfreeze(folio, expected_count - nr);
474
475 xas_unlock(&xas);
476 /* Leave irq disabled to prevent preemption while updating stats */
477
478 /*
479 * If moved to a different zone then also account
480 * the page for that zone. Other VM counters will be
481 * taken care of when we establish references to the
482 * new page and drop references to the old page.
483 *
484 * Note that anonymous pages are accounted for
485 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
486 * are mapped to swap space.
487 */
488 if (newzone != oldzone) {
489 struct lruvec *old_lruvec, *new_lruvec;
490 struct mem_cgroup *memcg;
491
492 memcg = folio_memcg(folio);
493 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
494 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
495
496 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
497 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
498 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
499 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
500 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
501 }
502 #ifdef CONFIG_SWAP
503 if (folio_test_swapcache(folio)) {
504 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
505 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
506 }
507 #endif
508 if (dirty && mapping_can_writeback(mapping)) {
509 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
510 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
511 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
512 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
513 }
514 }
515 local_irq_enable();
516
517 return MIGRATEPAGE_SUCCESS;
518 }
519 EXPORT_SYMBOL(folio_migrate_mapping);
520
521 /*
522 * The expected number of remaining references is the same as that
523 * of folio_migrate_mapping().
524 */
migrate_huge_page_move_mapping(struct address_space * mapping,struct folio * dst,struct folio * src)525 int migrate_huge_page_move_mapping(struct address_space *mapping,
526 struct folio *dst, struct folio *src)
527 {
528 XA_STATE(xas, &mapping->i_pages, folio_index(src));
529 int expected_count;
530
531 xas_lock_irq(&xas);
532 expected_count = 2 + folio_has_private(src);
533 if (!folio_ref_freeze(src, expected_count)) {
534 xas_unlock_irq(&xas);
535 return -EAGAIN;
536 }
537
538 dst->index = src->index;
539 dst->mapping = src->mapping;
540
541 folio_get(dst);
542
543 xas_store(&xas, dst);
544
545 folio_ref_unfreeze(src, expected_count - 1);
546
547 xas_unlock_irq(&xas);
548
549 return MIGRATEPAGE_SUCCESS;
550 }
551
552 /*
553 * Copy the flags and some other ancillary information
554 */
folio_migrate_flags(struct folio * newfolio,struct folio * folio)555 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
556 {
557 int cpupid;
558
559 if (folio_test_error(folio))
560 folio_set_error(newfolio);
561 if (folio_test_referenced(folio))
562 folio_set_referenced(newfolio);
563 if (folio_test_uptodate(folio))
564 folio_mark_uptodate(newfolio);
565 if (folio_test_clear_active(folio)) {
566 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
567 folio_set_active(newfolio);
568 } else if (folio_test_clear_unevictable(folio))
569 folio_set_unevictable(newfolio);
570 if (folio_test_workingset(folio))
571 folio_set_workingset(newfolio);
572 if (folio_test_checked(folio))
573 folio_set_checked(newfolio);
574 /*
575 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
576 * migration entries. We can still have PG_anon_exclusive set on an
577 * effectively unmapped and unreferenced first sub-pages of an
578 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
579 */
580 if (folio_test_mappedtodisk(folio))
581 folio_set_mappedtodisk(newfolio);
582
583 /* Move dirty on pages not done by folio_migrate_mapping() */
584 if (folio_test_dirty(folio))
585 folio_set_dirty(newfolio);
586
587 if (folio_test_young(folio))
588 folio_set_young(newfolio);
589 if (folio_test_idle(folio))
590 folio_set_idle(newfolio);
591
592 /*
593 * Copy NUMA information to the new page, to prevent over-eager
594 * future migrations of this same page.
595 */
596 cpupid = page_cpupid_xchg_last(&folio->page, -1);
597 /*
598 * For memory tiering mode, when migrate between slow and fast
599 * memory node, reset cpupid, because that is used to record
600 * page access time in slow memory node.
601 */
602 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
603 bool f_toptier = node_is_toptier(page_to_nid(&folio->page));
604 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page));
605
606 if (f_toptier != t_toptier)
607 cpupid = -1;
608 }
609 page_cpupid_xchg_last(&newfolio->page, cpupid);
610
611 folio_migrate_ksm(newfolio, folio);
612 /*
613 * Please do not reorder this without considering how mm/ksm.c's
614 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
615 */
616 if (folio_test_swapcache(folio))
617 folio_clear_swapcache(folio);
618 folio_clear_private(folio);
619
620 /* page->private contains hugetlb specific flags */
621 if (!folio_test_hugetlb(folio))
622 folio->private = NULL;
623
624 /*
625 * If any waiters have accumulated on the new page then
626 * wake them up.
627 */
628 if (folio_test_writeback(newfolio))
629 folio_end_writeback(newfolio);
630
631 /*
632 * PG_readahead shares the same bit with PG_reclaim. The above
633 * end_page_writeback() may clear PG_readahead mistakenly, so set the
634 * bit after that.
635 */
636 if (folio_test_readahead(folio))
637 folio_set_readahead(newfolio);
638
639 folio_copy_owner(newfolio, folio);
640
641 if (!folio_test_hugetlb(folio))
642 mem_cgroup_migrate(folio, newfolio);
643 }
644 EXPORT_SYMBOL(folio_migrate_flags);
645
folio_migrate_copy(struct folio * newfolio,struct folio * folio)646 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
647 {
648 folio_copy(newfolio, folio);
649 folio_migrate_flags(newfolio, folio);
650 }
651 EXPORT_SYMBOL(folio_migrate_copy);
652
653 /************************************************************
654 * Migration functions
655 ***********************************************************/
656
migrate_folio_extra(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode,int extra_count)657 int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
658 struct folio *src, enum migrate_mode mode, int extra_count)
659 {
660 int rc;
661
662 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */
663
664 rc = folio_migrate_mapping(mapping, dst, src, extra_count);
665
666 if (rc != MIGRATEPAGE_SUCCESS)
667 return rc;
668
669 if (mode != MIGRATE_SYNC_NO_COPY)
670 folio_migrate_copy(dst, src);
671 else
672 folio_migrate_flags(dst, src);
673 return MIGRATEPAGE_SUCCESS;
674 }
675
676 /**
677 * migrate_folio() - Simple folio migration.
678 * @mapping: The address_space containing the folio.
679 * @dst: The folio to migrate the data to.
680 * @src: The folio containing the current data.
681 * @mode: How to migrate the page.
682 *
683 * Common logic to directly migrate a single LRU folio suitable for
684 * folios that do not use PagePrivate/PagePrivate2.
685 *
686 * Folios are locked upon entry and exit.
687 */
migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)688 int migrate_folio(struct address_space *mapping, struct folio *dst,
689 struct folio *src, enum migrate_mode mode)
690 {
691 return migrate_folio_extra(mapping, dst, src, mode, 0);
692 }
693 EXPORT_SYMBOL(migrate_folio);
694
695 #ifdef CONFIG_BLOCK
696 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)697 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
698 enum migrate_mode mode)
699 {
700 struct buffer_head *bh = head;
701
702 /* Simple case, sync compaction */
703 if (mode != MIGRATE_ASYNC) {
704 do {
705 lock_buffer(bh);
706 bh = bh->b_this_page;
707
708 } while (bh != head);
709
710 return true;
711 }
712
713 /* async case, we cannot block on lock_buffer so use trylock_buffer */
714 do {
715 if (!trylock_buffer(bh)) {
716 /*
717 * We failed to lock the buffer and cannot stall in
718 * async migration. Release the taken locks
719 */
720 struct buffer_head *failed_bh = bh;
721 bh = head;
722 while (bh != failed_bh) {
723 unlock_buffer(bh);
724 bh = bh->b_this_page;
725 }
726 return false;
727 }
728
729 bh = bh->b_this_page;
730 } while (bh != head);
731 return true;
732 }
733
__buffer_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode,bool check_refs)734 static int __buffer_migrate_folio(struct address_space *mapping,
735 struct folio *dst, struct folio *src, enum migrate_mode mode,
736 bool check_refs)
737 {
738 struct buffer_head *bh, *head;
739 int rc;
740 int expected_count;
741
742 head = folio_buffers(src);
743 if (!head)
744 return migrate_folio(mapping, dst, src, mode);
745
746 /* Check whether page does not have extra refs before we do more work */
747 expected_count = folio_expected_refs(mapping, src);
748 if (folio_ref_count(src) != expected_count)
749 return -EAGAIN;
750
751 if (!buffer_migrate_lock_buffers(head, mode))
752 return -EAGAIN;
753
754 if (check_refs) {
755 bool busy;
756 bool invalidated = false;
757
758 recheck_buffers:
759 busy = false;
760 spin_lock(&mapping->private_lock);
761 bh = head;
762 do {
763 if (atomic_read(&bh->b_count)) {
764 busy = true;
765 break;
766 }
767 bh = bh->b_this_page;
768 } while (bh != head);
769 if (busy) {
770 if (invalidated) {
771 rc = -EAGAIN;
772 goto unlock_buffers;
773 }
774 spin_unlock(&mapping->private_lock);
775 invalidate_bh_lrus();
776 invalidated = true;
777 goto recheck_buffers;
778 }
779 }
780
781 rc = folio_migrate_mapping(mapping, dst, src, 0);
782 if (rc != MIGRATEPAGE_SUCCESS)
783 goto unlock_buffers;
784
785 folio_attach_private(dst, folio_detach_private(src));
786
787 bh = head;
788 do {
789 set_bh_page(bh, &dst->page, bh_offset(bh));
790 bh = bh->b_this_page;
791 } while (bh != head);
792
793 if (mode != MIGRATE_SYNC_NO_COPY)
794 folio_migrate_copy(dst, src);
795 else
796 folio_migrate_flags(dst, src);
797
798 rc = MIGRATEPAGE_SUCCESS;
799 unlock_buffers:
800 if (check_refs)
801 spin_unlock(&mapping->private_lock);
802 bh = head;
803 do {
804 unlock_buffer(bh);
805 bh = bh->b_this_page;
806 } while (bh != head);
807
808 return rc;
809 }
810
811 /**
812 * buffer_migrate_folio() - Migration function for folios with buffers.
813 * @mapping: The address space containing @src.
814 * @dst: The folio to migrate to.
815 * @src: The folio to migrate from.
816 * @mode: How to migrate the folio.
817 *
818 * This function can only be used if the underlying filesystem guarantees
819 * that no other references to @src exist. For example attached buffer
820 * heads are accessed only under the folio lock. If your filesystem cannot
821 * provide this guarantee, buffer_migrate_folio_norefs() may be more
822 * appropriate.
823 *
824 * Return: 0 on success or a negative errno on failure.
825 */
buffer_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)826 int buffer_migrate_folio(struct address_space *mapping,
827 struct folio *dst, struct folio *src, enum migrate_mode mode)
828 {
829 return __buffer_migrate_folio(mapping, dst, src, mode, false);
830 }
831 EXPORT_SYMBOL(buffer_migrate_folio);
832
833 /**
834 * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
835 * @mapping: The address space containing @src.
836 * @dst: The folio to migrate to.
837 * @src: The folio to migrate from.
838 * @mode: How to migrate the folio.
839 *
840 * Like buffer_migrate_folio() except that this variant is more careful
841 * and checks that there are also no buffer head references. This function
842 * is the right one for mappings where buffer heads are directly looked
843 * up and referenced (such as block device mappings).
844 *
845 * Return: 0 on success or a negative errno on failure.
846 */
buffer_migrate_folio_norefs(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)847 int buffer_migrate_folio_norefs(struct address_space *mapping,
848 struct folio *dst, struct folio *src, enum migrate_mode mode)
849 {
850 return __buffer_migrate_folio(mapping, dst, src, mode, true);
851 }
852 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
853 #endif
854
filemap_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)855 int filemap_migrate_folio(struct address_space *mapping,
856 struct folio *dst, struct folio *src, enum migrate_mode mode)
857 {
858 int ret;
859
860 ret = folio_migrate_mapping(mapping, dst, src, 0);
861 if (ret != MIGRATEPAGE_SUCCESS)
862 return ret;
863
864 if (folio_get_private(src))
865 folio_attach_private(dst, folio_detach_private(src));
866
867 if (mode != MIGRATE_SYNC_NO_COPY)
868 folio_migrate_copy(dst, src);
869 else
870 folio_migrate_flags(dst, src);
871 return MIGRATEPAGE_SUCCESS;
872 }
873 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
874
875 /*
876 * Writeback a folio to clean the dirty state
877 */
writeout(struct address_space * mapping,struct folio * folio)878 static int writeout(struct address_space *mapping, struct folio *folio)
879 {
880 struct writeback_control wbc = {
881 .sync_mode = WB_SYNC_NONE,
882 .nr_to_write = 1,
883 .range_start = 0,
884 .range_end = LLONG_MAX,
885 .for_reclaim = 1
886 };
887 int rc;
888
889 if (!mapping->a_ops->writepage)
890 /* No write method for the address space */
891 return -EINVAL;
892
893 if (!folio_clear_dirty_for_io(folio))
894 /* Someone else already triggered a write */
895 return -EAGAIN;
896
897 /*
898 * A dirty folio may imply that the underlying filesystem has
899 * the folio on some queue. So the folio must be clean for
900 * migration. Writeout may mean we lose the lock and the
901 * folio state is no longer what we checked for earlier.
902 * At this point we know that the migration attempt cannot
903 * be successful.
904 */
905 remove_migration_ptes(folio, folio, false);
906
907 rc = mapping->a_ops->writepage(&folio->page, &wbc);
908
909 if (rc != AOP_WRITEPAGE_ACTIVATE)
910 /* unlocked. Relock */
911 folio_lock(folio);
912
913 return (rc < 0) ? -EIO : -EAGAIN;
914 }
915
916 /*
917 * Default handling if a filesystem does not provide a migration function.
918 */
fallback_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)919 static int fallback_migrate_folio(struct address_space *mapping,
920 struct folio *dst, struct folio *src, enum migrate_mode mode)
921 {
922 if (folio_test_dirty(src)) {
923 /* Only writeback folios in full synchronous migration */
924 switch (mode) {
925 case MIGRATE_SYNC:
926 case MIGRATE_SYNC_NO_COPY:
927 break;
928 default:
929 return -EBUSY;
930 }
931 return writeout(mapping, src);
932 }
933
934 /*
935 * Buffers may be managed in a filesystem specific way.
936 * We must have no buffers or drop them.
937 */
938 if (folio_test_private(src) &&
939 !filemap_release_folio(src, GFP_KERNEL))
940 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
941
942 return migrate_folio(mapping, dst, src, mode);
943 }
944
945 /*
946 * Move a page to a newly allocated page
947 * The page is locked and all ptes have been successfully removed.
948 *
949 * The new page will have replaced the old page if this function
950 * is successful.
951 *
952 * Return value:
953 * < 0 - error code
954 * MIGRATEPAGE_SUCCESS - success
955 */
move_to_new_folio(struct folio * dst,struct folio * src,enum migrate_mode mode)956 static int move_to_new_folio(struct folio *dst, struct folio *src,
957 enum migrate_mode mode)
958 {
959 int rc = -EAGAIN;
960 bool is_lru = !__PageMovable(&src->page);
961
962 VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
963 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
964
965 if (likely(is_lru)) {
966 struct address_space *mapping = folio_mapping(src);
967
968 if (!mapping)
969 rc = migrate_folio(mapping, dst, src, mode);
970 else if (mapping->a_ops->migrate_folio)
971 /*
972 * Most folios have a mapping and most filesystems
973 * provide a migrate_folio callback. Anonymous folios
974 * are part of swap space which also has its own
975 * migrate_folio callback. This is the most common path
976 * for page migration.
977 */
978 rc = mapping->a_ops->migrate_folio(mapping, dst, src,
979 mode);
980 else
981 rc = fallback_migrate_folio(mapping, dst, src, mode);
982 } else {
983 const struct movable_operations *mops;
984
985 /*
986 * In case of non-lru page, it could be released after
987 * isolation step. In that case, we shouldn't try migration.
988 */
989 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
990 if (!folio_test_movable(src)) {
991 rc = MIGRATEPAGE_SUCCESS;
992 folio_clear_isolated(src);
993 goto out;
994 }
995
996 mops = folio_movable_ops(src);
997 rc = mops->migrate_page(&dst->page, &src->page, mode);
998 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
999 !folio_test_isolated(src));
1000 }
1001
1002 /*
1003 * When successful, old pagecache src->mapping must be cleared before
1004 * src is freed; but stats require that PageAnon be left as PageAnon.
1005 */
1006 if (rc == MIGRATEPAGE_SUCCESS) {
1007 if (__PageMovable(&src->page)) {
1008 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1009
1010 /*
1011 * We clear PG_movable under page_lock so any compactor
1012 * cannot try to migrate this page.
1013 */
1014 folio_clear_isolated(src);
1015 }
1016
1017 /*
1018 * Anonymous and movable src->mapping will be cleared by
1019 * free_pages_prepare so don't reset it here for keeping
1020 * the type to work PageAnon, for example.
1021 */
1022 if (!folio_mapping_flags(src))
1023 src->mapping = NULL;
1024
1025 if (likely(!folio_is_zone_device(dst)))
1026 flush_dcache_folio(dst);
1027 }
1028 out:
1029 return rc;
1030 }
1031
1032 /*
1033 * To record some information during migration, we use some unused
1034 * fields (mapping and private) of struct folio of the newly allocated
1035 * destination folio. This is safe because nobody is using them
1036 * except us.
1037 */
1038 union migration_ptr {
1039 struct anon_vma *anon_vma;
1040 struct address_space *mapping;
1041 };
__migrate_folio_record(struct folio * dst,unsigned long page_was_mapped,struct anon_vma * anon_vma)1042 static void __migrate_folio_record(struct folio *dst,
1043 unsigned long page_was_mapped,
1044 struct anon_vma *anon_vma)
1045 {
1046 union migration_ptr ptr = { .anon_vma = anon_vma };
1047 dst->mapping = ptr.mapping;
1048 dst->private = (void *)page_was_mapped;
1049 }
1050
__migrate_folio_extract(struct folio * dst,int * page_was_mappedp,struct anon_vma ** anon_vmap)1051 static void __migrate_folio_extract(struct folio *dst,
1052 int *page_was_mappedp,
1053 struct anon_vma **anon_vmap)
1054 {
1055 union migration_ptr ptr = { .mapping = dst->mapping };
1056 *anon_vmap = ptr.anon_vma;
1057 *page_was_mappedp = (unsigned long)dst->private;
1058 dst->mapping = NULL;
1059 dst->private = NULL;
1060 }
1061
1062 /* Restore the source folio to the original state upon failure */
migrate_folio_undo_src(struct folio * src,int page_was_mapped,struct anon_vma * anon_vma,bool locked,struct list_head * ret)1063 static void migrate_folio_undo_src(struct folio *src,
1064 int page_was_mapped,
1065 struct anon_vma *anon_vma,
1066 bool locked,
1067 struct list_head *ret)
1068 {
1069 if (page_was_mapped)
1070 remove_migration_ptes(src, src, false);
1071 /* Drop an anon_vma reference if we took one */
1072 if (anon_vma)
1073 put_anon_vma(anon_vma);
1074 if (locked)
1075 folio_unlock(src);
1076 if (ret)
1077 list_move_tail(&src->lru, ret);
1078 }
1079
1080 /* Restore the destination folio to the original state upon failure */
migrate_folio_undo_dst(struct folio * dst,bool locked,free_page_t put_new_page,unsigned long private)1081 static void migrate_folio_undo_dst(struct folio *dst,
1082 bool locked,
1083 free_page_t put_new_page,
1084 unsigned long private)
1085 {
1086 if (locked)
1087 folio_unlock(dst);
1088 if (put_new_page)
1089 put_new_page(&dst->page, private);
1090 else
1091 folio_put(dst);
1092 }
1093
1094 /* Cleanup src folio upon migration success */
migrate_folio_done(struct folio * src,enum migrate_reason reason)1095 static void migrate_folio_done(struct folio *src,
1096 enum migrate_reason reason)
1097 {
1098 /*
1099 * Compaction can migrate also non-LRU pages which are
1100 * not accounted to NR_ISOLATED_*. They can be recognized
1101 * as __PageMovable
1102 */
1103 if (likely(!__folio_test_movable(src)))
1104 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1105 folio_is_file_lru(src), -folio_nr_pages(src));
1106
1107 if (reason != MR_MEMORY_FAILURE)
1108 /* We release the page in page_handle_poison. */
1109 folio_put(src);
1110 }
1111
1112 /* Obtain the lock on page, remove all ptes. */
migrate_folio_unmap(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct folio * src,struct folio ** dstp,int force,bool avoid_force_lock,enum migrate_mode mode,enum migrate_reason reason,struct list_head * ret)1113 static int migrate_folio_unmap(new_page_t get_new_page, free_page_t put_new_page,
1114 unsigned long private, struct folio *src,
1115 struct folio **dstp, int force, bool avoid_force_lock,
1116 enum migrate_mode mode, enum migrate_reason reason,
1117 struct list_head *ret)
1118 {
1119 struct folio *dst;
1120 int rc = -EAGAIN;
1121 struct page *newpage = NULL;
1122 int page_was_mapped = 0;
1123 struct anon_vma *anon_vma = NULL;
1124 bool is_lru = !__PageMovable(&src->page);
1125 bool locked = false;
1126 bool dst_locked = false;
1127
1128 if (folio_ref_count(src) == 1) {
1129 /* Folio was freed from under us. So we are done. */
1130 folio_clear_active(src);
1131 folio_clear_unevictable(src);
1132 /* free_pages_prepare() will clear PG_isolated. */
1133 list_del(&src->lru);
1134 migrate_folio_done(src, reason);
1135 return MIGRATEPAGE_SUCCESS;
1136 }
1137
1138 newpage = get_new_page(&src->page, private);
1139 if (!newpage)
1140 return -ENOMEM;
1141 dst = page_folio(newpage);
1142 *dstp = dst;
1143
1144 dst->private = NULL;
1145
1146 if (!folio_trylock(src)) {
1147 if (!force || mode == MIGRATE_ASYNC)
1148 goto out;
1149
1150 /*
1151 * It's not safe for direct compaction to call lock_page.
1152 * For example, during page readahead pages are added locked
1153 * to the LRU. Later, when the IO completes the pages are
1154 * marked uptodate and unlocked. However, the queueing
1155 * could be merging multiple pages for one bio (e.g.
1156 * mpage_readahead). If an allocation happens for the
1157 * second or third page, the process can end up locking
1158 * the same page twice and deadlocking. Rather than
1159 * trying to be clever about what pages can be locked,
1160 * avoid the use of lock_page for direct compaction
1161 * altogether.
1162 */
1163 if (current->flags & PF_MEMALLOC)
1164 goto out;
1165
1166 /*
1167 * We have locked some folios and are going to wait to lock
1168 * this folio. To avoid a potential deadlock, let's bail
1169 * out and not do that. The locked folios will be moved and
1170 * unlocked, then we can wait to lock this folio.
1171 */
1172 if (avoid_force_lock) {
1173 rc = -EDEADLOCK;
1174 goto out;
1175 }
1176
1177 folio_lock(src);
1178 }
1179 locked = true;
1180
1181 if (folio_test_writeback(src)) {
1182 /*
1183 * Only in the case of a full synchronous migration is it
1184 * necessary to wait for PageWriteback. In the async case,
1185 * the retry loop is too short and in the sync-light case,
1186 * the overhead of stalling is too much
1187 */
1188 switch (mode) {
1189 case MIGRATE_SYNC:
1190 case MIGRATE_SYNC_NO_COPY:
1191 break;
1192 default:
1193 rc = -EBUSY;
1194 goto out;
1195 }
1196 if (!force)
1197 goto out;
1198 folio_wait_writeback(src);
1199 }
1200
1201 /*
1202 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1203 * we cannot notice that anon_vma is freed while we migrate a page.
1204 * This get_anon_vma() delays freeing anon_vma pointer until the end
1205 * of migration. File cache pages are no problem because of page_lock()
1206 * File Caches may use write_page() or lock_page() in migration, then,
1207 * just care Anon page here.
1208 *
1209 * Only folio_get_anon_vma() understands the subtleties of
1210 * getting a hold on an anon_vma from outside one of its mms.
1211 * But if we cannot get anon_vma, then we won't need it anyway,
1212 * because that implies that the anon page is no longer mapped
1213 * (and cannot be remapped so long as we hold the page lock).
1214 */
1215 if (folio_test_anon(src) && !folio_test_ksm(src))
1216 anon_vma = folio_get_anon_vma(src);
1217
1218 /*
1219 * Block others from accessing the new page when we get around to
1220 * establishing additional references. We are usually the only one
1221 * holding a reference to dst at this point. We used to have a BUG
1222 * here if folio_trylock(dst) fails, but would like to allow for
1223 * cases where there might be a race with the previous use of dst.
1224 * This is much like races on refcount of oldpage: just don't BUG().
1225 */
1226 if (unlikely(!folio_trylock(dst)))
1227 goto out;
1228 dst_locked = true;
1229
1230 if (unlikely(!is_lru)) {
1231 __migrate_folio_record(dst, page_was_mapped, anon_vma);
1232 return MIGRATEPAGE_UNMAP;
1233 }
1234
1235 /*
1236 * Corner case handling:
1237 * 1. When a new swap-cache page is read into, it is added to the LRU
1238 * and treated as swapcache but it has no rmap yet.
1239 * Calling try_to_unmap() against a src->mapping==NULL page will
1240 * trigger a BUG. So handle it here.
1241 * 2. An orphaned page (see truncate_cleanup_page) might have
1242 * fs-private metadata. The page can be picked up due to memory
1243 * offlining. Everywhere else except page reclaim, the page is
1244 * invisible to the vm, so the page can not be migrated. So try to
1245 * free the metadata, so the page can be freed.
1246 */
1247 if (!src->mapping) {
1248 if (folio_test_private(src)) {
1249 try_to_free_buffers(src);
1250 goto out;
1251 }
1252 } else if (folio_mapped(src)) {
1253 /* Establish migration ptes */
1254 VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1255 !folio_test_ksm(src) && !anon_vma, src);
1256 try_to_migrate(src, TTU_BATCH_FLUSH);
1257 page_was_mapped = 1;
1258 }
1259
1260 if (!folio_mapped(src)) {
1261 __migrate_folio_record(dst, page_was_mapped, anon_vma);
1262 return MIGRATEPAGE_UNMAP;
1263 }
1264
1265 out:
1266 /*
1267 * A folio that has not been unmapped will be restored to
1268 * right list unless we want to retry.
1269 */
1270 if (rc == -EAGAIN || rc == -EDEADLOCK)
1271 ret = NULL;
1272
1273 migrate_folio_undo_src(src, page_was_mapped, anon_vma, locked, ret);
1274 migrate_folio_undo_dst(dst, dst_locked, put_new_page, private);
1275
1276 return rc;
1277 }
1278
1279 /* Migrate the folio to the newly allocated folio in dst. */
migrate_folio_move(free_page_t put_new_page,unsigned long private,struct folio * src,struct folio * dst,enum migrate_mode mode,enum migrate_reason reason,struct list_head * ret)1280 static int migrate_folio_move(free_page_t put_new_page, unsigned long private,
1281 struct folio *src, struct folio *dst,
1282 enum migrate_mode mode, enum migrate_reason reason,
1283 struct list_head *ret)
1284 {
1285 int rc;
1286 int page_was_mapped = 0;
1287 struct anon_vma *anon_vma = NULL;
1288 bool is_lru = !__PageMovable(&src->page);
1289 struct list_head *prev;
1290
1291 __migrate_folio_extract(dst, &page_was_mapped, &anon_vma);
1292 prev = dst->lru.prev;
1293 list_del(&dst->lru);
1294
1295 rc = move_to_new_folio(dst, src, mode);
1296 if (rc)
1297 goto out;
1298
1299 if (unlikely(!is_lru))
1300 goto out_unlock_both;
1301
1302 /*
1303 * When successful, push dst to LRU immediately: so that if it
1304 * turns out to be an mlocked page, remove_migration_ptes() will
1305 * automatically build up the correct dst->mlock_count for it.
1306 *
1307 * We would like to do something similar for the old page, when
1308 * unsuccessful, and other cases when a page has been temporarily
1309 * isolated from the unevictable LRU: but this case is the easiest.
1310 */
1311 folio_add_lru(dst);
1312 if (page_was_mapped)
1313 lru_add_drain();
1314
1315 if (page_was_mapped)
1316 remove_migration_ptes(src, dst, false);
1317
1318 out_unlock_both:
1319 folio_unlock(dst);
1320 set_page_owner_migrate_reason(&dst->page, reason);
1321 /*
1322 * If migration is successful, decrease refcount of dst,
1323 * which will not free the page because new page owner increased
1324 * refcounter.
1325 */
1326 folio_put(dst);
1327
1328 /*
1329 * A folio that has been migrated has all references removed
1330 * and will be freed.
1331 */
1332 list_del(&src->lru);
1333 /* Drop an anon_vma reference if we took one */
1334 if (anon_vma)
1335 put_anon_vma(anon_vma);
1336 folio_unlock(src);
1337 migrate_folio_done(src, reason);
1338
1339 return rc;
1340 out:
1341 /*
1342 * A folio that has not been migrated will be restored to
1343 * right list unless we want to retry.
1344 */
1345 if (rc == -EAGAIN) {
1346 list_add(&dst->lru, prev);
1347 __migrate_folio_record(dst, page_was_mapped, anon_vma);
1348 return rc;
1349 }
1350
1351 migrate_folio_undo_src(src, page_was_mapped, anon_vma, true, ret);
1352 migrate_folio_undo_dst(dst, true, put_new_page, private);
1353
1354 return rc;
1355 }
1356
1357 /*
1358 * Counterpart of unmap_and_move_page() for hugepage migration.
1359 *
1360 * This function doesn't wait the completion of hugepage I/O
1361 * because there is no race between I/O and migration for hugepage.
1362 * Note that currently hugepage I/O occurs only in direct I/O
1363 * where no lock is held and PG_writeback is irrelevant,
1364 * and writeback status of all subpages are counted in the reference
1365 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1366 * under direct I/O, the reference of the head page is 512 and a bit more.)
1367 * This means that when we try to migrate hugepage whose subpages are
1368 * doing direct I/O, some references remain after try_to_unmap() and
1369 * hugepage migration fails without data corruption.
1370 *
1371 * There is also no race when direct I/O is issued on the page under migration,
1372 * because then pte is replaced with migration swap entry and direct I/O code
1373 * will wait in the page fault for migration to complete.
1374 */
unmap_and_move_huge_page(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * hpage,int force,enum migrate_mode mode,int reason,struct list_head * ret)1375 static int unmap_and_move_huge_page(new_page_t get_new_page,
1376 free_page_t put_new_page, unsigned long private,
1377 struct page *hpage, int force,
1378 enum migrate_mode mode, int reason,
1379 struct list_head *ret)
1380 {
1381 struct folio *dst, *src = page_folio(hpage);
1382 int rc = -EAGAIN;
1383 int page_was_mapped = 0;
1384 struct page *new_hpage;
1385 struct anon_vma *anon_vma = NULL;
1386 struct address_space *mapping = NULL;
1387
1388 if (folio_ref_count(src) == 1) {
1389 /* page was freed from under us. So we are done. */
1390 folio_putback_active_hugetlb(src);
1391 return MIGRATEPAGE_SUCCESS;
1392 }
1393
1394 new_hpage = get_new_page(hpage, private);
1395 if (!new_hpage)
1396 return -ENOMEM;
1397 dst = page_folio(new_hpage);
1398
1399 if (!folio_trylock(src)) {
1400 if (!force)
1401 goto out;
1402 switch (mode) {
1403 case MIGRATE_SYNC:
1404 case MIGRATE_SYNC_NO_COPY:
1405 break;
1406 default:
1407 goto out;
1408 }
1409 folio_lock(src);
1410 }
1411
1412 /*
1413 * Check for pages which are in the process of being freed. Without
1414 * folio_mapping() set, hugetlbfs specific move page routine will not
1415 * be called and we could leak usage counts for subpools.
1416 */
1417 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1418 rc = -EBUSY;
1419 goto out_unlock;
1420 }
1421
1422 if (folio_test_anon(src))
1423 anon_vma = folio_get_anon_vma(src);
1424
1425 if (unlikely(!folio_trylock(dst)))
1426 goto put_anon;
1427
1428 if (folio_mapped(src)) {
1429 enum ttu_flags ttu = 0;
1430
1431 if (!folio_test_anon(src)) {
1432 /*
1433 * In shared mappings, try_to_unmap could potentially
1434 * call huge_pmd_unshare. Because of this, take
1435 * semaphore in write mode here and set TTU_RMAP_LOCKED
1436 * to let lower levels know we have taken the lock.
1437 */
1438 mapping = hugetlb_page_mapping_lock_write(hpage);
1439 if (unlikely(!mapping))
1440 goto unlock_put_anon;
1441
1442 ttu = TTU_RMAP_LOCKED;
1443 }
1444
1445 try_to_migrate(src, ttu);
1446 page_was_mapped = 1;
1447
1448 if (ttu & TTU_RMAP_LOCKED)
1449 i_mmap_unlock_write(mapping);
1450 }
1451
1452 if (!folio_mapped(src))
1453 rc = move_to_new_folio(dst, src, mode);
1454
1455 if (page_was_mapped)
1456 remove_migration_ptes(src,
1457 rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1458
1459 unlock_put_anon:
1460 folio_unlock(dst);
1461
1462 put_anon:
1463 if (anon_vma)
1464 put_anon_vma(anon_vma);
1465
1466 if (rc == MIGRATEPAGE_SUCCESS) {
1467 move_hugetlb_state(src, dst, reason);
1468 put_new_page = NULL;
1469 }
1470
1471 out_unlock:
1472 folio_unlock(src);
1473 out:
1474 if (rc == MIGRATEPAGE_SUCCESS)
1475 folio_putback_active_hugetlb(src);
1476 else if (rc != -EAGAIN)
1477 list_move_tail(&src->lru, ret);
1478
1479 /*
1480 * If migration was not successful and there's a freeing callback, use
1481 * it. Otherwise, put_page() will drop the reference grabbed during
1482 * isolation.
1483 */
1484 if (put_new_page)
1485 put_new_page(new_hpage, private);
1486 else
1487 folio_putback_active_hugetlb(dst);
1488
1489 return rc;
1490 }
1491
try_split_folio(struct folio * folio,struct list_head * split_folios)1492 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1493 {
1494 int rc;
1495
1496 folio_lock(folio);
1497 rc = split_folio_to_list(folio, split_folios);
1498 folio_unlock(folio);
1499 if (!rc)
1500 list_move_tail(&folio->lru, split_folios);
1501
1502 return rc;
1503 }
1504
1505 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1506 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR
1507 #else
1508 #define NR_MAX_BATCHED_MIGRATION 512
1509 #endif
1510 #define NR_MAX_MIGRATE_PAGES_RETRY 10
1511
1512 struct migrate_pages_stats {
1513 int nr_succeeded; /* Normal and large folios migrated successfully, in
1514 units of base pages */
1515 int nr_failed_pages; /* Normal and large folios failed to be migrated, in
1516 units of base pages. Untried folios aren't counted */
1517 int nr_thp_succeeded; /* THP migrated successfully */
1518 int nr_thp_failed; /* THP failed to be migrated */
1519 int nr_thp_split; /* THP split before migrating */
1520 };
1521
1522 /*
1523 * Returns the number of hugetlb folios that were not migrated, or an error code
1524 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1525 * any more because the list has become empty or no retryable hugetlb folios
1526 * exist any more. It is caller's responsibility to call putback_movable_pages()
1527 * only if ret != 0.
1528 */
migrate_hugetlbs(struct list_head * from,new_page_t get_new_page,free_page_t put_new_page,unsigned long private,enum migrate_mode mode,int reason,struct migrate_pages_stats * stats,struct list_head * ret_folios)1529 static int migrate_hugetlbs(struct list_head *from, new_page_t get_new_page,
1530 free_page_t put_new_page, unsigned long private,
1531 enum migrate_mode mode, int reason,
1532 struct migrate_pages_stats *stats,
1533 struct list_head *ret_folios)
1534 {
1535 int retry = 1;
1536 int nr_failed = 0;
1537 int nr_retry_pages = 0;
1538 int pass = 0;
1539 struct folio *folio, *folio2;
1540 int rc, nr_pages;
1541
1542 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1543 retry = 0;
1544 nr_retry_pages = 0;
1545
1546 list_for_each_entry_safe(folio, folio2, from, lru) {
1547 if (!folio_test_hugetlb(folio))
1548 continue;
1549
1550 nr_pages = folio_nr_pages(folio);
1551
1552 cond_resched();
1553
1554 /*
1555 * Migratability of hugepages depends on architectures and
1556 * their size. This check is necessary because some callers
1557 * of hugepage migration like soft offline and memory
1558 * hotremove don't walk through page tables or check whether
1559 * the hugepage is pmd-based or not before kicking migration.
1560 */
1561 if (!hugepage_migration_supported(folio_hstate(folio))) {
1562 nr_failed++;
1563 stats->nr_failed_pages += nr_pages;
1564 list_move_tail(&folio->lru, ret_folios);
1565 continue;
1566 }
1567
1568 rc = unmap_and_move_huge_page(get_new_page,
1569 put_new_page, private,
1570 &folio->page, pass > 2, mode,
1571 reason, ret_folios);
1572 /*
1573 * The rules are:
1574 * Success: hugetlb folio will be put back
1575 * -EAGAIN: stay on the from list
1576 * -ENOMEM: stay on the from list
1577 * Other errno: put on ret_folios list
1578 */
1579 switch(rc) {
1580 case -ENOMEM:
1581 /*
1582 * When memory is low, don't bother to try to migrate
1583 * other folios, just exit.
1584 */
1585 stats->nr_failed_pages += nr_pages + nr_retry_pages;
1586 return -ENOMEM;
1587 case -EAGAIN:
1588 retry++;
1589 nr_retry_pages += nr_pages;
1590 break;
1591 case MIGRATEPAGE_SUCCESS:
1592 stats->nr_succeeded += nr_pages;
1593 break;
1594 default:
1595 /*
1596 * Permanent failure (-EBUSY, etc.):
1597 * unlike -EAGAIN case, the failed folio is
1598 * removed from migration folio list and not
1599 * retried in the next outer loop.
1600 */
1601 nr_failed++;
1602 stats->nr_failed_pages += nr_pages;
1603 break;
1604 }
1605 }
1606 }
1607 /*
1608 * nr_failed is number of hugetlb folios failed to be migrated. After
1609 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1610 * folios as failed.
1611 */
1612 nr_failed += retry;
1613 stats->nr_failed_pages += nr_retry_pages;
1614
1615 return nr_failed;
1616 }
1617
1618 /*
1619 * migrate_pages_batch() first unmaps folios in the from list as many as
1620 * possible, then move the unmapped folios.
1621 */
migrate_pages_batch(struct list_head * from,new_page_t get_new_page,free_page_t put_new_page,unsigned long private,enum migrate_mode mode,int reason,struct list_head * ret_folios,struct migrate_pages_stats * stats)1622 static int migrate_pages_batch(struct list_head *from, new_page_t get_new_page,
1623 free_page_t put_new_page, unsigned long private,
1624 enum migrate_mode mode, int reason, struct list_head *ret_folios,
1625 struct migrate_pages_stats *stats)
1626 {
1627 int retry;
1628 int large_retry = 1;
1629 int thp_retry = 1;
1630 int nr_failed = 0;
1631 int nr_retry_pages = 0;
1632 int nr_large_failed = 0;
1633 int pass = 0;
1634 bool is_large = false;
1635 bool is_thp = false;
1636 struct folio *folio, *folio2, *dst = NULL, *dst2;
1637 int rc, rc_saved, nr_pages;
1638 LIST_HEAD(split_folios);
1639 LIST_HEAD(unmap_folios);
1640 LIST_HEAD(dst_folios);
1641 bool nosplit = (reason == MR_NUMA_MISPLACED);
1642 bool no_split_folio_counting = false;
1643 bool avoid_force_lock;
1644
1645 retry:
1646 rc_saved = 0;
1647 avoid_force_lock = false;
1648 retry = 1;
1649 for (pass = 0;
1650 pass < NR_MAX_MIGRATE_PAGES_RETRY && (retry || large_retry);
1651 pass++) {
1652 retry = 0;
1653 large_retry = 0;
1654 thp_retry = 0;
1655 nr_retry_pages = 0;
1656
1657 list_for_each_entry_safe(folio, folio2, from, lru) {
1658 /*
1659 * Large folio statistics is based on the source large
1660 * folio. Capture required information that might get
1661 * lost during migration.
1662 */
1663 is_large = folio_test_large(folio);
1664 is_thp = is_large && folio_test_pmd_mappable(folio);
1665 nr_pages = folio_nr_pages(folio);
1666
1667 cond_resched();
1668
1669 /*
1670 * Large folio migration might be unsupported or
1671 * the allocation might be failed so we should retry
1672 * on the same folio with the large folio split
1673 * to normal folios.
1674 *
1675 * Split folios are put in split_folios, and
1676 * we will migrate them after the rest of the
1677 * list is processed.
1678 */
1679 if (!thp_migration_supported() && is_thp) {
1680 nr_large_failed++;
1681 stats->nr_thp_failed++;
1682 if (!try_split_folio(folio, &split_folios)) {
1683 stats->nr_thp_split++;
1684 continue;
1685 }
1686 stats->nr_failed_pages += nr_pages;
1687 list_move_tail(&folio->lru, ret_folios);
1688 continue;
1689 }
1690
1691 rc = migrate_folio_unmap(get_new_page, put_new_page, private,
1692 folio, &dst, pass > 2, avoid_force_lock,
1693 mode, reason, ret_folios);
1694 /*
1695 * The rules are:
1696 * Success: folio will be freed
1697 * Unmap: folio will be put on unmap_folios list,
1698 * dst folio put on dst_folios list
1699 * -EAGAIN: stay on the from list
1700 * -EDEADLOCK: stay on the from list
1701 * -ENOMEM: stay on the from list
1702 * Other errno: put on ret_folios list
1703 */
1704 switch(rc) {
1705 case -ENOMEM:
1706 /*
1707 * When memory is low, don't bother to try to migrate
1708 * other folios, move unmapped folios, then exit.
1709 */
1710 if (is_large) {
1711 nr_large_failed++;
1712 stats->nr_thp_failed += is_thp;
1713 /* Large folio NUMA faulting doesn't split to retry. */
1714 if (!nosplit) {
1715 int ret = try_split_folio(folio, &split_folios);
1716
1717 if (!ret) {
1718 stats->nr_thp_split += is_thp;
1719 break;
1720 } else if (reason == MR_LONGTERM_PIN &&
1721 ret == -EAGAIN) {
1722 /*
1723 * Try again to split large folio to
1724 * mitigate the failure of longterm pinning.
1725 */
1726 large_retry++;
1727 thp_retry += is_thp;
1728 nr_retry_pages += nr_pages;
1729 break;
1730 }
1731 }
1732 } else if (!no_split_folio_counting) {
1733 nr_failed++;
1734 }
1735
1736 stats->nr_failed_pages += nr_pages + nr_retry_pages;
1737 /*
1738 * There might be some split folios of fail-to-migrate large
1739 * folios left in split_folios list. Move them to ret_folios
1740 * list so that they could be put back to the right list by
1741 * the caller otherwise the folio refcnt will be leaked.
1742 */
1743 list_splice_init(&split_folios, ret_folios);
1744 /* nr_failed isn't updated for not used */
1745 nr_large_failed += large_retry;
1746 stats->nr_thp_failed += thp_retry;
1747 rc_saved = rc;
1748 if (list_empty(&unmap_folios))
1749 goto out;
1750 else
1751 goto move;
1752 case -EDEADLOCK:
1753 /*
1754 * The folio cannot be locked for potential deadlock.
1755 * Go move (and unlock) all locked folios. Then we can
1756 * try again.
1757 */
1758 rc_saved = rc;
1759 goto move;
1760 case -EAGAIN:
1761 if (is_large) {
1762 large_retry++;
1763 thp_retry += is_thp;
1764 } else if (!no_split_folio_counting) {
1765 retry++;
1766 }
1767 nr_retry_pages += nr_pages;
1768 break;
1769 case MIGRATEPAGE_SUCCESS:
1770 stats->nr_succeeded += nr_pages;
1771 stats->nr_thp_succeeded += is_thp;
1772 break;
1773 case MIGRATEPAGE_UNMAP:
1774 /*
1775 * We have locked some folios, don't force lock
1776 * to avoid deadlock.
1777 */
1778 avoid_force_lock = true;
1779 list_move_tail(&folio->lru, &unmap_folios);
1780 list_add_tail(&dst->lru, &dst_folios);
1781 break;
1782 default:
1783 /*
1784 * Permanent failure (-EBUSY, etc.):
1785 * unlike -EAGAIN case, the failed folio is
1786 * removed from migration folio list and not
1787 * retried in the next outer loop.
1788 */
1789 if (is_large) {
1790 nr_large_failed++;
1791 stats->nr_thp_failed += is_thp;
1792 } else if (!no_split_folio_counting) {
1793 nr_failed++;
1794 }
1795
1796 stats->nr_failed_pages += nr_pages;
1797 break;
1798 }
1799 }
1800 }
1801 nr_failed += retry;
1802 nr_large_failed += large_retry;
1803 stats->nr_thp_failed += thp_retry;
1804 stats->nr_failed_pages += nr_retry_pages;
1805 move:
1806 /* Flush TLBs for all unmapped folios */
1807 try_to_unmap_flush();
1808
1809 retry = 1;
1810 for (pass = 0;
1811 pass < NR_MAX_MIGRATE_PAGES_RETRY && (retry || large_retry);
1812 pass++) {
1813 retry = 0;
1814 large_retry = 0;
1815 thp_retry = 0;
1816 nr_retry_pages = 0;
1817
1818 dst = list_first_entry(&dst_folios, struct folio, lru);
1819 dst2 = list_next_entry(dst, lru);
1820 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1821 is_large = folio_test_large(folio);
1822 is_thp = is_large && folio_test_pmd_mappable(folio);
1823 nr_pages = folio_nr_pages(folio);
1824
1825 cond_resched();
1826
1827 rc = migrate_folio_move(put_new_page, private,
1828 folio, dst, mode,
1829 reason, ret_folios);
1830 /*
1831 * The rules are:
1832 * Success: folio will be freed
1833 * -EAGAIN: stay on the unmap_folios list
1834 * Other errno: put on ret_folios list
1835 */
1836 switch(rc) {
1837 case -EAGAIN:
1838 if (is_large) {
1839 large_retry++;
1840 thp_retry += is_thp;
1841 } else if (!no_split_folio_counting) {
1842 retry++;
1843 }
1844 nr_retry_pages += nr_pages;
1845 break;
1846 case MIGRATEPAGE_SUCCESS:
1847 stats->nr_succeeded += nr_pages;
1848 stats->nr_thp_succeeded += is_thp;
1849 break;
1850 default:
1851 if (is_large) {
1852 nr_large_failed++;
1853 stats->nr_thp_failed += is_thp;
1854 } else if (!no_split_folio_counting) {
1855 nr_failed++;
1856 }
1857
1858 stats->nr_failed_pages += nr_pages;
1859 break;
1860 }
1861 dst = dst2;
1862 dst2 = list_next_entry(dst, lru);
1863 }
1864 }
1865 nr_failed += retry;
1866 nr_large_failed += large_retry;
1867 stats->nr_thp_failed += thp_retry;
1868 stats->nr_failed_pages += nr_retry_pages;
1869
1870 if (rc_saved)
1871 rc = rc_saved;
1872 else
1873 rc = nr_failed + nr_large_failed;
1874 out:
1875 /* Cleanup remaining folios */
1876 dst = list_first_entry(&dst_folios, struct folio, lru);
1877 dst2 = list_next_entry(dst, lru);
1878 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1879 int page_was_mapped = 0;
1880 struct anon_vma *anon_vma = NULL;
1881
1882 __migrate_folio_extract(dst, &page_was_mapped, &anon_vma);
1883 migrate_folio_undo_src(folio, page_was_mapped, anon_vma,
1884 true, ret_folios);
1885 list_del(&dst->lru);
1886 migrate_folio_undo_dst(dst, true, put_new_page, private);
1887 dst = dst2;
1888 dst2 = list_next_entry(dst, lru);
1889 }
1890
1891 /*
1892 * Try to migrate split folios of fail-to-migrate large folios, no
1893 * nr_failed counting in this round, since all split folios of a
1894 * large folio is counted as 1 failure in the first round.
1895 */
1896 if (rc >= 0 && !list_empty(&split_folios)) {
1897 /*
1898 * Move non-migrated folios (after NR_MAX_MIGRATE_PAGES_RETRY
1899 * retries) to ret_folios to avoid migrating them again.
1900 */
1901 list_splice_init(from, ret_folios);
1902 list_splice_init(&split_folios, from);
1903 no_split_folio_counting = true;
1904 goto retry;
1905 }
1906
1907 /*
1908 * We have unlocked all locked folios, so we can force lock now, let's
1909 * try again.
1910 */
1911 if (rc == -EDEADLOCK)
1912 goto retry;
1913
1914 return rc;
1915 }
1916
1917 /*
1918 * migrate_pages - migrate the folios specified in a list, to the free folios
1919 * supplied as the target for the page migration
1920 *
1921 * @from: The list of folios to be migrated.
1922 * @get_new_page: The function used to allocate free folios to be used
1923 * as the target of the folio migration.
1924 * @put_new_page: The function used to free target folios if migration
1925 * fails, or NULL if no special handling is necessary.
1926 * @private: Private data to be passed on to get_new_page()
1927 * @mode: The migration mode that specifies the constraints for
1928 * folio migration, if any.
1929 * @reason: The reason for folio migration.
1930 * @ret_succeeded: Set to the number of folios migrated successfully if
1931 * the caller passes a non-NULL pointer.
1932 *
1933 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
1934 * are movable any more because the list has become empty or no retryable folios
1935 * exist any more. It is caller's responsibility to call putback_movable_pages()
1936 * only if ret != 0.
1937 *
1938 * Returns the number of {normal folio, large folio, hugetlb} that were not
1939 * migrated, or an error code. The number of large folio splits will be
1940 * considered as the number of non-migrated large folio, no matter how many
1941 * split folios of the large folio are migrated successfully.
1942 */
migrate_pages(struct list_head * from,new_page_t get_new_page,free_page_t put_new_page,unsigned long private,enum migrate_mode mode,int reason,unsigned int * ret_succeeded)1943 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1944 free_page_t put_new_page, unsigned long private,
1945 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1946 {
1947 int rc, rc_gather;
1948 int nr_pages;
1949 struct folio *folio, *folio2;
1950 LIST_HEAD(folios);
1951 LIST_HEAD(ret_folios);
1952 struct migrate_pages_stats stats;
1953
1954 trace_mm_migrate_pages_start(mode, reason);
1955
1956 memset(&stats, 0, sizeof(stats));
1957
1958 rc_gather = migrate_hugetlbs(from, get_new_page, put_new_page, private,
1959 mode, reason, &stats, &ret_folios);
1960 if (rc_gather < 0)
1961 goto out;
1962 again:
1963 nr_pages = 0;
1964 list_for_each_entry_safe(folio, folio2, from, lru) {
1965 /* Retried hugetlb folios will be kept in list */
1966 if (folio_test_hugetlb(folio)) {
1967 list_move_tail(&folio->lru, &ret_folios);
1968 continue;
1969 }
1970
1971 nr_pages += folio_nr_pages(folio);
1972 if (nr_pages > NR_MAX_BATCHED_MIGRATION)
1973 break;
1974 }
1975 if (nr_pages > NR_MAX_BATCHED_MIGRATION)
1976 list_cut_before(&folios, from, &folio->lru);
1977 else
1978 list_splice_init(from, &folios);
1979 rc = migrate_pages_batch(&folios, get_new_page, put_new_page, private,
1980 mode, reason, &ret_folios, &stats);
1981 list_splice_tail_init(&folios, &ret_folios);
1982 if (rc < 0) {
1983 rc_gather = rc;
1984 goto out;
1985 }
1986 rc_gather += rc;
1987 if (!list_empty(from))
1988 goto again;
1989 out:
1990 /*
1991 * Put the permanent failure folio back to migration list, they
1992 * will be put back to the right list by the caller.
1993 */
1994 list_splice(&ret_folios, from);
1995
1996 /*
1997 * Return 0 in case all split folios of fail-to-migrate large folios
1998 * are migrated successfully.
1999 */
2000 if (list_empty(from))
2001 rc_gather = 0;
2002
2003 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
2004 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
2005 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
2006 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
2007 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
2008 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
2009 stats.nr_thp_succeeded, stats.nr_thp_failed,
2010 stats.nr_thp_split, mode, reason);
2011
2012 if (ret_succeeded)
2013 *ret_succeeded = stats.nr_succeeded;
2014
2015 return rc_gather;
2016 }
2017
alloc_migration_target(struct page * page,unsigned long private)2018 struct page *alloc_migration_target(struct page *page, unsigned long private)
2019 {
2020 struct folio *folio = page_folio(page);
2021 struct migration_target_control *mtc;
2022 gfp_t gfp_mask;
2023 unsigned int order = 0;
2024 struct folio *hugetlb_folio = NULL;
2025 struct folio *new_folio = NULL;
2026 int nid;
2027 int zidx;
2028
2029 mtc = (struct migration_target_control *)private;
2030 gfp_mask = mtc->gfp_mask;
2031 nid = mtc->nid;
2032 if (nid == NUMA_NO_NODE)
2033 nid = folio_nid(folio);
2034
2035 if (folio_test_hugetlb(folio)) {
2036 struct hstate *h = folio_hstate(folio);
2037
2038 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2039 hugetlb_folio = alloc_hugetlb_folio_nodemask(h, nid,
2040 mtc->nmask, gfp_mask);
2041 return &hugetlb_folio->page;
2042 }
2043
2044 if (folio_test_large(folio)) {
2045 /*
2046 * clear __GFP_RECLAIM to make the migration callback
2047 * consistent with regular THP allocations.
2048 */
2049 gfp_mask &= ~__GFP_RECLAIM;
2050 gfp_mask |= GFP_TRANSHUGE;
2051 order = folio_order(folio);
2052 }
2053 zidx = zone_idx(folio_zone(folio));
2054 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2055 gfp_mask |= __GFP_HIGHMEM;
2056
2057 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2058
2059 return &new_folio->page;
2060 }
2061
2062 #ifdef CONFIG_NUMA
2063
store_status(int __user * status,int start,int value,int nr)2064 static int store_status(int __user *status, int start, int value, int nr)
2065 {
2066 while (nr-- > 0) {
2067 if (put_user(value, status + start))
2068 return -EFAULT;
2069 start++;
2070 }
2071
2072 return 0;
2073 }
2074
do_move_pages_to_node(struct mm_struct * mm,struct list_head * pagelist,int node)2075 static int do_move_pages_to_node(struct mm_struct *mm,
2076 struct list_head *pagelist, int node)
2077 {
2078 int err;
2079 struct migration_target_control mtc = {
2080 .nid = node,
2081 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2082 };
2083
2084 err = migrate_pages(pagelist, alloc_migration_target, NULL,
2085 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2086 if (err)
2087 putback_movable_pages(pagelist);
2088 return err;
2089 }
2090
2091 /*
2092 * Resolves the given address to a struct page, isolates it from the LRU and
2093 * puts it to the given pagelist.
2094 * Returns:
2095 * errno - if the page cannot be found/isolated
2096 * 0 - when it doesn't have to be migrated because it is already on the
2097 * target node
2098 * 1 - when it has been queued
2099 */
add_page_for_migration(struct mm_struct * mm,unsigned long addr,int node,struct list_head * pagelist,bool migrate_all)2100 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
2101 int node, struct list_head *pagelist, bool migrate_all)
2102 {
2103 struct vm_area_struct *vma;
2104 struct page *page;
2105 int err;
2106 bool isolated;
2107
2108 mmap_read_lock(mm);
2109 err = -EFAULT;
2110 vma = vma_lookup(mm, addr);
2111 if (!vma || !vma_migratable(vma))
2112 goto out;
2113
2114 /* FOLL_DUMP to ignore special (like zero) pages */
2115 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2116
2117 err = PTR_ERR(page);
2118 if (IS_ERR(page))
2119 goto out;
2120
2121 err = -ENOENT;
2122 if (!page)
2123 goto out;
2124
2125 if (is_zone_device_page(page))
2126 goto out_putpage;
2127
2128 err = 0;
2129 if (page_to_nid(page) == node)
2130 goto out_putpage;
2131
2132 err = -EACCES;
2133 if (page_mapcount(page) > 1 && !migrate_all)
2134 goto out_putpage;
2135
2136 if (PageHuge(page)) {
2137 if (PageHead(page)) {
2138 isolated = isolate_hugetlb(page_folio(page), pagelist);
2139 err = isolated ? 1 : -EBUSY;
2140 }
2141 } else {
2142 struct page *head;
2143
2144 head = compound_head(page);
2145 isolated = isolate_lru_page(head);
2146 if (!isolated) {
2147 err = -EBUSY;
2148 goto out_putpage;
2149 }
2150
2151 err = 1;
2152 list_add_tail(&head->lru, pagelist);
2153 mod_node_page_state(page_pgdat(head),
2154 NR_ISOLATED_ANON + page_is_file_lru(head),
2155 thp_nr_pages(head));
2156 }
2157 out_putpage:
2158 /*
2159 * Either remove the duplicate refcount from
2160 * isolate_lru_page() or drop the page ref if it was
2161 * not isolated.
2162 */
2163 put_page(page);
2164 out:
2165 mmap_read_unlock(mm);
2166 return err;
2167 }
2168
move_pages_and_store_status(struct mm_struct * mm,int node,struct list_head * pagelist,int __user * status,int start,int i,unsigned long nr_pages)2169 static int move_pages_and_store_status(struct mm_struct *mm, int node,
2170 struct list_head *pagelist, int __user *status,
2171 int start, int i, unsigned long nr_pages)
2172 {
2173 int err;
2174
2175 if (list_empty(pagelist))
2176 return 0;
2177
2178 err = do_move_pages_to_node(mm, pagelist, node);
2179 if (err) {
2180 /*
2181 * Positive err means the number of failed
2182 * pages to migrate. Since we are going to
2183 * abort and return the number of non-migrated
2184 * pages, so need to include the rest of the
2185 * nr_pages that have not been attempted as
2186 * well.
2187 */
2188 if (err > 0)
2189 err += nr_pages - i;
2190 return err;
2191 }
2192 return store_status(status, start, node, i - start);
2193 }
2194
2195 /*
2196 * Migrate an array of page address onto an array of nodes and fill
2197 * the corresponding array of status.
2198 */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)2199 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2200 unsigned long nr_pages,
2201 const void __user * __user *pages,
2202 const int __user *nodes,
2203 int __user *status, int flags)
2204 {
2205 int current_node = NUMA_NO_NODE;
2206 LIST_HEAD(pagelist);
2207 int start, i;
2208 int err = 0, err1;
2209
2210 lru_cache_disable();
2211
2212 for (i = start = 0; i < nr_pages; i++) {
2213 const void __user *p;
2214 unsigned long addr;
2215 int node;
2216
2217 err = -EFAULT;
2218 if (get_user(p, pages + i))
2219 goto out_flush;
2220 if (get_user(node, nodes + i))
2221 goto out_flush;
2222 addr = (unsigned long)untagged_addr(p);
2223
2224 err = -ENODEV;
2225 if (node < 0 || node >= MAX_NUMNODES)
2226 goto out_flush;
2227 if (!node_state(node, N_MEMORY))
2228 goto out_flush;
2229
2230 err = -EACCES;
2231 if (!node_isset(node, task_nodes))
2232 goto out_flush;
2233
2234 if (current_node == NUMA_NO_NODE) {
2235 current_node = node;
2236 start = i;
2237 } else if (node != current_node) {
2238 err = move_pages_and_store_status(mm, current_node,
2239 &pagelist, status, start, i, nr_pages);
2240 if (err)
2241 goto out;
2242 start = i;
2243 current_node = node;
2244 }
2245
2246 /*
2247 * Errors in the page lookup or isolation are not fatal and we simply
2248 * report them via status
2249 */
2250 err = add_page_for_migration(mm, addr, current_node,
2251 &pagelist, flags & MPOL_MF_MOVE_ALL);
2252
2253 if (err > 0) {
2254 /* The page is successfully queued for migration */
2255 continue;
2256 }
2257
2258 /*
2259 * The move_pages() man page does not have an -EEXIST choice, so
2260 * use -EFAULT instead.
2261 */
2262 if (err == -EEXIST)
2263 err = -EFAULT;
2264
2265 /*
2266 * If the page is already on the target node (!err), store the
2267 * node, otherwise, store the err.
2268 */
2269 err = store_status(status, i, err ? : current_node, 1);
2270 if (err)
2271 goto out_flush;
2272
2273 err = move_pages_and_store_status(mm, current_node, &pagelist,
2274 status, start, i, nr_pages);
2275 if (err) {
2276 /* We have accounted for page i */
2277 if (err > 0)
2278 err--;
2279 goto out;
2280 }
2281 current_node = NUMA_NO_NODE;
2282 }
2283 out_flush:
2284 /* Make sure we do not overwrite the existing error */
2285 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
2286 status, start, i, nr_pages);
2287 if (err >= 0)
2288 err = err1;
2289 out:
2290 lru_cache_enable();
2291 return err;
2292 }
2293
2294 /*
2295 * Determine the nodes of an array of pages and store it in an array of status.
2296 */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)2297 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2298 const void __user **pages, int *status)
2299 {
2300 unsigned long i;
2301
2302 mmap_read_lock(mm);
2303
2304 for (i = 0; i < nr_pages; i++) {
2305 unsigned long addr = (unsigned long)(*pages);
2306 struct vm_area_struct *vma;
2307 struct page *page;
2308 int err = -EFAULT;
2309
2310 vma = vma_lookup(mm, addr);
2311 if (!vma)
2312 goto set_status;
2313
2314 /* FOLL_DUMP to ignore special (like zero) pages */
2315 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2316
2317 err = PTR_ERR(page);
2318 if (IS_ERR(page))
2319 goto set_status;
2320
2321 err = -ENOENT;
2322 if (!page)
2323 goto set_status;
2324
2325 if (!is_zone_device_page(page))
2326 err = page_to_nid(page);
2327
2328 put_page(page);
2329 set_status:
2330 *status = err;
2331
2332 pages++;
2333 status++;
2334 }
2335
2336 mmap_read_unlock(mm);
2337 }
2338
get_compat_pages_array(const void __user * chunk_pages[],const void __user * __user * pages,unsigned long chunk_nr)2339 static int get_compat_pages_array(const void __user *chunk_pages[],
2340 const void __user * __user *pages,
2341 unsigned long chunk_nr)
2342 {
2343 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2344 compat_uptr_t p;
2345 int i;
2346
2347 for (i = 0; i < chunk_nr; i++) {
2348 if (get_user(p, pages32 + i))
2349 return -EFAULT;
2350 chunk_pages[i] = compat_ptr(p);
2351 }
2352
2353 return 0;
2354 }
2355
2356 /*
2357 * Determine the nodes of a user array of pages and store it in
2358 * a user array of status.
2359 */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)2360 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2361 const void __user * __user *pages,
2362 int __user *status)
2363 {
2364 #define DO_PAGES_STAT_CHUNK_NR 16UL
2365 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2366 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2367
2368 while (nr_pages) {
2369 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2370
2371 if (in_compat_syscall()) {
2372 if (get_compat_pages_array(chunk_pages, pages,
2373 chunk_nr))
2374 break;
2375 } else {
2376 if (copy_from_user(chunk_pages, pages,
2377 chunk_nr * sizeof(*chunk_pages)))
2378 break;
2379 }
2380
2381 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2382
2383 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2384 break;
2385
2386 pages += chunk_nr;
2387 status += chunk_nr;
2388 nr_pages -= chunk_nr;
2389 }
2390 return nr_pages ? -EFAULT : 0;
2391 }
2392
find_mm_struct(pid_t pid,nodemask_t * mem_nodes)2393 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2394 {
2395 struct task_struct *task;
2396 struct mm_struct *mm;
2397
2398 /*
2399 * There is no need to check if current process has the right to modify
2400 * the specified process when they are same.
2401 */
2402 if (!pid) {
2403 mmget(current->mm);
2404 *mem_nodes = cpuset_mems_allowed(current);
2405 return current->mm;
2406 }
2407
2408 /* Find the mm_struct */
2409 rcu_read_lock();
2410 task = find_task_by_vpid(pid);
2411 if (!task) {
2412 rcu_read_unlock();
2413 return ERR_PTR(-ESRCH);
2414 }
2415 get_task_struct(task);
2416
2417 /*
2418 * Check if this process has the right to modify the specified
2419 * process. Use the regular "ptrace_may_access()" checks.
2420 */
2421 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2422 rcu_read_unlock();
2423 mm = ERR_PTR(-EPERM);
2424 goto out;
2425 }
2426 rcu_read_unlock();
2427
2428 mm = ERR_PTR(security_task_movememory(task));
2429 if (IS_ERR(mm))
2430 goto out;
2431 *mem_nodes = cpuset_mems_allowed(task);
2432 mm = get_task_mm(task);
2433 out:
2434 put_task_struct(task);
2435 if (!mm)
2436 mm = ERR_PTR(-EINVAL);
2437 return mm;
2438 }
2439
2440 /*
2441 * Move a list of pages in the address space of the currently executing
2442 * process.
2443 */
kernel_move_pages(pid_t pid,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)2444 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2445 const void __user * __user *pages,
2446 const int __user *nodes,
2447 int __user *status, int flags)
2448 {
2449 struct mm_struct *mm;
2450 int err;
2451 nodemask_t task_nodes;
2452
2453 /* Check flags */
2454 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2455 return -EINVAL;
2456
2457 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2458 return -EPERM;
2459
2460 mm = find_mm_struct(pid, &task_nodes);
2461 if (IS_ERR(mm))
2462 return PTR_ERR(mm);
2463
2464 if (nodes)
2465 err = do_pages_move(mm, task_nodes, nr_pages, pages,
2466 nodes, status, flags);
2467 else
2468 err = do_pages_stat(mm, nr_pages, pages, status);
2469
2470 mmput(mm);
2471 return err;
2472 }
2473
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)2474 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2475 const void __user * __user *, pages,
2476 const int __user *, nodes,
2477 int __user *, status, int, flags)
2478 {
2479 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2480 }
2481
2482 #ifdef CONFIG_NUMA_BALANCING
2483 /*
2484 * Returns true if this is a safe migration target node for misplaced NUMA
2485 * pages. Currently it only checks the watermarks which is crude.
2486 */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)2487 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2488 unsigned long nr_migrate_pages)
2489 {
2490 int z;
2491
2492 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2493 struct zone *zone = pgdat->node_zones + z;
2494
2495 if (!managed_zone(zone))
2496 continue;
2497
2498 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2499 if (!zone_watermark_ok(zone, 0,
2500 high_wmark_pages(zone) +
2501 nr_migrate_pages,
2502 ZONE_MOVABLE, 0))
2503 continue;
2504 return true;
2505 }
2506 return false;
2507 }
2508
alloc_misplaced_dst_page(struct page * page,unsigned long data)2509 static struct page *alloc_misplaced_dst_page(struct page *page,
2510 unsigned long data)
2511 {
2512 int nid = (int) data;
2513 int order = compound_order(page);
2514 gfp_t gfp = __GFP_THISNODE;
2515 struct folio *new;
2516
2517 if (order > 0)
2518 gfp |= GFP_TRANSHUGE_LIGHT;
2519 else {
2520 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2521 __GFP_NOWARN;
2522 gfp &= ~__GFP_RECLAIM;
2523 }
2524 new = __folio_alloc_node(gfp, order, nid);
2525
2526 return &new->page;
2527 }
2528
numamigrate_isolate_page(pg_data_t * pgdat,struct page * page)2529 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2530 {
2531 int nr_pages = thp_nr_pages(page);
2532 int order = compound_order(page);
2533
2534 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2535
2536 /* Do not migrate THP mapped by multiple processes */
2537 if (PageTransHuge(page) && total_mapcount(page) > 1)
2538 return 0;
2539
2540 /* Avoid migrating to a node that is nearly full */
2541 if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2542 int z;
2543
2544 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2545 return 0;
2546 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2547 if (managed_zone(pgdat->node_zones + z))
2548 break;
2549 }
2550 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2551 return 0;
2552 }
2553
2554 if (!isolate_lru_page(page))
2555 return 0;
2556
2557 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2558 nr_pages);
2559
2560 /*
2561 * Isolating the page has taken another reference, so the
2562 * caller's reference can be safely dropped without the page
2563 * disappearing underneath us during migration.
2564 */
2565 put_page(page);
2566 return 1;
2567 }
2568
2569 /*
2570 * Attempt to migrate a misplaced page to the specified destination
2571 * node. Caller is expected to have an elevated reference count on
2572 * the page that will be dropped by this function before returning.
2573 */
migrate_misplaced_page(struct page * page,struct vm_area_struct * vma,int node)2574 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2575 int node)
2576 {
2577 pg_data_t *pgdat = NODE_DATA(node);
2578 int isolated;
2579 int nr_remaining;
2580 unsigned int nr_succeeded;
2581 LIST_HEAD(migratepages);
2582 int nr_pages = thp_nr_pages(page);
2583
2584 /*
2585 * Don't migrate file pages that are mapped in multiple processes
2586 * with execute permissions as they are probably shared libraries.
2587 */
2588 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2589 (vma->vm_flags & VM_EXEC))
2590 goto out;
2591
2592 /*
2593 * Also do not migrate dirty pages as not all filesystems can move
2594 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2595 */
2596 if (page_is_file_lru(page) && PageDirty(page))
2597 goto out;
2598
2599 isolated = numamigrate_isolate_page(pgdat, page);
2600 if (!isolated)
2601 goto out;
2602
2603 list_add(&page->lru, &migratepages);
2604 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2605 NULL, node, MIGRATE_ASYNC,
2606 MR_NUMA_MISPLACED, &nr_succeeded);
2607 if (nr_remaining) {
2608 if (!list_empty(&migratepages)) {
2609 list_del(&page->lru);
2610 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2611 page_is_file_lru(page), -nr_pages);
2612 putback_lru_page(page);
2613 }
2614 isolated = 0;
2615 }
2616 if (nr_succeeded) {
2617 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2618 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2619 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2620 nr_succeeded);
2621 }
2622 BUG_ON(!list_empty(&migratepages));
2623 return isolated;
2624
2625 out:
2626 put_page(page);
2627 return 0;
2628 }
2629 #endif /* CONFIG_NUMA_BALANCING */
2630 #endif /* CONFIG_NUMA */
2631