1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019 Realtek Corporation
3 */
4
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include "main.h"
8 #include "pci.h"
9 #include "reg.h"
10 #include "tx.h"
11 #include "rx.h"
12 #include "fw.h"
13 #include "ps.h"
14 #include "debug.h"
15
16 static bool rtw_disable_msi;
17 static bool rtw_pci_disable_aspm;
18 module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
19 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
20 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
21 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
22
23 static u32 rtw_pci_tx_queue_idx_addr[] = {
24 [RTW_TX_QUEUE_BK] = RTK_PCI_TXBD_IDX_BKQ,
25 [RTW_TX_QUEUE_BE] = RTK_PCI_TXBD_IDX_BEQ,
26 [RTW_TX_QUEUE_VI] = RTK_PCI_TXBD_IDX_VIQ,
27 [RTW_TX_QUEUE_VO] = RTK_PCI_TXBD_IDX_VOQ,
28 [RTW_TX_QUEUE_MGMT] = RTK_PCI_TXBD_IDX_MGMTQ,
29 [RTW_TX_QUEUE_HI0] = RTK_PCI_TXBD_IDX_HI0Q,
30 [RTW_TX_QUEUE_H2C] = RTK_PCI_TXBD_IDX_H2CQ,
31 };
32
rtw_pci_get_tx_qsel(struct sk_buff * skb,enum rtw_tx_queue_type queue)33 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb,
34 enum rtw_tx_queue_type queue)
35 {
36 switch (queue) {
37 case RTW_TX_QUEUE_BCN:
38 return TX_DESC_QSEL_BEACON;
39 case RTW_TX_QUEUE_H2C:
40 return TX_DESC_QSEL_H2C;
41 case RTW_TX_QUEUE_MGMT:
42 return TX_DESC_QSEL_MGMT;
43 case RTW_TX_QUEUE_HI0:
44 return TX_DESC_QSEL_HIGH;
45 default:
46 return skb->priority;
47 }
48 };
49
rtw_pci_read8(struct rtw_dev * rtwdev,u32 addr)50 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
51 {
52 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
53
54 return readb(rtwpci->mmap + addr);
55 }
56
rtw_pci_read16(struct rtw_dev * rtwdev,u32 addr)57 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
58 {
59 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
60
61 return readw(rtwpci->mmap + addr);
62 }
63
rtw_pci_read32(struct rtw_dev * rtwdev,u32 addr)64 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
65 {
66 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
67
68 return readl(rtwpci->mmap + addr);
69 }
70
rtw_pci_write8(struct rtw_dev * rtwdev,u32 addr,u8 val)71 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
72 {
73 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
74
75 writeb(val, rtwpci->mmap + addr);
76 }
77
rtw_pci_write16(struct rtw_dev * rtwdev,u32 addr,u16 val)78 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
79 {
80 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
81
82 writew(val, rtwpci->mmap + addr);
83 }
84
rtw_pci_write32(struct rtw_dev * rtwdev,u32 addr,u32 val)85 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
86 {
87 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
88
89 writel(val, rtwpci->mmap + addr);
90 }
91
rtw_pci_get_tx_desc(struct rtw_pci_tx_ring * tx_ring,u8 idx)92 static inline void *rtw_pci_get_tx_desc(struct rtw_pci_tx_ring *tx_ring, u8 idx)
93 {
94 int offset = tx_ring->r.desc_size * idx;
95
96 return tx_ring->r.head + offset;
97 }
98
rtw_pci_free_tx_ring_skbs(struct rtw_dev * rtwdev,struct rtw_pci_tx_ring * tx_ring)99 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
100 struct rtw_pci_tx_ring *tx_ring)
101 {
102 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
103 struct rtw_pci_tx_data *tx_data;
104 struct sk_buff *skb, *tmp;
105 dma_addr_t dma;
106
107 /* free every skb remained in tx list */
108 skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
109 __skb_unlink(skb, &tx_ring->queue);
110 tx_data = rtw_pci_get_tx_data(skb);
111 dma = tx_data->dma;
112
113 dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
114 dev_kfree_skb_any(skb);
115 }
116 }
117
rtw_pci_free_tx_ring(struct rtw_dev * rtwdev,struct rtw_pci_tx_ring * tx_ring)118 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
119 struct rtw_pci_tx_ring *tx_ring)
120 {
121 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
122 u8 *head = tx_ring->r.head;
123 u32 len = tx_ring->r.len;
124 int ring_sz = len * tx_ring->r.desc_size;
125
126 rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
127
128 /* free the ring itself */
129 dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
130 tx_ring->r.head = NULL;
131 }
132
rtw_pci_free_rx_ring_skbs(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring)133 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
134 struct rtw_pci_rx_ring *rx_ring)
135 {
136 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
137 struct sk_buff *skb;
138 int buf_sz = RTK_PCI_RX_BUF_SIZE;
139 dma_addr_t dma;
140 int i;
141
142 for (i = 0; i < rx_ring->r.len; i++) {
143 skb = rx_ring->buf[i];
144 if (!skb)
145 continue;
146
147 dma = *((dma_addr_t *)skb->cb);
148 dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
149 dev_kfree_skb(skb);
150 rx_ring->buf[i] = NULL;
151 }
152 }
153
rtw_pci_free_rx_ring(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring)154 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
155 struct rtw_pci_rx_ring *rx_ring)
156 {
157 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
158 u8 *head = rx_ring->r.head;
159 int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
160
161 rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
162
163 dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
164 }
165
rtw_pci_free_trx_ring(struct rtw_dev * rtwdev)166 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
167 {
168 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
169 struct rtw_pci_tx_ring *tx_ring;
170 struct rtw_pci_rx_ring *rx_ring;
171 int i;
172
173 for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
174 tx_ring = &rtwpci->tx_rings[i];
175 rtw_pci_free_tx_ring(rtwdev, tx_ring);
176 }
177
178 for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
179 rx_ring = &rtwpci->rx_rings[i];
180 rtw_pci_free_rx_ring(rtwdev, rx_ring);
181 }
182 }
183
rtw_pci_init_tx_ring(struct rtw_dev * rtwdev,struct rtw_pci_tx_ring * tx_ring,u8 desc_size,u32 len)184 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
185 struct rtw_pci_tx_ring *tx_ring,
186 u8 desc_size, u32 len)
187 {
188 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
189 int ring_sz = desc_size * len;
190 dma_addr_t dma;
191 u8 *head;
192
193 if (len > TRX_BD_IDX_MASK) {
194 rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
195 return -EINVAL;
196 }
197
198 head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
199 if (!head) {
200 rtw_err(rtwdev, "failed to allocate tx ring\n");
201 return -ENOMEM;
202 }
203
204 skb_queue_head_init(&tx_ring->queue);
205 tx_ring->r.head = head;
206 tx_ring->r.dma = dma;
207 tx_ring->r.len = len;
208 tx_ring->r.desc_size = desc_size;
209 tx_ring->r.wp = 0;
210 tx_ring->r.rp = 0;
211
212 return 0;
213 }
214
rtw_pci_reset_rx_desc(struct rtw_dev * rtwdev,struct sk_buff * skb,struct rtw_pci_rx_ring * rx_ring,u32 idx,u32 desc_sz)215 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
216 struct rtw_pci_rx_ring *rx_ring,
217 u32 idx, u32 desc_sz)
218 {
219 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
220 struct rtw_pci_rx_buffer_desc *buf_desc;
221 int buf_sz = RTK_PCI_RX_BUF_SIZE;
222 dma_addr_t dma;
223
224 if (!skb)
225 return -EINVAL;
226
227 dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
228 if (dma_mapping_error(&pdev->dev, dma))
229 return -EBUSY;
230
231 *((dma_addr_t *)skb->cb) = dma;
232 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
233 idx * desc_sz);
234 memset(buf_desc, 0, sizeof(*buf_desc));
235 buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
236 buf_desc->dma = cpu_to_le32(dma);
237
238 return 0;
239 }
240
rtw_pci_sync_rx_desc_device(struct rtw_dev * rtwdev,dma_addr_t dma,struct rtw_pci_rx_ring * rx_ring,u32 idx,u32 desc_sz)241 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
242 struct rtw_pci_rx_ring *rx_ring,
243 u32 idx, u32 desc_sz)
244 {
245 struct device *dev = rtwdev->dev;
246 struct rtw_pci_rx_buffer_desc *buf_desc;
247 int buf_sz = RTK_PCI_RX_BUF_SIZE;
248
249 dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
250
251 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
252 idx * desc_sz);
253 memset(buf_desc, 0, sizeof(*buf_desc));
254 buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
255 buf_desc->dma = cpu_to_le32(dma);
256 }
257
rtw_pci_init_rx_ring(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring,u8 desc_size,u32 len)258 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
259 struct rtw_pci_rx_ring *rx_ring,
260 u8 desc_size, u32 len)
261 {
262 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
263 struct sk_buff *skb = NULL;
264 dma_addr_t dma;
265 u8 *head;
266 int ring_sz = desc_size * len;
267 int buf_sz = RTK_PCI_RX_BUF_SIZE;
268 int i, allocated;
269 int ret = 0;
270
271 head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
272 if (!head) {
273 rtw_err(rtwdev, "failed to allocate rx ring\n");
274 return -ENOMEM;
275 }
276 rx_ring->r.head = head;
277
278 for (i = 0; i < len; i++) {
279 skb = dev_alloc_skb(buf_sz);
280 if (!skb) {
281 allocated = i;
282 ret = -ENOMEM;
283 goto err_out;
284 }
285
286 memset(skb->data, 0, buf_sz);
287 rx_ring->buf[i] = skb;
288 ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
289 if (ret) {
290 allocated = i;
291 dev_kfree_skb_any(skb);
292 goto err_out;
293 }
294 }
295
296 rx_ring->r.dma = dma;
297 rx_ring->r.len = len;
298 rx_ring->r.desc_size = desc_size;
299 rx_ring->r.wp = 0;
300 rx_ring->r.rp = 0;
301
302 return 0;
303
304 err_out:
305 for (i = 0; i < allocated; i++) {
306 skb = rx_ring->buf[i];
307 if (!skb)
308 continue;
309 dma = *((dma_addr_t *)skb->cb);
310 dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
311 dev_kfree_skb_any(skb);
312 rx_ring->buf[i] = NULL;
313 }
314 dma_free_coherent(&pdev->dev, ring_sz, head, dma);
315
316 rtw_err(rtwdev, "failed to init rx buffer\n");
317
318 return ret;
319 }
320
rtw_pci_init_trx_ring(struct rtw_dev * rtwdev)321 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
322 {
323 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
324 struct rtw_pci_tx_ring *tx_ring;
325 struct rtw_pci_rx_ring *rx_ring;
326 const struct rtw_chip_info *chip = rtwdev->chip;
327 int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
328 int tx_desc_size, rx_desc_size;
329 u32 len;
330 int ret;
331
332 tx_desc_size = chip->tx_buf_desc_sz;
333
334 for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
335 tx_ring = &rtwpci->tx_rings[i];
336 len = max_num_of_tx_queue(i);
337 ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
338 if (ret)
339 goto out;
340 }
341
342 rx_desc_size = chip->rx_buf_desc_sz;
343
344 for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
345 rx_ring = &rtwpci->rx_rings[j];
346 ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
347 RTK_MAX_RX_DESC_NUM);
348 if (ret)
349 goto out;
350 }
351
352 return 0;
353
354 out:
355 tx_alloced = i;
356 for (i = 0; i < tx_alloced; i++) {
357 tx_ring = &rtwpci->tx_rings[i];
358 rtw_pci_free_tx_ring(rtwdev, tx_ring);
359 }
360
361 rx_alloced = j;
362 for (j = 0; j < rx_alloced; j++) {
363 rx_ring = &rtwpci->rx_rings[j];
364 rtw_pci_free_rx_ring(rtwdev, rx_ring);
365 }
366
367 return ret;
368 }
369
rtw_pci_deinit(struct rtw_dev * rtwdev)370 static void rtw_pci_deinit(struct rtw_dev *rtwdev)
371 {
372 rtw_pci_free_trx_ring(rtwdev);
373 }
374
rtw_pci_init(struct rtw_dev * rtwdev)375 static int rtw_pci_init(struct rtw_dev *rtwdev)
376 {
377 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
378 int ret = 0;
379
380 rtwpci->irq_mask[0] = IMR_HIGHDOK |
381 IMR_MGNTDOK |
382 IMR_BKDOK |
383 IMR_BEDOK |
384 IMR_VIDOK |
385 IMR_VODOK |
386 IMR_ROK |
387 IMR_BCNDMAINT_E |
388 IMR_C2HCMD |
389 0;
390 rtwpci->irq_mask[1] = IMR_TXFOVW |
391 0;
392 rtwpci->irq_mask[3] = IMR_H2CDOK |
393 0;
394 spin_lock_init(&rtwpci->irq_lock);
395 spin_lock_init(&rtwpci->hwirq_lock);
396 ret = rtw_pci_init_trx_ring(rtwdev);
397
398 return ret;
399 }
400
rtw_pci_reset_buf_desc(struct rtw_dev * rtwdev)401 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
402 {
403 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
404 u32 len;
405 u8 tmp;
406 dma_addr_t dma;
407
408 tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
409 rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
410
411 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
412 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
413
414 if (!rtw_chip_wcpu_11n(rtwdev)) {
415 len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
416 dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
417 rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
418 rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
419 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
420 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
421 }
422
423 len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
424 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
425 rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
426 rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
427 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
428 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
429
430 len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
431 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
432 rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
433 rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
434 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
435 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
436
437 len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
438 dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
439 rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
440 rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
441 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
442 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
443
444 len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
445 dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
446 rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
447 rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
448 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
449 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
450
451 len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
452 dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
453 rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
454 rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
455 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
456 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
457
458 len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
459 dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
460 rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
461 rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
462 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
463 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
464
465 len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
466 dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
467 rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
468 rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
469 rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
470 rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
471
472 /* reset read/write point */
473 rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
474
475 /* reset H2C Queue index in a single write */
476 if (rtw_chip_wcpu_11ac(rtwdev))
477 rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
478 BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
479 }
480
rtw_pci_reset_trx_ring(struct rtw_dev * rtwdev)481 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
482 {
483 rtw_pci_reset_buf_desc(rtwdev);
484 }
485
rtw_pci_enable_interrupt(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,bool exclude_rx)486 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
487 struct rtw_pci *rtwpci, bool exclude_rx)
488 {
489 unsigned long flags;
490 u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
491
492 spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
493
494 rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
495 rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
496 if (rtw_chip_wcpu_11ac(rtwdev))
497 rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
498
499 rtwpci->irq_enabled = true;
500
501 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
502 }
503
rtw_pci_disable_interrupt(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)504 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
505 struct rtw_pci *rtwpci)
506 {
507 unsigned long flags;
508
509 spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
510
511 if (!rtwpci->irq_enabled)
512 goto out;
513
514 rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
515 rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
516 if (rtw_chip_wcpu_11ac(rtwdev))
517 rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
518
519 rtwpci->irq_enabled = false;
520
521 out:
522 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
523 }
524
rtw_pci_dma_reset(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)525 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
526 {
527 /* reset dma and rx tag */
528 rtw_write32_set(rtwdev, RTK_PCI_CTRL,
529 BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
530 rtwpci->rx_tag = 0;
531 }
532
rtw_pci_setup(struct rtw_dev * rtwdev)533 static int rtw_pci_setup(struct rtw_dev *rtwdev)
534 {
535 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
536
537 rtw_pci_reset_trx_ring(rtwdev);
538 rtw_pci_dma_reset(rtwdev, rtwpci);
539
540 return 0;
541 }
542
rtw_pci_dma_release(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)543 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
544 {
545 struct rtw_pci_tx_ring *tx_ring;
546 enum rtw_tx_queue_type queue;
547
548 rtw_pci_reset_trx_ring(rtwdev);
549 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
550 tx_ring = &rtwpci->tx_rings[queue];
551 rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
552 }
553 }
554
rtw_pci_napi_start(struct rtw_dev * rtwdev)555 static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
556 {
557 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
558
559 if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
560 return;
561
562 napi_enable(&rtwpci->napi);
563 }
564
rtw_pci_napi_stop(struct rtw_dev * rtwdev)565 static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
566 {
567 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
568
569 if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
570 return;
571
572 napi_synchronize(&rtwpci->napi);
573 napi_disable(&rtwpci->napi);
574 }
575
rtw_pci_start(struct rtw_dev * rtwdev)576 static int rtw_pci_start(struct rtw_dev *rtwdev)
577 {
578 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
579
580 rtw_pci_napi_start(rtwdev);
581
582 spin_lock_bh(&rtwpci->irq_lock);
583 rtwpci->running = true;
584 rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
585 spin_unlock_bh(&rtwpci->irq_lock);
586
587 return 0;
588 }
589
rtw_pci_stop(struct rtw_dev * rtwdev)590 static void rtw_pci_stop(struct rtw_dev *rtwdev)
591 {
592 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
593 struct pci_dev *pdev = rtwpci->pdev;
594
595 spin_lock_bh(&rtwpci->irq_lock);
596 rtwpci->running = false;
597 rtw_pci_disable_interrupt(rtwdev, rtwpci);
598 spin_unlock_bh(&rtwpci->irq_lock);
599
600 synchronize_irq(pdev->irq);
601 rtw_pci_napi_stop(rtwdev);
602
603 spin_lock_bh(&rtwpci->irq_lock);
604 rtw_pci_dma_release(rtwdev, rtwpci);
605 spin_unlock_bh(&rtwpci->irq_lock);
606 }
607
rtw_pci_deep_ps_enter(struct rtw_dev * rtwdev)608 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
609 {
610 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
611 struct rtw_pci_tx_ring *tx_ring;
612 enum rtw_tx_queue_type queue;
613 bool tx_empty = true;
614
615 if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
616 goto enter_deep_ps;
617
618 lockdep_assert_held(&rtwpci->irq_lock);
619
620 /* Deep PS state is not allowed to TX-DMA */
621 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
622 /* BCN queue is rsvd page, does not have DMA interrupt
623 * H2C queue is managed by firmware
624 */
625 if (queue == RTW_TX_QUEUE_BCN ||
626 queue == RTW_TX_QUEUE_H2C)
627 continue;
628
629 tx_ring = &rtwpci->tx_rings[queue];
630
631 /* check if there is any skb DMAing */
632 if (skb_queue_len(&tx_ring->queue)) {
633 tx_empty = false;
634 break;
635 }
636 }
637
638 if (!tx_empty) {
639 rtw_dbg(rtwdev, RTW_DBG_PS,
640 "TX path not empty, cannot enter deep power save state\n");
641 return;
642 }
643 enter_deep_ps:
644 set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
645 rtw_power_mode_change(rtwdev, true);
646 }
647
rtw_pci_deep_ps_leave(struct rtw_dev * rtwdev)648 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
649 {
650 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
651
652 lockdep_assert_held(&rtwpci->irq_lock);
653
654 if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
655 rtw_power_mode_change(rtwdev, false);
656 }
657
rtw_pci_deep_ps(struct rtw_dev * rtwdev,bool enter)658 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
659 {
660 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
661
662 spin_lock_bh(&rtwpci->irq_lock);
663
664 if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
665 rtw_pci_deep_ps_enter(rtwdev);
666
667 if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
668 rtw_pci_deep_ps_leave(rtwdev);
669
670 spin_unlock_bh(&rtwpci->irq_lock);
671 }
672
rtw_pci_release_rsvd_page(struct rtw_pci * rtwpci,struct rtw_pci_tx_ring * ring)673 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
674 struct rtw_pci_tx_ring *ring)
675 {
676 struct sk_buff *prev = skb_dequeue(&ring->queue);
677 struct rtw_pci_tx_data *tx_data;
678 dma_addr_t dma;
679
680 if (!prev)
681 return;
682
683 tx_data = rtw_pci_get_tx_data(prev);
684 dma = tx_data->dma;
685 dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
686 dev_kfree_skb_any(prev);
687 }
688
rtw_pci_dma_check(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring,u32 idx)689 static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
690 struct rtw_pci_rx_ring *rx_ring,
691 u32 idx)
692 {
693 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
694 const struct rtw_chip_info *chip = rtwdev->chip;
695 struct rtw_pci_rx_buffer_desc *buf_desc;
696 u32 desc_sz = chip->rx_buf_desc_sz;
697 u16 total_pkt_size;
698
699 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
700 idx * desc_sz);
701 total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
702
703 /* rx tag mismatch, throw a warning */
704 if (total_pkt_size != rtwpci->rx_tag)
705 rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
706
707 rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
708 }
709
__pci_get_hw_tx_ring_rp(struct rtw_dev * rtwdev,u8 pci_q)710 static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
711 {
712 u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
713 u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
714
715 return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
716 }
717
__pci_flush_queue(struct rtw_dev * rtwdev,u8 pci_q,bool drop)718 static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
719 {
720 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
721 struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
722 u32 cur_rp;
723 u8 i;
724
725 /* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
726 * bit dynamic, it's hard to define a reasonable fixed total timeout to
727 * use read_poll_timeout* helper. Instead, we can ensure a reasonable
728 * polling times, so we just use for loop with udelay here.
729 */
730 for (i = 0; i < 30; i++) {
731 cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
732 if (cur_rp == ring->r.wp)
733 return;
734
735 udelay(1);
736 }
737
738 if (!drop)
739 rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q);
740 }
741
__rtw_pci_flush_queues(struct rtw_dev * rtwdev,u32 pci_queues,bool drop)742 static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
743 bool drop)
744 {
745 u8 q;
746
747 for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
748 /* It may be not necessary to flush BCN and H2C tx queues. */
749 if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C)
750 continue;
751
752 if (pci_queues & BIT(q))
753 __pci_flush_queue(rtwdev, q, drop);
754 }
755 }
756
rtw_pci_flush_queues(struct rtw_dev * rtwdev,u32 queues,bool drop)757 static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
758 {
759 u32 pci_queues = 0;
760 u8 i;
761
762 /* If all of the hardware queues are requested to flush,
763 * flush all of the pci queues.
764 */
765 if (queues == BIT(rtwdev->hw->queues) - 1) {
766 pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
767 } else {
768 for (i = 0; i < rtwdev->hw->queues; i++)
769 if (queues & BIT(i))
770 pci_queues |= BIT(rtw_tx_ac_to_hwq(i));
771 }
772
773 __rtw_pci_flush_queues(rtwdev, pci_queues, drop);
774 }
775
rtw_pci_tx_kick_off_queue(struct rtw_dev * rtwdev,enum rtw_tx_queue_type queue)776 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev,
777 enum rtw_tx_queue_type queue)
778 {
779 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
780 struct rtw_pci_tx_ring *ring;
781 u32 bd_idx;
782
783 ring = &rtwpci->tx_rings[queue];
784 bd_idx = rtw_pci_tx_queue_idx_addr[queue];
785
786 spin_lock_bh(&rtwpci->irq_lock);
787 if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
788 rtw_pci_deep_ps_leave(rtwdev);
789 rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
790 spin_unlock_bh(&rtwpci->irq_lock);
791 }
792
rtw_pci_tx_kick_off(struct rtw_dev * rtwdev)793 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
794 {
795 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
796 enum rtw_tx_queue_type queue;
797
798 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
799 if (test_and_clear_bit(queue, rtwpci->tx_queued))
800 rtw_pci_tx_kick_off_queue(rtwdev, queue);
801 }
802
rtw_pci_tx_write_data(struct rtw_dev * rtwdev,struct rtw_tx_pkt_info * pkt_info,struct sk_buff * skb,enum rtw_tx_queue_type queue)803 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
804 struct rtw_tx_pkt_info *pkt_info,
805 struct sk_buff *skb,
806 enum rtw_tx_queue_type queue)
807 {
808 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
809 const struct rtw_chip_info *chip = rtwdev->chip;
810 struct rtw_pci_tx_ring *ring;
811 struct rtw_pci_tx_data *tx_data;
812 dma_addr_t dma;
813 u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
814 u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
815 u32 size;
816 u32 psb_len;
817 u8 *pkt_desc;
818 struct rtw_pci_tx_buffer_desc *buf_desc;
819
820 ring = &rtwpci->tx_rings[queue];
821
822 size = skb->len;
823
824 if (queue == RTW_TX_QUEUE_BCN)
825 rtw_pci_release_rsvd_page(rtwpci, ring);
826 else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
827 return -ENOSPC;
828
829 pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
830 memset(pkt_desc, 0, tx_pkt_desc_sz);
831 pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
832 rtw_tx_fill_tx_desc(pkt_info, skb);
833 dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
834 DMA_TO_DEVICE);
835 if (dma_mapping_error(&rtwpci->pdev->dev, dma))
836 return -EBUSY;
837
838 /* after this we got dma mapped, there is no way back */
839 buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
840 memset(buf_desc, 0, tx_buf_desc_sz);
841 psb_len = (skb->len - 1) / 128 + 1;
842 if (queue == RTW_TX_QUEUE_BCN)
843 psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
844
845 buf_desc[0].psb_len = cpu_to_le16(psb_len);
846 buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
847 buf_desc[0].dma = cpu_to_le32(dma);
848 buf_desc[1].buf_size = cpu_to_le16(size);
849 buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
850
851 tx_data = rtw_pci_get_tx_data(skb);
852 tx_data->dma = dma;
853 tx_data->sn = pkt_info->sn;
854
855 spin_lock_bh(&rtwpci->irq_lock);
856
857 skb_queue_tail(&ring->queue, skb);
858
859 if (queue == RTW_TX_QUEUE_BCN)
860 goto out_unlock;
861
862 /* update write-index, and kick it off later */
863 set_bit(queue, rtwpci->tx_queued);
864 if (++ring->r.wp >= ring->r.len)
865 ring->r.wp = 0;
866
867 out_unlock:
868 spin_unlock_bh(&rtwpci->irq_lock);
869
870 return 0;
871 }
872
rtw_pci_write_data_rsvd_page(struct rtw_dev * rtwdev,u8 * buf,u32 size)873 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
874 u32 size)
875 {
876 struct sk_buff *skb;
877 struct rtw_tx_pkt_info pkt_info = {0};
878 u8 reg_bcn_work;
879 int ret;
880
881 skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
882 if (!skb)
883 return -ENOMEM;
884
885 ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
886 if (ret) {
887 rtw_err(rtwdev, "failed to write rsvd page data\n");
888 return ret;
889 }
890
891 /* reserved pages go through beacon queue */
892 reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
893 reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
894 rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
895
896 return 0;
897 }
898
rtw_pci_write_data_h2c(struct rtw_dev * rtwdev,u8 * buf,u32 size)899 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
900 {
901 struct sk_buff *skb;
902 struct rtw_tx_pkt_info pkt_info = {0};
903 int ret;
904
905 skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
906 if (!skb)
907 return -ENOMEM;
908
909 ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
910 if (ret) {
911 rtw_err(rtwdev, "failed to write h2c data\n");
912 return ret;
913 }
914
915 rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
916
917 return 0;
918 }
919
rtw_pci_tx_write(struct rtw_dev * rtwdev,struct rtw_tx_pkt_info * pkt_info,struct sk_buff * skb)920 static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
921 struct rtw_tx_pkt_info *pkt_info,
922 struct sk_buff *skb)
923 {
924 enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb);
925 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
926 struct rtw_pci_tx_ring *ring;
927 int ret;
928
929 ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
930 if (ret)
931 return ret;
932
933 ring = &rtwpci->tx_rings[queue];
934 spin_lock_bh(&rtwpci->irq_lock);
935 if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
936 ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
937 ring->queue_stopped = true;
938 }
939 spin_unlock_bh(&rtwpci->irq_lock);
940
941 return 0;
942 }
943
rtw_pci_tx_isr(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,u8 hw_queue)944 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
945 u8 hw_queue)
946 {
947 struct ieee80211_hw *hw = rtwdev->hw;
948 struct ieee80211_tx_info *info;
949 struct rtw_pci_tx_ring *ring;
950 struct rtw_pci_tx_data *tx_data;
951 struct sk_buff *skb;
952 u32 count;
953 u32 bd_idx_addr;
954 u32 bd_idx, cur_rp, rp_idx;
955 u16 q_map;
956
957 ring = &rtwpci->tx_rings[hw_queue];
958
959 bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
960 bd_idx = rtw_read32(rtwdev, bd_idx_addr);
961 cur_rp = bd_idx >> 16;
962 cur_rp &= TRX_BD_IDX_MASK;
963 rp_idx = ring->r.rp;
964 if (cur_rp >= ring->r.rp)
965 count = cur_rp - ring->r.rp;
966 else
967 count = ring->r.len - (ring->r.rp - cur_rp);
968
969 while (count--) {
970 skb = skb_dequeue(&ring->queue);
971 if (!skb) {
972 rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
973 count, hw_queue, bd_idx, ring->r.rp, cur_rp);
974 break;
975 }
976 tx_data = rtw_pci_get_tx_data(skb);
977 dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
978 DMA_TO_DEVICE);
979
980 /* just free command packets from host to card */
981 if (hw_queue == RTW_TX_QUEUE_H2C) {
982 dev_kfree_skb_irq(skb);
983 continue;
984 }
985
986 if (ring->queue_stopped &&
987 avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
988 q_map = skb_get_queue_mapping(skb);
989 ieee80211_wake_queue(hw, q_map);
990 ring->queue_stopped = false;
991 }
992
993 if (++rp_idx >= ring->r.len)
994 rp_idx = 0;
995
996 skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
997
998 info = IEEE80211_SKB_CB(skb);
999
1000 /* enqueue to wait for tx report */
1001 if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
1002 rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
1003 continue;
1004 }
1005
1006 /* always ACK for others, then they won't be marked as drop */
1007 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1008 info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
1009 else
1010 info->flags |= IEEE80211_TX_STAT_ACK;
1011
1012 ieee80211_tx_info_clear_status(info);
1013 ieee80211_tx_status_irqsafe(hw, skb);
1014 }
1015
1016 ring->r.rp = cur_rp;
1017 }
1018
rtw_pci_rx_isr(struct rtw_dev * rtwdev)1019 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
1020 {
1021 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1022 struct napi_struct *napi = &rtwpci->napi;
1023
1024 napi_schedule(napi);
1025 }
1026
rtw_pci_get_hw_rx_ring_nr(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)1027 static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
1028 struct rtw_pci *rtwpci)
1029 {
1030 struct rtw_pci_rx_ring *ring;
1031 int count = 0;
1032 u32 tmp, cur_wp;
1033
1034 ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1035 tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
1036 cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
1037 if (cur_wp >= ring->r.wp)
1038 count = cur_wp - ring->r.wp;
1039 else
1040 count = ring->r.len - (ring->r.wp - cur_wp);
1041
1042 return count;
1043 }
1044
rtw_pci_rx_napi(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,u8 hw_queue,u32 limit)1045 static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
1046 u8 hw_queue, u32 limit)
1047 {
1048 const struct rtw_chip_info *chip = rtwdev->chip;
1049 struct napi_struct *napi = &rtwpci->napi;
1050 struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1051 struct rtw_rx_pkt_stat pkt_stat;
1052 struct ieee80211_rx_status rx_status;
1053 struct sk_buff *skb, *new;
1054 u32 cur_rp = ring->r.rp;
1055 u32 count, rx_done = 0;
1056 u32 pkt_offset;
1057 u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
1058 u32 buf_desc_sz = chip->rx_buf_desc_sz;
1059 u32 new_len;
1060 u8 *rx_desc;
1061 dma_addr_t dma;
1062
1063 count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
1064 count = min(count, limit);
1065
1066 while (count--) {
1067 rtw_pci_dma_check(rtwdev, ring, cur_rp);
1068 skb = ring->buf[cur_rp];
1069 dma = *((dma_addr_t *)skb->cb);
1070 dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
1071 DMA_FROM_DEVICE);
1072 rx_desc = skb->data;
1073 chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
1074
1075 /* offset from rx_desc to payload */
1076 pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
1077 pkt_stat.shift;
1078
1079 /* allocate a new skb for this frame,
1080 * discard the frame if none available
1081 */
1082 new_len = pkt_stat.pkt_len + pkt_offset;
1083 new = dev_alloc_skb(new_len);
1084 if (WARN_ONCE(!new, "rx routine starvation\n"))
1085 goto next_rp;
1086
1087 /* put the DMA data including rx_desc from phy to new skb */
1088 skb_put_data(new, skb->data, new_len);
1089
1090 if (pkt_stat.is_c2h) {
1091 rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
1092 } else {
1093 /* remove rx_desc */
1094 skb_pull(new, pkt_offset);
1095
1096 rtw_rx_stats(rtwdev, pkt_stat.vif, new);
1097 memcpy(new->cb, &rx_status, sizeof(rx_status));
1098 ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
1099 rx_done++;
1100 }
1101
1102 next_rp:
1103 /* new skb delivered to mac80211, re-enable original skb DMA */
1104 rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
1105 buf_desc_sz);
1106
1107 /* host read next element in ring */
1108 if (++cur_rp >= ring->r.len)
1109 cur_rp = 0;
1110 }
1111
1112 ring->r.rp = cur_rp;
1113 /* 'rp', the last position we have read, is seen as previous posistion
1114 * of 'wp' that is used to calculate 'count' next time.
1115 */
1116 ring->r.wp = cur_rp;
1117 rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
1118
1119 return rx_done;
1120 }
1121
rtw_pci_irq_recognized(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,u32 * irq_status)1122 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
1123 struct rtw_pci *rtwpci, u32 *irq_status)
1124 {
1125 unsigned long flags;
1126
1127 spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
1128
1129 irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
1130 irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
1131 if (rtw_chip_wcpu_11ac(rtwdev))
1132 irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
1133 else
1134 irq_status[3] = 0;
1135 irq_status[0] &= rtwpci->irq_mask[0];
1136 irq_status[1] &= rtwpci->irq_mask[1];
1137 irq_status[3] &= rtwpci->irq_mask[3];
1138 rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
1139 rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
1140 if (rtw_chip_wcpu_11ac(rtwdev))
1141 rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
1142
1143 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
1144 }
1145
rtw_pci_interrupt_handler(int irq,void * dev)1146 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
1147 {
1148 struct rtw_dev *rtwdev = dev;
1149 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1150
1151 /* disable RTW PCI interrupt to avoid more interrupts before the end of
1152 * thread function
1153 *
1154 * disable HIMR here to also avoid new HISR flag being raised before
1155 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
1156 * are cleared, the edge-triggered interrupt will not be generated when
1157 * a new HISR flag is set.
1158 */
1159 rtw_pci_disable_interrupt(rtwdev, rtwpci);
1160
1161 return IRQ_WAKE_THREAD;
1162 }
1163
rtw_pci_interrupt_threadfn(int irq,void * dev)1164 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
1165 {
1166 struct rtw_dev *rtwdev = dev;
1167 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1168 u32 irq_status[4];
1169 bool rx = false;
1170
1171 spin_lock_bh(&rtwpci->irq_lock);
1172 rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
1173
1174 if (irq_status[0] & IMR_MGNTDOK)
1175 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
1176 if (irq_status[0] & IMR_HIGHDOK)
1177 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
1178 if (irq_status[0] & IMR_BEDOK)
1179 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
1180 if (irq_status[0] & IMR_BKDOK)
1181 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
1182 if (irq_status[0] & IMR_VODOK)
1183 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
1184 if (irq_status[0] & IMR_VIDOK)
1185 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
1186 if (irq_status[3] & IMR_H2CDOK)
1187 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
1188 if (irq_status[0] & IMR_ROK) {
1189 rtw_pci_rx_isr(rtwdev);
1190 rx = true;
1191 }
1192 if (unlikely(irq_status[0] & IMR_C2HCMD))
1193 rtw_fw_c2h_cmd_isr(rtwdev);
1194
1195 /* all of the jobs for this interrupt have been done */
1196 if (rtwpci->running)
1197 rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
1198 spin_unlock_bh(&rtwpci->irq_lock);
1199
1200 return IRQ_HANDLED;
1201 }
1202
rtw_pci_io_mapping(struct rtw_dev * rtwdev,struct pci_dev * pdev)1203 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
1204 struct pci_dev *pdev)
1205 {
1206 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1207 unsigned long len;
1208 u8 bar_id = 2;
1209 int ret;
1210
1211 ret = pci_request_regions(pdev, KBUILD_MODNAME);
1212 if (ret) {
1213 rtw_err(rtwdev, "failed to request pci regions\n");
1214 return ret;
1215 }
1216
1217 len = pci_resource_len(pdev, bar_id);
1218 rtwpci->mmap = pci_iomap(pdev, bar_id, len);
1219 if (!rtwpci->mmap) {
1220 pci_release_regions(pdev);
1221 rtw_err(rtwdev, "failed to map pci memory\n");
1222 return -ENOMEM;
1223 }
1224
1225 return 0;
1226 }
1227
rtw_pci_io_unmapping(struct rtw_dev * rtwdev,struct pci_dev * pdev)1228 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
1229 struct pci_dev *pdev)
1230 {
1231 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1232
1233 if (rtwpci->mmap) {
1234 pci_iounmap(pdev, rtwpci->mmap);
1235 pci_release_regions(pdev);
1236 }
1237 }
1238
rtw_dbi_write8(struct rtw_dev * rtwdev,u16 addr,u8 data)1239 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
1240 {
1241 u16 write_addr;
1242 u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
1243 u8 flag;
1244 u8 cnt;
1245
1246 write_addr = addr & BITS_DBI_ADDR_MASK;
1247 write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
1248 rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
1249 rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
1250 rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
1251
1252 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1253 flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1254 if (flag == 0)
1255 return;
1256
1257 udelay(10);
1258 }
1259
1260 WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
1261 }
1262
rtw_dbi_read8(struct rtw_dev * rtwdev,u16 addr,u8 * value)1263 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
1264 {
1265 u16 read_addr = addr & BITS_DBI_ADDR_MASK;
1266 u8 flag;
1267 u8 cnt;
1268
1269 rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
1270 rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
1271
1272 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1273 flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1274 if (flag == 0) {
1275 read_addr = REG_DBI_RDATA_V1 + (addr & 3);
1276 *value = rtw_read8(rtwdev, read_addr);
1277 return 0;
1278 }
1279
1280 udelay(10);
1281 }
1282
1283 WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
1284 return -EIO;
1285 }
1286
rtw_mdio_write(struct rtw_dev * rtwdev,u8 addr,u16 data,bool g1)1287 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
1288 {
1289 u8 page;
1290 u8 wflag;
1291 u8 cnt;
1292
1293 rtw_write16(rtwdev, REG_MDIO_V1, data);
1294
1295 page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
1296 page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
1297 rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
1298 rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
1299 rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
1300
1301 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1302 wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
1303 BIT_MDIO_WFLAG_V1);
1304 if (wflag == 0)
1305 return;
1306
1307 udelay(10);
1308 }
1309
1310 WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
1311 }
1312
rtw_pci_clkreq_set(struct rtw_dev * rtwdev,bool enable)1313 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
1314 {
1315 u8 value;
1316 int ret;
1317
1318 if (rtw_pci_disable_aspm)
1319 return;
1320
1321 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1322 if (ret) {
1323 rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1324 return;
1325 }
1326
1327 if (enable)
1328 value |= BIT_CLKREQ_SW_EN;
1329 else
1330 value &= ~BIT_CLKREQ_SW_EN;
1331
1332 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1333 }
1334
rtw_pci_clkreq_pad_low(struct rtw_dev * rtwdev,bool enable)1335 static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable)
1336 {
1337 u8 value;
1338 int ret;
1339
1340 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1341 if (ret) {
1342 rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1343 return;
1344 }
1345
1346 if (enable)
1347 value &= ~BIT_CLKREQ_N_PAD;
1348 else
1349 value |= BIT_CLKREQ_N_PAD;
1350
1351 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1352 }
1353
rtw_pci_aspm_set(struct rtw_dev * rtwdev,bool enable)1354 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
1355 {
1356 u8 value;
1357 int ret;
1358
1359 if (rtw_pci_disable_aspm)
1360 return;
1361
1362 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1363 if (ret) {
1364 rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
1365 return;
1366 }
1367
1368 if (enable)
1369 value |= BIT_L1_SW_EN;
1370 else
1371 value &= ~BIT_L1_SW_EN;
1372
1373 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1374 }
1375
rtw_pci_link_ps(struct rtw_dev * rtwdev,bool enter)1376 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
1377 {
1378 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1379
1380 /* Like CLKREQ, ASPM is also implemented by two HW modules, and can
1381 * only be enabled when host supports it.
1382 *
1383 * And ASPM mechanism should be enabled when driver/firmware enters
1384 * power save mode, without having heavy traffic. Because we've
1385 * experienced some inter-operability issues that the link tends
1386 * to enter L1 state on the fly even when driver is having high
1387 * throughput. This is probably because the ASPM behavior slightly
1388 * varies from different SOC.
1389 */
1390 if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1))
1391 return;
1392
1393 if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) ||
1394 (!enter && atomic_inc_return(&rtwpci->link_usage) == 1))
1395 rtw_pci_aspm_set(rtwdev, enter);
1396 }
1397
rtw_pci_link_cfg(struct rtw_dev * rtwdev)1398 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
1399 {
1400 const struct rtw_chip_info *chip = rtwdev->chip;
1401 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1402 struct pci_dev *pdev = rtwpci->pdev;
1403 u16 link_ctrl;
1404 int ret;
1405
1406 /* RTL8822CE has enabled REFCLK auto calibration, it does not need
1407 * to add clock delay to cover the REFCLK timing gap.
1408 */
1409 if (chip->id == RTW_CHIP_TYPE_8822C)
1410 rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
1411
1412 /* Though there is standard PCIE configuration space to set the
1413 * link control register, but by Realtek's design, driver should
1414 * check if host supports CLKREQ/ASPM to enable the HW module.
1415 *
1416 * These functions are implemented by two HW modules associated,
1417 * one is responsible to access PCIE configuration space to
1418 * follow the host settings, and another is in charge of doing
1419 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
1420 * the host does not support it, and due to some reasons or wrong
1421 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
1422 * loss if HW misbehaves on the link.
1423 *
1424 * Hence it's designed that driver should first check the PCIE
1425 * configuration space is sync'ed and enabled, then driver can turn
1426 * on the other module that is actually working on the mechanism.
1427 */
1428 ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
1429 if (ret) {
1430 rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
1431 return;
1432 }
1433
1434 if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
1435 rtw_pci_clkreq_set(rtwdev, true);
1436
1437 rtwpci->link_ctrl = link_ctrl;
1438 }
1439
rtw_pci_interface_cfg(struct rtw_dev * rtwdev)1440 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
1441 {
1442 const struct rtw_chip_info *chip = rtwdev->chip;
1443
1444 switch (chip->id) {
1445 case RTW_CHIP_TYPE_8822C:
1446 if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
1447 rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
1448 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
1449 break;
1450 default:
1451 break;
1452 }
1453 }
1454
rtw_pci_phy_cfg(struct rtw_dev * rtwdev)1455 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
1456 {
1457 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1458 const struct rtw_chip_info *chip = rtwdev->chip;
1459 struct pci_dev *pdev = rtwpci->pdev;
1460 const struct rtw_intf_phy_para *para;
1461 u16 cut;
1462 u16 value;
1463 u16 offset;
1464 int i;
1465 int ret;
1466
1467 cut = BIT(0) << rtwdev->hal.cut_version;
1468
1469 for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
1470 para = &chip->intf_table->gen1_para[i];
1471 if (!(para->cut_mask & cut))
1472 continue;
1473 if (para->offset == 0xffff)
1474 break;
1475 offset = para->offset;
1476 value = para->value;
1477 if (para->ip_sel == RTW_IP_SEL_PHY)
1478 rtw_mdio_write(rtwdev, offset, value, true);
1479 else
1480 rtw_dbi_write8(rtwdev, offset, value);
1481 }
1482
1483 for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
1484 para = &chip->intf_table->gen2_para[i];
1485 if (!(para->cut_mask & cut))
1486 continue;
1487 if (para->offset == 0xffff)
1488 break;
1489 offset = para->offset;
1490 value = para->value;
1491 if (para->ip_sel == RTW_IP_SEL_PHY)
1492 rtw_mdio_write(rtwdev, offset, value, false);
1493 else
1494 rtw_dbi_write8(rtwdev, offset, value);
1495 }
1496
1497 rtw_pci_link_cfg(rtwdev);
1498
1499 /* Disable 8821ce completion timeout by default */
1500 if (chip->id == RTW_CHIP_TYPE_8821C) {
1501 ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
1502 PCI_EXP_DEVCTL2_COMP_TMOUT_DIS);
1503 if (ret)
1504 rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n",
1505 ret);
1506 }
1507 }
1508
rtw_pci_suspend(struct device * dev)1509 static int __maybe_unused rtw_pci_suspend(struct device *dev)
1510 {
1511 struct ieee80211_hw *hw = dev_get_drvdata(dev);
1512 struct rtw_dev *rtwdev = hw->priv;
1513 const struct rtw_chip_info *chip = rtwdev->chip;
1514 struct rtw_efuse *efuse = &rtwdev->efuse;
1515
1516 if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1517 rtw_pci_clkreq_pad_low(rtwdev, true);
1518 return 0;
1519 }
1520
rtw_pci_resume(struct device * dev)1521 static int __maybe_unused rtw_pci_resume(struct device *dev)
1522 {
1523 struct ieee80211_hw *hw = dev_get_drvdata(dev);
1524 struct rtw_dev *rtwdev = hw->priv;
1525 const struct rtw_chip_info *chip = rtwdev->chip;
1526 struct rtw_efuse *efuse = &rtwdev->efuse;
1527
1528 if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1529 rtw_pci_clkreq_pad_low(rtwdev, false);
1530 return 0;
1531 }
1532
1533 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
1534 EXPORT_SYMBOL(rtw_pm_ops);
1535
rtw_pci_claim(struct rtw_dev * rtwdev,struct pci_dev * pdev)1536 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1537 {
1538 int ret;
1539
1540 ret = pci_enable_device(pdev);
1541 if (ret) {
1542 rtw_err(rtwdev, "failed to enable pci device\n");
1543 return ret;
1544 }
1545
1546 pci_set_master(pdev);
1547 pci_set_drvdata(pdev, rtwdev->hw);
1548 SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
1549
1550 return 0;
1551 }
1552
rtw_pci_declaim(struct rtw_dev * rtwdev,struct pci_dev * pdev)1553 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1554 {
1555 pci_clear_master(pdev);
1556 pci_disable_device(pdev);
1557 }
1558
rtw_pci_setup_resource(struct rtw_dev * rtwdev,struct pci_dev * pdev)1559 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1560 {
1561 struct rtw_pci *rtwpci;
1562 int ret;
1563
1564 rtwpci = (struct rtw_pci *)rtwdev->priv;
1565 rtwpci->pdev = pdev;
1566
1567 /* after this driver can access to hw registers */
1568 ret = rtw_pci_io_mapping(rtwdev, pdev);
1569 if (ret) {
1570 rtw_err(rtwdev, "failed to request pci io region\n");
1571 goto err_out;
1572 }
1573
1574 ret = rtw_pci_init(rtwdev);
1575 if (ret) {
1576 rtw_err(rtwdev, "failed to allocate pci resources\n");
1577 goto err_io_unmap;
1578 }
1579
1580 return 0;
1581
1582 err_io_unmap:
1583 rtw_pci_io_unmapping(rtwdev, pdev);
1584
1585 err_out:
1586 return ret;
1587 }
1588
rtw_pci_destroy(struct rtw_dev * rtwdev,struct pci_dev * pdev)1589 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1590 {
1591 rtw_pci_deinit(rtwdev);
1592 rtw_pci_io_unmapping(rtwdev, pdev);
1593 }
1594
1595 static struct rtw_hci_ops rtw_pci_ops = {
1596 .tx_write = rtw_pci_tx_write,
1597 .tx_kick_off = rtw_pci_tx_kick_off,
1598 .flush_queues = rtw_pci_flush_queues,
1599 .setup = rtw_pci_setup,
1600 .start = rtw_pci_start,
1601 .stop = rtw_pci_stop,
1602 .deep_ps = rtw_pci_deep_ps,
1603 .link_ps = rtw_pci_link_ps,
1604 .interface_cfg = rtw_pci_interface_cfg,
1605
1606 .read8 = rtw_pci_read8,
1607 .read16 = rtw_pci_read16,
1608 .read32 = rtw_pci_read32,
1609 .write8 = rtw_pci_write8,
1610 .write16 = rtw_pci_write16,
1611 .write32 = rtw_pci_write32,
1612 .write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
1613 .write_data_h2c = rtw_pci_write_data_h2c,
1614 };
1615
rtw_pci_request_irq(struct rtw_dev * rtwdev,struct pci_dev * pdev)1616 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1617 {
1618 unsigned int flags = PCI_IRQ_LEGACY;
1619 int ret;
1620
1621 if (!rtw_disable_msi)
1622 flags |= PCI_IRQ_MSI;
1623
1624 ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
1625 if (ret < 0) {
1626 rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
1627 return ret;
1628 }
1629
1630 ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
1631 rtw_pci_interrupt_handler,
1632 rtw_pci_interrupt_threadfn,
1633 IRQF_SHARED, KBUILD_MODNAME, rtwdev);
1634 if (ret) {
1635 rtw_err(rtwdev, "failed to request irq %d\n", ret);
1636 pci_free_irq_vectors(pdev);
1637 }
1638
1639 return ret;
1640 }
1641
rtw_pci_free_irq(struct rtw_dev * rtwdev,struct pci_dev * pdev)1642 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1643 {
1644 devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
1645 pci_free_irq_vectors(pdev);
1646 }
1647
rtw_pci_napi_poll(struct napi_struct * napi,int budget)1648 static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
1649 {
1650 struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
1651 struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
1652 priv);
1653 int work_done = 0;
1654
1655 if (rtwpci->rx_no_aspm)
1656 rtw_pci_link_ps(rtwdev, false);
1657
1658 while (work_done < budget) {
1659 u32 work_done_once;
1660
1661 work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
1662 budget - work_done);
1663 if (work_done_once == 0)
1664 break;
1665 work_done += work_done_once;
1666 }
1667 if (work_done < budget) {
1668 napi_complete_done(napi, work_done);
1669 spin_lock_bh(&rtwpci->irq_lock);
1670 if (rtwpci->running)
1671 rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
1672 spin_unlock_bh(&rtwpci->irq_lock);
1673 /* When ISR happens during polling and before napi_complete
1674 * while no further data is received. Data on the dma_ring will
1675 * not be processed immediately. Check whether dma ring is
1676 * empty and perform napi_schedule accordingly.
1677 */
1678 if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
1679 napi_schedule(napi);
1680 }
1681 if (rtwpci->rx_no_aspm)
1682 rtw_pci_link_ps(rtwdev, true);
1683
1684 return work_done;
1685 }
1686
rtw_pci_napi_init(struct rtw_dev * rtwdev)1687 static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
1688 {
1689 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1690
1691 init_dummy_netdev(&rtwpci->netdev);
1692 netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll);
1693 }
1694
rtw_pci_napi_deinit(struct rtw_dev * rtwdev)1695 static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
1696 {
1697 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1698
1699 rtw_pci_napi_stop(rtwdev);
1700 netif_napi_del(&rtwpci->napi);
1701 }
1702
rtw_pci_probe(struct pci_dev * pdev,const struct pci_device_id * id)1703 int rtw_pci_probe(struct pci_dev *pdev,
1704 const struct pci_device_id *id)
1705 {
1706 struct pci_dev *bridge = pci_upstream_bridge(pdev);
1707 struct ieee80211_hw *hw;
1708 struct rtw_dev *rtwdev;
1709 struct rtw_pci *rtwpci;
1710 int drv_data_size;
1711 int ret;
1712
1713 drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
1714 hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
1715 if (!hw) {
1716 dev_err(&pdev->dev, "failed to allocate hw\n");
1717 return -ENOMEM;
1718 }
1719
1720 rtwdev = hw->priv;
1721 rtwdev->hw = hw;
1722 rtwdev->dev = &pdev->dev;
1723 rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
1724 rtwdev->hci.ops = &rtw_pci_ops;
1725 rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
1726
1727 rtwpci = (struct rtw_pci *)rtwdev->priv;
1728 atomic_set(&rtwpci->link_usage, 1);
1729
1730 ret = rtw_core_init(rtwdev);
1731 if (ret)
1732 goto err_release_hw;
1733
1734 rtw_dbg(rtwdev, RTW_DBG_PCI,
1735 "rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
1736 pdev->vendor, pdev->device, pdev->revision);
1737
1738 ret = rtw_pci_claim(rtwdev, pdev);
1739 if (ret) {
1740 rtw_err(rtwdev, "failed to claim pci device\n");
1741 goto err_deinit_core;
1742 }
1743
1744 ret = rtw_pci_setup_resource(rtwdev, pdev);
1745 if (ret) {
1746 rtw_err(rtwdev, "failed to setup pci resources\n");
1747 goto err_pci_declaim;
1748 }
1749
1750 rtw_pci_napi_init(rtwdev);
1751
1752 ret = rtw_chip_info_setup(rtwdev);
1753 if (ret) {
1754 rtw_err(rtwdev, "failed to setup chip information\n");
1755 goto err_destroy_pci;
1756 }
1757
1758 /* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */
1759 if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL)
1760 rtwpci->rx_no_aspm = true;
1761
1762 rtw_pci_phy_cfg(rtwdev);
1763
1764 ret = rtw_register_hw(rtwdev, hw);
1765 if (ret) {
1766 rtw_err(rtwdev, "failed to register hw\n");
1767 goto err_destroy_pci;
1768 }
1769
1770 ret = rtw_pci_request_irq(rtwdev, pdev);
1771 if (ret) {
1772 ieee80211_unregister_hw(hw);
1773 goto err_destroy_pci;
1774 }
1775
1776 return 0;
1777
1778 err_destroy_pci:
1779 rtw_pci_napi_deinit(rtwdev);
1780 rtw_pci_destroy(rtwdev, pdev);
1781
1782 err_pci_declaim:
1783 rtw_pci_declaim(rtwdev, pdev);
1784
1785 err_deinit_core:
1786 rtw_core_deinit(rtwdev);
1787
1788 err_release_hw:
1789 ieee80211_free_hw(hw);
1790
1791 return ret;
1792 }
1793 EXPORT_SYMBOL(rtw_pci_probe);
1794
rtw_pci_remove(struct pci_dev * pdev)1795 void rtw_pci_remove(struct pci_dev *pdev)
1796 {
1797 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1798 struct rtw_dev *rtwdev;
1799 struct rtw_pci *rtwpci;
1800
1801 if (!hw)
1802 return;
1803
1804 rtwdev = hw->priv;
1805 rtwpci = (struct rtw_pci *)rtwdev->priv;
1806
1807 rtw_unregister_hw(rtwdev, hw);
1808 rtw_pci_disable_interrupt(rtwdev, rtwpci);
1809 rtw_pci_napi_deinit(rtwdev);
1810 rtw_pci_destroy(rtwdev, pdev);
1811 rtw_pci_declaim(rtwdev, pdev);
1812 rtw_pci_free_irq(rtwdev, pdev);
1813 rtw_core_deinit(rtwdev);
1814 ieee80211_free_hw(hw);
1815 }
1816 EXPORT_SYMBOL(rtw_pci_remove);
1817
rtw_pci_shutdown(struct pci_dev * pdev)1818 void rtw_pci_shutdown(struct pci_dev *pdev)
1819 {
1820 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1821 struct rtw_dev *rtwdev;
1822 const struct rtw_chip_info *chip;
1823
1824 if (!hw)
1825 return;
1826
1827 rtwdev = hw->priv;
1828 chip = rtwdev->chip;
1829
1830 if (chip->ops->shutdown)
1831 chip->ops->shutdown(rtwdev);
1832
1833 pci_set_power_state(pdev, PCI_D3hot);
1834 }
1835 EXPORT_SYMBOL(rtw_pci_shutdown);
1836
1837 MODULE_AUTHOR("Realtek Corporation");
1838 MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver");
1839 MODULE_LICENSE("Dual BSD/GPL");
1840