1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2020, STMicroelectronics - All Rights Reserved
4  */
5 
6 #include <command.h>
7 #include <console.h>
8 #include <dfu.h>
9 #include <malloc.h>
10 #include <misc.h>
11 #include <mmc.h>
12 #include <part.h>
13 #include <asm/arch/stm32mp1_smc.h>
14 #include <asm/global_data.h>
15 #include <dm/uclass.h>
16 #include <jffs2/load_kernel.h>
17 #include <linux/list.h>
18 #include <linux/list_sort.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/sizes.h>
21 
22 #include "stm32prog.h"
23 
24 /* Primary GPT header size for 128 entries : 17kB = 34 LBA of 512B */
25 #define GPT_HEADER_SZ	34
26 
27 #define OPT_SELECT	BIT(0)
28 #define OPT_EMPTY	BIT(1)
29 #define OPT_DELETE	BIT(2)
30 
31 #define IS_SELECT(part)	((part)->option & OPT_SELECT)
32 #define IS_EMPTY(part)	((part)->option & OPT_EMPTY)
33 #define IS_DELETE(part)	((part)->option & OPT_DELETE)
34 
35 #define ALT_BUF_LEN			SZ_1K
36 
37 #define ROOTFS_MMC0_UUID \
38 	EFI_GUID(0xE91C4E10, 0x16E6, 0x4C0E, \
39 		 0xBD, 0x0E, 0x77, 0xBE, 0xCF, 0x4A, 0x35, 0x82)
40 
41 #define ROOTFS_MMC1_UUID \
42 	EFI_GUID(0x491F6117, 0x415D, 0x4F53, \
43 		 0x88, 0xC9, 0x6E, 0x0D, 0xE5, 0x4D, 0xEA, 0xC6)
44 
45 #define ROOTFS_MMC2_UUID \
46 	EFI_GUID(0xFD58F1C7, 0xBE0D, 0x4338, \
47 		 0x88, 0xE9, 0xAD, 0x8F, 0x05, 0x0A, 0xEB, 0x18)
48 
49 /* RAW parttion (binary / bootloader) used Linux - reserved UUID */
50 #define LINUX_RESERVED_UUID "8DA63339-0007-60C0-C436-083AC8230908"
51 
52 /*
53  * unique partition guid (uuid) for partition named "rootfs"
54  * on each MMC instance = SD Card or eMMC
55  * allow fixed kernel bootcmd: "rootf=PARTUID=e91c4e10-..."
56  */
57 static const efi_guid_t uuid_mmc[3] = {
58 	ROOTFS_MMC0_UUID,
59 	ROOTFS_MMC1_UUID,
60 	ROOTFS_MMC2_UUID
61 };
62 
63 /* order of column in flash layout file */
64 enum stm32prog_col_t {
65 	COL_OPTION,
66 	COL_ID,
67 	COL_NAME,
68 	COL_TYPE,
69 	COL_IP,
70 	COL_OFFSET,
71 	COL_NB_STM32
72 };
73 
74 #define FIP_TOC_HEADER_NAME	0xAA640001
75 
76 struct fip_toc_header {
77 	u32	name;
78 	u32	serial_number;
79 	u64	flags;
80 };
81 
82 DECLARE_GLOBAL_DATA_PTR;
83 
84 /* partition handling routines : CONFIG_CMD_MTDPARTS */
85 int mtdparts_init(void);
86 int find_dev_and_part(const char *id, struct mtd_device **dev,
87 		      u8 *part_num, struct part_info **part);
88 
stm32prog_get_error(struct stm32prog_data * data)89 char *stm32prog_get_error(struct stm32prog_data *data)
90 {
91 	static const char error_msg[] = "Unspecified";
92 
93 	if (strlen(data->error) == 0)
94 		strcpy(data->error, error_msg);
95 
96 	return data->error;
97 }
98 
stm32prog_is_fip_header(struct fip_toc_header * header)99 static bool stm32prog_is_fip_header(struct fip_toc_header *header)
100 {
101 	return (header->name == FIP_TOC_HEADER_NAME) && header->serial_number;
102 }
103 
stm32prog_header_check(struct raw_header_s * raw_header,struct image_header_s * header)104 void stm32prog_header_check(struct raw_header_s *raw_header,
105 			    struct image_header_s *header)
106 {
107 	unsigned int i;
108 
109 	if (!raw_header || !header) {
110 		log_debug("%s:no header data\n", __func__);
111 		return;
112 	}
113 
114 	header->type = HEADER_NONE;
115 	header->image_checksum = 0x0;
116 	header->image_length = 0x0;
117 
118 	if (stm32prog_is_fip_header((struct fip_toc_header *)raw_header)) {
119 		header->type = HEADER_FIP;
120 		return;
121 	}
122 
123 	if (raw_header->magic_number !=
124 		(('S' << 0) | ('T' << 8) | ('M' << 16) | (0x32 << 24))) {
125 		log_debug("%s:invalid magic number : 0x%x\n",
126 			  __func__, raw_header->magic_number);
127 		return;
128 	}
129 	/* only header v1.0 supported */
130 	if (raw_header->header_version != 0x00010000) {
131 		log_debug("%s:invalid header version : 0x%x\n",
132 			  __func__, raw_header->header_version);
133 		return;
134 	}
135 	if (raw_header->reserved1 != 0x0 || raw_header->reserved2) {
136 		log_debug("%s:invalid reserved field\n", __func__);
137 		return;
138 	}
139 	for (i = 0; i < (sizeof(raw_header->padding) / 4); i++) {
140 		if (raw_header->padding[i] != 0) {
141 			log_debug("%s:invalid padding field\n", __func__);
142 			return;
143 		}
144 	}
145 	header->type = HEADER_STM32IMAGE;
146 	header->image_checksum = le32_to_cpu(raw_header->image_checksum);
147 	header->image_length = le32_to_cpu(raw_header->image_length);
148 
149 	return;
150 }
151 
stm32prog_header_checksum(u32 addr,struct image_header_s * header)152 static u32 stm32prog_header_checksum(u32 addr, struct image_header_s *header)
153 {
154 	u32 i, checksum;
155 	u8 *payload;
156 
157 	/* compute checksum on payload */
158 	payload = (u8 *)addr;
159 	checksum = 0;
160 	for (i = header->image_length; i > 0; i--)
161 		checksum += *(payload++);
162 
163 	return checksum;
164 }
165 
166 /* FLASHLAYOUT PARSING *****************************************/
parse_option(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)167 static int parse_option(struct stm32prog_data *data,
168 			int i, char *p, struct stm32prog_part_t *part)
169 {
170 	int result = 0;
171 	char *c = p;
172 
173 	part->option = 0;
174 	if (!strcmp(p, "-"))
175 		return 0;
176 
177 	while (*c) {
178 		switch (*c) {
179 		case 'P':
180 			part->option |= OPT_SELECT;
181 			break;
182 		case 'E':
183 			part->option |= OPT_EMPTY;
184 			break;
185 		case 'D':
186 			part->option |= OPT_DELETE;
187 			break;
188 		default:
189 			result = -EINVAL;
190 			stm32prog_err("Layout line %d: invalid option '%c' in %s)",
191 				      i, *c, p);
192 			return -EINVAL;
193 		}
194 		c++;
195 	}
196 	if (!(part->option & OPT_SELECT)) {
197 		stm32prog_err("Layout line %d: missing 'P' in option %s", i, p);
198 		return -EINVAL;
199 	}
200 
201 	return result;
202 }
203 
parse_id(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)204 static int parse_id(struct stm32prog_data *data,
205 		    int i, char *p, struct stm32prog_part_t *part)
206 {
207 	int result = 0;
208 	unsigned long value;
209 
210 	result = strict_strtoul(p, 0, &value);
211 	part->id = value;
212 	if (result || value > PHASE_LAST_USER) {
213 		stm32prog_err("Layout line %d: invalid phase value = %s", i, p);
214 		result = -EINVAL;
215 	}
216 
217 	return result;
218 }
219 
parse_name(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)220 static int parse_name(struct stm32prog_data *data,
221 		      int i, char *p, struct stm32prog_part_t *part)
222 {
223 	int result = 0;
224 
225 	if (strlen(p) < sizeof(part->name)) {
226 		strcpy(part->name, p);
227 	} else {
228 		stm32prog_err("Layout line %d: partition name too long [%d]: %s",
229 			      i, strlen(p), p);
230 		result = -EINVAL;
231 	}
232 
233 	return result;
234 }
235 
parse_type(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)236 static int parse_type(struct stm32prog_data *data,
237 		      int i, char *p, struct stm32prog_part_t *part)
238 {
239 	int result = 0;
240 	int len = 0;
241 
242 	part->bin_nb = 0;
243 	if (!strncmp(p, "Binary", 6)) {
244 		part->part_type = PART_BINARY;
245 
246 		/* search for Binary(X) case */
247 		len = strlen(p);
248 		part->bin_nb = 1;
249 		if (len > 6) {
250 			if (len < 8 ||
251 			    (p[6] != '(') ||
252 			    (p[len - 1] != ')'))
253 				result = -EINVAL;
254 			else
255 				part->bin_nb =
256 					dectoul(&p[7], NULL);
257 		}
258 	} else if (!strcmp(p, "System")) {
259 		part->part_type = PART_SYSTEM;
260 	} else if (!strcmp(p, "FileSystem")) {
261 		part->part_type = PART_FILESYSTEM;
262 	} else if (!strcmp(p, "RawImage")) {
263 		part->part_type = RAW_IMAGE;
264 	} else {
265 		result = -EINVAL;
266 	}
267 	if (result)
268 		stm32prog_err("Layout line %d: type parsing error : '%s'",
269 			      i, p);
270 
271 	return result;
272 }
273 
parse_ip(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)274 static int parse_ip(struct stm32prog_data *data,
275 		    int i, char *p, struct stm32prog_part_t *part)
276 {
277 	int result = 0;
278 	unsigned int len = 0;
279 
280 	part->dev_id = 0;
281 	if (!strcmp(p, "none")) {
282 		part->target = STM32PROG_NONE;
283 	} else if (!strncmp(p, "mmc", 3)) {
284 		part->target = STM32PROG_MMC;
285 		len = 3;
286 	} else if (!strncmp(p, "nor", 3)) {
287 		part->target = STM32PROG_NOR;
288 		len = 3;
289 	} else if (!strncmp(p, "nand", 4)) {
290 		part->target = STM32PROG_NAND;
291 		len = 4;
292 	} else if (!strncmp(p, "spi-nand", 8)) {
293 		part->target = STM32PROG_SPI_NAND;
294 		len = 8;
295 	} else if (!strncmp(p, "ram", 3)) {
296 		part->target = STM32PROG_RAM;
297 		len = 0;
298 	} else {
299 		result = -EINVAL;
300 	}
301 	if (len) {
302 		/* only one digit allowed for device id */
303 		if (strlen(p) != len + 1) {
304 			result = -EINVAL;
305 		} else {
306 			part->dev_id = p[len] - '0';
307 			if (part->dev_id > 9)
308 				result = -EINVAL;
309 		}
310 	}
311 	if (result)
312 		stm32prog_err("Layout line %d: ip parsing error: '%s'", i, p);
313 
314 	return result;
315 }
316 
parse_offset(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)317 static int parse_offset(struct stm32prog_data *data,
318 			int i, char *p, struct stm32prog_part_t *part)
319 {
320 	int result = 0;
321 	char *tail;
322 
323 	part->part_id = 0;
324 	part->addr = 0;
325 	part->size = 0;
326 	/* eMMC boot parttion */
327 	if (!strncmp(p, "boot", 4)) {
328 		if (strlen(p) != 5) {
329 			result = -EINVAL;
330 		} else {
331 			if (p[4] == '1')
332 				part->part_id = -1;
333 			else if (p[4] == '2')
334 				part->part_id = -2;
335 			else
336 				result = -EINVAL;
337 		}
338 		if (result)
339 			stm32prog_err("Layout line %d: invalid part '%s'",
340 				      i, p);
341 	} else {
342 		part->addr = simple_strtoull(p, &tail, 0);
343 		if (tail == p || *tail != '\0') {
344 			stm32prog_err("Layout line %d: invalid offset '%s'",
345 				      i, p);
346 			result = -EINVAL;
347 		}
348 	}
349 
350 	return result;
351 }
352 
353 static
354 int (* const parse[COL_NB_STM32])(struct stm32prog_data *data, int i, char *p,
355 				  struct stm32prog_part_t *part) = {
356 	[COL_OPTION] = parse_option,
357 	[COL_ID] = parse_id,
358 	[COL_NAME] =  parse_name,
359 	[COL_TYPE] = parse_type,
360 	[COL_IP] = parse_ip,
361 	[COL_OFFSET] = parse_offset,
362 };
363 
parse_flash_layout(struct stm32prog_data * data,ulong addr,ulong size)364 static int parse_flash_layout(struct stm32prog_data *data,
365 			      ulong addr,
366 			      ulong size)
367 {
368 	int column = 0, part_nb = 0, ret;
369 	bool end_of_line, eof;
370 	char *p, *start, *last, *col;
371 	struct stm32prog_part_t *part;
372 	struct image_header_s header;
373 	int part_list_size;
374 	int i;
375 
376 	data->part_nb = 0;
377 
378 	/* check if STM32image is detected */
379 	stm32prog_header_check((struct raw_header_s *)addr, &header);
380 	if (header.type == HEADER_STM32IMAGE) {
381 		u32 checksum;
382 
383 		addr = addr + BL_HEADER_SIZE;
384 		size = header.image_length;
385 
386 		checksum = stm32prog_header_checksum(addr, &header);
387 		if (checksum != header.image_checksum) {
388 			stm32prog_err("Layout: invalid checksum : 0x%x expected 0x%x",
389 				      checksum, header.image_checksum);
390 			return -EIO;
391 		}
392 	}
393 	if (!size)
394 		return -EINVAL;
395 
396 	start = (char *)addr;
397 	last = start + size;
398 
399 	*last = 0x0; /* force null terminated string */
400 	log_debug("flash layout =\n%s\n", start);
401 
402 	/* calculate expected number of partitions */
403 	part_list_size = 1;
404 	p = start;
405 	while (*p && (p < last)) {
406 		if (*p++ == '\n') {
407 			part_list_size++;
408 			if (p < last && *p == '#')
409 				part_list_size--;
410 		}
411 	}
412 	if (part_list_size > PHASE_LAST_USER) {
413 		stm32prog_err("Layout: too many partition (%d)",
414 			      part_list_size);
415 		return -1;
416 	}
417 	part = calloc(sizeof(struct stm32prog_part_t), part_list_size);
418 	if (!part) {
419 		stm32prog_err("Layout: alloc failed");
420 		return -ENOMEM;
421 	}
422 	data->part_array = part;
423 
424 	/* main parsing loop */
425 	i = 1;
426 	eof = false;
427 	p = start;
428 	col = start; /* 1st column */
429 	end_of_line = false;
430 	while (!eof) {
431 		switch (*p) {
432 		/* CR is ignored and replaced by NULL character */
433 		case '\r':
434 			*p = '\0';
435 			p++;
436 			continue;
437 		case '\0':
438 			end_of_line = true;
439 			eof = true;
440 			break;
441 		case '\n':
442 			end_of_line = true;
443 			break;
444 		case '\t':
445 			break;
446 		case '#':
447 			/* comment line is skipped */
448 			if (column == 0 && p == col) {
449 				while ((p < last) && *p)
450 					if (*p++ == '\n')
451 						break;
452 				col = p;
453 				i++;
454 				if (p >= last || !*p) {
455 					eof = true;
456 					end_of_line = true;
457 				}
458 				continue;
459 			}
460 			/* fall through */
461 		/* by default continue with the next character */
462 		default:
463 			p++;
464 			continue;
465 		}
466 
467 		/* replace by \0: allow string parsing for each column */
468 		*p = '\0';
469 		p++;
470 		if (p >= last) {
471 			eof = true;
472 			end_of_line = true;
473 		}
474 
475 		/* skip empty line and multiple TAB in tsv file */
476 		if (strlen(col) == 0) {
477 			col = p;
478 			/* skip empty line */
479 			if (column == 0 && end_of_line) {
480 				end_of_line = false;
481 				i++;
482 			}
483 			continue;
484 		}
485 
486 		if (column < COL_NB_STM32) {
487 			ret = parse[column](data, i, col, part);
488 			if (ret)
489 				return ret;
490 		}
491 
492 		/* save the beginning of the next column */
493 		column++;
494 		col = p;
495 
496 		if (!end_of_line)
497 			continue;
498 
499 		/* end of the line detected */
500 		end_of_line = false;
501 
502 		if (column < COL_NB_STM32) {
503 			stm32prog_err("Layout line %d: no enought column", i);
504 			return -EINVAL;
505 		}
506 		column = 0;
507 		part_nb++;
508 		part++;
509 		i++;
510 		if (part_nb >= part_list_size) {
511 			part = NULL;
512 			if (!eof) {
513 				stm32prog_err("Layout: no enought memory for %d part",
514 					      part_nb);
515 				return -EINVAL;
516 			}
517 		}
518 	}
519 	data->part_nb = part_nb;
520 	if (data->part_nb == 0) {
521 		stm32prog_err("Layout: no partition found");
522 		return -ENODEV;
523 	}
524 
525 	return 0;
526 }
527 
part_cmp(void * priv,struct list_head * a,struct list_head * b)528 static int __init part_cmp(void *priv, struct list_head *a, struct list_head *b)
529 {
530 	struct stm32prog_part_t *parta, *partb;
531 
532 	parta = container_of(a, struct stm32prog_part_t, list);
533 	partb = container_of(b, struct stm32prog_part_t, list);
534 
535 	if (parta->part_id != partb->part_id)
536 		return parta->part_id - partb->part_id;
537 	else
538 		return parta->addr > partb->addr ? 1 : -1;
539 }
540 
get_mtd_by_target(char * string,enum stm32prog_target target,int dev_id)541 static void get_mtd_by_target(char *string, enum stm32prog_target target,
542 			      int dev_id)
543 {
544 	const char *dev_str;
545 
546 	switch (target) {
547 	case STM32PROG_NOR:
548 		dev_str = "nor";
549 		break;
550 	case STM32PROG_NAND:
551 		dev_str = "nand";
552 		break;
553 	case STM32PROG_SPI_NAND:
554 		dev_str = "spi-nand";
555 		break;
556 	default:
557 		dev_str = "invalid";
558 		break;
559 	}
560 	sprintf(string, "%s%d", dev_str, dev_id);
561 }
562 
init_device(struct stm32prog_data * data,struct stm32prog_dev_t * dev)563 static int init_device(struct stm32prog_data *data,
564 		       struct stm32prog_dev_t *dev)
565 {
566 	struct mmc *mmc = NULL;
567 	struct blk_desc *block_dev = NULL;
568 	struct mtd_info *mtd = NULL;
569 	char mtd_id[16];
570 	int part_id;
571 	int ret;
572 	u64 first_addr = 0, last_addr = 0;
573 	struct stm32prog_part_t *part, *next_part;
574 	u64 part_addr, part_size;
575 	bool part_found;
576 	const char *part_name;
577 
578 	switch (dev->target) {
579 	case STM32PROG_MMC:
580 		if (!IS_ENABLED(CONFIG_MMC)) {
581 			stm32prog_err("unknown device type = %d", dev->target);
582 			return -ENODEV;
583 		}
584 		mmc = find_mmc_device(dev->dev_id);
585 		if (!mmc || mmc_init(mmc)) {
586 			stm32prog_err("mmc device %d not found", dev->dev_id);
587 			return -ENODEV;
588 		}
589 		block_dev = mmc_get_blk_desc(mmc);
590 		if (!block_dev) {
591 			stm32prog_err("mmc device %d not probed", dev->dev_id);
592 			return -ENODEV;
593 		}
594 		dev->erase_size = mmc->erase_grp_size * block_dev->blksz;
595 		dev->mmc = mmc;
596 
597 		/* reserve a full erase group for each GTP headers */
598 		if (mmc->erase_grp_size > GPT_HEADER_SZ) {
599 			first_addr = dev->erase_size;
600 			last_addr = (u64)(block_dev->lba -
601 					  mmc->erase_grp_size) *
602 				    block_dev->blksz;
603 		} else {
604 			first_addr = (u64)GPT_HEADER_SZ * block_dev->blksz;
605 			last_addr = (u64)(block_dev->lba - GPT_HEADER_SZ - 1) *
606 				    block_dev->blksz;
607 		}
608 		log_debug("MMC %d: lba=%ld blksz=%ld\n", dev->dev_id,
609 			  block_dev->lba, block_dev->blksz);
610 		log_debug(" available address = 0x%llx..0x%llx\n",
611 			  first_addr, last_addr);
612 		log_debug(" full_update = %d\n", dev->full_update);
613 		break;
614 	case STM32PROG_NOR:
615 	case STM32PROG_NAND:
616 	case STM32PROG_SPI_NAND:
617 		if (!IS_ENABLED(CONFIG_MTD)) {
618 			stm32prog_err("unknown device type = %d", dev->target);
619 			return -ENODEV;
620 		}
621 		get_mtd_by_target(mtd_id, dev->target, dev->dev_id);
622 		log_debug("%s\n", mtd_id);
623 
624 		mtdparts_init();
625 		mtd = get_mtd_device_nm(mtd_id);
626 		if (IS_ERR(mtd)) {
627 			stm32prog_err("MTD device %s not found", mtd_id);
628 			return -ENODEV;
629 		}
630 		first_addr = 0;
631 		last_addr = mtd->size;
632 		dev->erase_size = mtd->erasesize;
633 		log_debug("MTD device %s: size=%lld erasesize=%d\n",
634 			  mtd_id, mtd->size, mtd->erasesize);
635 		log_debug(" available address = 0x%llx..0x%llx\n",
636 			  first_addr, last_addr);
637 		dev->mtd = mtd;
638 		break;
639 	case STM32PROG_RAM:
640 		first_addr = gd->bd->bi_dram[0].start;
641 		last_addr = first_addr + gd->bd->bi_dram[0].size;
642 		dev->erase_size = 1;
643 		break;
644 	default:
645 		stm32prog_err("unknown device type = %d", dev->target);
646 		return -ENODEV;
647 	}
648 	log_debug(" erase size = 0x%x\n", dev->erase_size);
649 	log_debug(" full_update = %d\n", dev->full_update);
650 
651 	/* order partition list in offset order */
652 	list_sort(NULL, &dev->part_list, &part_cmp);
653 	part_id = 1;
654 	log_debug("id : Opt Phase     Name target.n dev.n addr     size     part_off part_size\n");
655 	list_for_each_entry(part, &dev->part_list, list) {
656 		if (part->bin_nb > 1) {
657 			if ((dev->target != STM32PROG_NAND &&
658 			     dev->target != STM32PROG_SPI_NAND) ||
659 			    part->id >= PHASE_FIRST_USER ||
660 			    strncmp(part->name, "fsbl", 4)) {
661 				stm32prog_err("%s (0x%x): multiple binary %d not supported",
662 					      part->name, part->id,
663 					      part->bin_nb);
664 				return -EINVAL;
665 			}
666 		}
667 		if (part->part_type == RAW_IMAGE) {
668 			part->part_id = 0x0;
669 			part->addr = 0x0;
670 			if (block_dev)
671 				part->size = block_dev->lba * block_dev->blksz;
672 			else
673 				part->size = last_addr;
674 			log_debug("-- : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx\n",
675 				  part->option, part->id, part->name,
676 				  part->part_type, part->bin_nb, part->target,
677 				  part->dev_id, part->addr, part->size);
678 			continue;
679 		}
680 		if (part->part_id < 0) { /* boot hw partition for eMMC */
681 			if (mmc) {
682 				part->size = mmc->capacity_boot;
683 			} else {
684 				stm32prog_err("%s (0x%x): hw partition not expected : %d",
685 					      part->name, part->id,
686 					      part->part_id);
687 				return -ENODEV;
688 			}
689 		} else {
690 			part->part_id = part_id++;
691 
692 			/* last partition : size to the end of the device */
693 			if (part->list.next != &dev->part_list) {
694 				next_part =
695 					container_of(part->list.next,
696 						     struct stm32prog_part_t,
697 						     list);
698 				if (part->addr < next_part->addr) {
699 					part->size = next_part->addr -
700 						     part->addr;
701 				} else {
702 					stm32prog_err("%s (0x%x): same address : 0x%llx == %s (0x%x): 0x%llx",
703 						      part->name, part->id,
704 						      part->addr,
705 						      next_part->name,
706 						      next_part->id,
707 						      next_part->addr);
708 					return -EINVAL;
709 				}
710 			} else {
711 				if (part->addr <= last_addr) {
712 					part->size = last_addr - part->addr;
713 				} else {
714 					stm32prog_err("%s (0x%x): invalid address 0x%llx (max=0x%llx)",
715 						      part->name, part->id,
716 						      part->addr, last_addr);
717 					return -EINVAL;
718 				}
719 			}
720 			if (part->addr < first_addr) {
721 				stm32prog_err("%s (0x%x): invalid address 0x%llx (min=0x%llx)",
722 					      part->name, part->id,
723 					      part->addr, first_addr);
724 				return -EINVAL;
725 			}
726 		}
727 		if ((part->addr & ((u64)part->dev->erase_size - 1)) != 0) {
728 			stm32prog_err("%s (0x%x): not aligned address : 0x%llx on erase size 0x%x",
729 				      part->name, part->id, part->addr,
730 				      part->dev->erase_size);
731 			return -EINVAL;
732 		}
733 		log_debug("%02d : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx",
734 			  part->part_id, part->option, part->id, part->name,
735 			  part->part_type, part->bin_nb, part->target,
736 			  part->dev_id, part->addr, part->size);
737 
738 		part_addr = 0;
739 		part_size = 0;
740 		part_found = false;
741 
742 		/* check coherency with existing partition */
743 		if (block_dev) {
744 			/*
745 			 * block devices with GPT: check user partition size
746 			 * only for partial update, the GPT partions are be
747 			 * created for full update
748 			 */
749 			if (dev->full_update || part->part_id < 0) {
750 				log_debug("\n");
751 				continue;
752 			}
753 			struct disk_partition partinfo;
754 
755 			ret = part_get_info(block_dev, part->part_id,
756 					    &partinfo);
757 
758 			if (ret) {
759 				stm32prog_err("%s (0x%x):Couldn't find part %d on device mmc %d",
760 					      part->name, part->id,
761 					      part_id, part->dev_id);
762 				return -ENODEV;
763 			}
764 			part_addr = (u64)partinfo.start * partinfo.blksz;
765 			part_size = (u64)partinfo.size * partinfo.blksz;
766 			part_name = (char *)partinfo.name;
767 			part_found = true;
768 		}
769 
770 		if (IS_ENABLED(CONFIG_MTD) && mtd) {
771 			char mtd_part_id[32];
772 			struct part_info *mtd_part;
773 			struct mtd_device *mtd_dev;
774 			u8 part_num;
775 
776 			sprintf(mtd_part_id, "%s,%d", mtd_id,
777 				part->part_id - 1);
778 			ret = find_dev_and_part(mtd_part_id, &mtd_dev,
779 						&part_num, &mtd_part);
780 			if (ret != 0) {
781 				stm32prog_err("%s (0x%x): Invalid MTD partition %s",
782 					      part->name, part->id,
783 					      mtd_part_id);
784 				return -ENODEV;
785 			}
786 			part_addr = mtd_part->offset;
787 			part_size = mtd_part->size;
788 			part_name = mtd_part->name;
789 			part_found = true;
790 		}
791 
792 		/* no partition for this device */
793 		if (!part_found) {
794 			log_debug("\n");
795 			continue;
796 		}
797 
798 		log_debug(" %08llx %08llx\n", part_addr, part_size);
799 
800 		if (part->addr != part_addr) {
801 			stm32prog_err("%s (0x%x): Bad address for partition %d (%s) = 0x%llx <> 0x%llx expected",
802 				      part->name, part->id, part->part_id,
803 				      part_name, part->addr, part_addr);
804 			return -ENODEV;
805 		}
806 		if (part->size != part_size) {
807 			stm32prog_err("%s (0x%x): Bad size for partition %d (%s) at 0x%llx = 0x%llx <> 0x%llx expected",
808 				      part->name, part->id, part->part_id,
809 				      part_name, part->addr, part->size,
810 				      part_size);
811 			return -ENODEV;
812 		}
813 	}
814 	return 0;
815 }
816 
treat_partition_list(struct stm32prog_data * data)817 static int treat_partition_list(struct stm32prog_data *data)
818 {
819 	int i, j;
820 	struct stm32prog_part_t *part;
821 
822 	for (j = 0; j < STM32PROG_MAX_DEV; j++) {
823 		data->dev[j].target = STM32PROG_NONE;
824 		INIT_LIST_HEAD(&data->dev[j].part_list);
825 	}
826 
827 #ifdef CONFIG_STM32MP15x_STM32IMAGE
828 	data->tee_detected = false;
829 #endif
830 	data->fsbl_nor_detected = false;
831 	for (i = 0; i < data->part_nb; i++) {
832 		part = &data->part_array[i];
833 		part->alt_id = -1;
834 
835 		/* skip partition with IP="none" */
836 		if (part->target == STM32PROG_NONE) {
837 			if (IS_SELECT(part)) {
838 				stm32prog_err("Layout: selected none phase = 0x%x",
839 					      part->id);
840 				return -EINVAL;
841 			}
842 			continue;
843 		}
844 
845 		if (part->id == PHASE_FLASHLAYOUT ||
846 		    part->id > PHASE_LAST_USER) {
847 			stm32prog_err("Layout: invalid phase = 0x%x",
848 				      part->id);
849 			return -EINVAL;
850 		}
851 		for (j = i + 1; j < data->part_nb; j++) {
852 			if (part->id == data->part_array[j].id) {
853 				stm32prog_err("Layout: duplicated phase 0x%x at line %d and %d",
854 					      part->id, i, j);
855 				return -EINVAL;
856 			}
857 		}
858 		for (j = 0; j < STM32PROG_MAX_DEV; j++) {
859 			if (data->dev[j].target == STM32PROG_NONE) {
860 				/* new device found */
861 				data->dev[j].target = part->target;
862 				data->dev[j].dev_id = part->dev_id;
863 				data->dev[j].full_update = true;
864 				data->dev_nb++;
865 				break;
866 			} else if ((part->target == data->dev[j].target) &&
867 				   (part->dev_id == data->dev[j].dev_id)) {
868 				break;
869 			}
870 		}
871 		if (j == STM32PROG_MAX_DEV) {
872 			stm32prog_err("Layout: too many device");
873 			return -EINVAL;
874 		}
875 		switch (part->target)  {
876 		case STM32PROG_NOR:
877 			if (!data->fsbl_nor_detected &&
878 			    !strncmp(part->name, "fsbl", 4))
879 				data->fsbl_nor_detected = true;
880 			/* fallthrough */
881 		case STM32PROG_NAND:
882 		case STM32PROG_SPI_NAND:
883 #ifdef CONFIG_STM32MP15x_STM32IMAGE
884 			if (!data->tee_detected &&
885 			    !strncmp(part->name, "tee", 3))
886 				data->tee_detected = true;
887 			break;
888 #endif
889 		default:
890 			break;
891 		}
892 		part->dev = &data->dev[j];
893 		if (!IS_SELECT(part))
894 			part->dev->full_update = false;
895 		list_add_tail(&part->list, &data->dev[j].part_list);
896 	}
897 
898 	return 0;
899 }
900 
create_gpt_partitions(struct stm32prog_data * data)901 static int create_gpt_partitions(struct stm32prog_data *data)
902 {
903 	int offset = 0;
904 	const int buflen = SZ_8K;
905 	char *buf;
906 	char uuid[UUID_STR_LEN + 1];
907 	unsigned char *uuid_bin;
908 	unsigned int mmc_id;
909 	int i;
910 	bool rootfs_found;
911 	struct stm32prog_part_t *part;
912 
913 	buf = malloc(buflen);
914 	if (!buf)
915 		return -ENOMEM;
916 
917 	puts("partitions : ");
918 	/* initialize the selected device */
919 	for (i = 0; i < data->dev_nb; i++) {
920 		/* create gpt partition support only for full update on MMC */
921 		if (data->dev[i].target != STM32PROG_MMC ||
922 		    !data->dev[i].full_update)
923 			continue;
924 
925 		offset = 0;
926 		rootfs_found = false;
927 		memset(buf, 0, buflen);
928 
929 		list_for_each_entry(part, &data->dev[i].part_list, list) {
930 			/* skip eMMC boot partitions */
931 			if (part->part_id < 0)
932 				continue;
933 			/* skip Raw Image */
934 			if (part->part_type == RAW_IMAGE)
935 				continue;
936 
937 			if (offset + 100 > buflen) {
938 				log_debug("\n%s: buffer too small, %s skippped",
939 					  __func__, part->name);
940 				continue;
941 			}
942 
943 			if (!offset)
944 				offset += sprintf(buf, "gpt write mmc %d \"",
945 						  data->dev[i].dev_id);
946 
947 			offset += snprintf(buf + offset, buflen - offset,
948 					   "name=%s,start=0x%llx,size=0x%llx",
949 					   part->name,
950 					   part->addr,
951 					   part->size);
952 
953 			if (part->part_type == PART_BINARY)
954 				offset += snprintf(buf + offset,
955 						   buflen - offset,
956 						   ",type="
957 						   LINUX_RESERVED_UUID);
958 			else
959 				offset += snprintf(buf + offset,
960 						   buflen - offset,
961 						   ",type=linux");
962 
963 			if (part->part_type == PART_SYSTEM)
964 				offset += snprintf(buf + offset,
965 						   buflen - offset,
966 						   ",bootable");
967 
968 			if (!rootfs_found && !strcmp(part->name, "rootfs")) {
969 				mmc_id = part->dev_id;
970 				rootfs_found = true;
971 				if (mmc_id < ARRAY_SIZE(uuid_mmc)) {
972 					uuid_bin =
973 					  (unsigned char *)uuid_mmc[mmc_id].b;
974 					uuid_bin_to_str(uuid_bin, uuid,
975 							UUID_STR_FORMAT_GUID);
976 					offset += snprintf(buf + offset,
977 							   buflen - offset,
978 							   ",uuid=%s", uuid);
979 				}
980 			}
981 
982 			offset += snprintf(buf + offset, buflen - offset, ";");
983 		}
984 
985 		if (offset) {
986 			offset += snprintf(buf + offset, buflen - offset, "\"");
987 			log_debug("\ncmd: %s\n", buf);
988 			if (run_command(buf, 0)) {
989 				stm32prog_err("GPT partitionning fail: %s",
990 					      buf);
991 				free(buf);
992 
993 				return -1;
994 			}
995 		}
996 
997 		if (data->dev[i].mmc)
998 			part_init(mmc_get_blk_desc(data->dev[i].mmc));
999 
1000 #ifdef DEBUG
1001 		sprintf(buf, "gpt verify mmc %d", data->dev[i].dev_id);
1002 		log_debug("\ncmd: %s", buf);
1003 		if (run_command(buf, 0))
1004 			printf("fail !\n");
1005 		else
1006 			printf("OK\n");
1007 
1008 		sprintf(buf, "part list mmc %d", data->dev[i].dev_id);
1009 		run_command(buf, 0);
1010 #endif
1011 	}
1012 	puts("done\n");
1013 
1014 #ifdef DEBUG
1015 	run_command("mtd list", 0);
1016 #endif
1017 	free(buf);
1018 
1019 	return 0;
1020 }
1021 
stm32prog_alt_add(struct stm32prog_data * data,struct dfu_entity * dfu,struct stm32prog_part_t * part)1022 static int stm32prog_alt_add(struct stm32prog_data *data,
1023 			     struct dfu_entity *dfu,
1024 			     struct stm32prog_part_t *part)
1025 {
1026 	int ret = 0;
1027 	int offset = 0;
1028 	char devstr[10];
1029 	char dfustr[10];
1030 	char buf[ALT_BUF_LEN];
1031 	u32 size;
1032 	char multiplier,  type;
1033 
1034 	/* max 3 digit for sector size */
1035 	if (part->size > SZ_1M) {
1036 		size = (u32)(part->size / SZ_1M);
1037 		multiplier = 'M';
1038 	} else if (part->size > SZ_1K) {
1039 		size = (u32)(part->size / SZ_1K);
1040 		multiplier = 'K';
1041 	} else {
1042 		size = (u32)part->size;
1043 		multiplier = 'B';
1044 	}
1045 	if (IS_SELECT(part) && !IS_EMPTY(part))
1046 		type = 'e'; /*Readable and Writeable*/
1047 	else
1048 		type = 'a';/*Readable*/
1049 
1050 	memset(buf, 0, sizeof(buf));
1051 	offset = snprintf(buf, ALT_BUF_LEN - offset,
1052 			  "@%s/0x%02x/1*%d%c%c ",
1053 			  part->name, part->id,
1054 			  size, multiplier, type);
1055 
1056 	if (part->target == STM32PROG_RAM) {
1057 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1058 				   "ram 0x%llx 0x%llx",
1059 				   part->addr, part->size);
1060 	} else if (part->part_type == RAW_IMAGE) {
1061 		u64 dfu_size;
1062 
1063 		if (part->dev->target == STM32PROG_MMC)
1064 			dfu_size = part->size / part->dev->mmc->read_bl_len;
1065 		else
1066 			dfu_size = part->size;
1067 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1068 				   "raw 0x0 0x%llx", dfu_size);
1069 	} else if (part->part_id < 0) {
1070 		u64 nb_blk = part->size / part->dev->mmc->read_bl_len;
1071 
1072 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1073 				   "raw 0x%llx 0x%llx",
1074 				   part->addr, nb_blk);
1075 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1076 				   " mmcpart %d;", -(part->part_id));
1077 	} else {
1078 		if (part->part_type == PART_SYSTEM &&
1079 		    (part->target == STM32PROG_NAND ||
1080 		     part->target == STM32PROG_NOR ||
1081 		     part->target == STM32PROG_SPI_NAND))
1082 			offset += snprintf(buf + offset,
1083 					   ALT_BUF_LEN - offset,
1084 					   "partubi");
1085 		else
1086 			offset += snprintf(buf + offset,
1087 					   ALT_BUF_LEN - offset,
1088 					   "part");
1089 		/* dev_id requested by DFU MMC */
1090 		if (part->target == STM32PROG_MMC)
1091 			offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1092 					   " %d", part->dev_id);
1093 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1094 				   " %d;", part->part_id);
1095 	}
1096 	ret = -ENODEV;
1097 	switch (part->target) {
1098 	case STM32PROG_MMC:
1099 		if (IS_ENABLED(CONFIG_MMC)) {
1100 			ret = 0;
1101 			sprintf(dfustr, "mmc");
1102 			sprintf(devstr, "%d", part->dev_id);
1103 		}
1104 		break;
1105 	case STM32PROG_NAND:
1106 	case STM32PROG_NOR:
1107 	case STM32PROG_SPI_NAND:
1108 		if (IS_ENABLED(CONFIG_MTD)) {
1109 			ret = 0;
1110 			sprintf(dfustr, "mtd");
1111 			get_mtd_by_target(devstr, part->target, part->dev_id);
1112 		}
1113 		break;
1114 	case STM32PROG_RAM:
1115 		ret = 0;
1116 		sprintf(dfustr, "ram");
1117 		sprintf(devstr, "0");
1118 		break;
1119 	default:
1120 		break;
1121 	}
1122 	if (ret) {
1123 		stm32prog_err("invalid target: %d", part->target);
1124 		return ret;
1125 	}
1126 	log_debug("dfu_alt_add(%s,%s,%s)\n", dfustr, devstr, buf);
1127 	ret = dfu_alt_add(dfu, dfustr, devstr, buf);
1128 	log_debug("dfu_alt_add(%s,%s,%s) result %d\n",
1129 		  dfustr, devstr, buf, ret);
1130 
1131 	return ret;
1132 }
1133 
stm32prog_alt_add_virt(struct dfu_entity * dfu,char * name,int phase,int size)1134 static int stm32prog_alt_add_virt(struct dfu_entity *dfu,
1135 				  char *name, int phase, int size)
1136 {
1137 	int ret = 0;
1138 	char devstr[4];
1139 	char buf[ALT_BUF_LEN];
1140 
1141 	sprintf(devstr, "%d", phase);
1142 	sprintf(buf, "@%s/0x%02x/1*%dBe", name, phase, size);
1143 	ret = dfu_alt_add(dfu, "virt", devstr, buf);
1144 	log_debug("dfu_alt_add(virt,%s,%s) result %d\n", devstr, buf, ret);
1145 
1146 	return ret;
1147 }
1148 
dfu_init_entities(struct stm32prog_data * data)1149 static int dfu_init_entities(struct stm32prog_data *data)
1150 {
1151 	int ret = 0;
1152 	int phase, i, alt_id;
1153 	struct stm32prog_part_t *part;
1154 	struct dfu_entity *dfu;
1155 	int alt_nb;
1156 
1157 	alt_nb = 2; /* number of virtual = CMD, OTP*/
1158 	if (CONFIG_IS_ENABLED(DM_PMIC))
1159 		alt_nb++; /* PMIC NVMEM*/
1160 
1161 	if (data->part_nb == 0)
1162 		alt_nb++;  /* +1 for FlashLayout */
1163 	else
1164 		for (i = 0; i < data->part_nb; i++) {
1165 			if (data->part_array[i].target != STM32PROG_NONE)
1166 				alt_nb++;
1167 		}
1168 
1169 	if (dfu_alt_init(alt_nb, &dfu))
1170 		return -ENODEV;
1171 
1172 	puts("DFU alt info setting: ");
1173 	if (data->part_nb) {
1174 		alt_id = 0;
1175 		for (phase = 1;
1176 		     (phase <= PHASE_LAST_USER) &&
1177 		     (alt_id < alt_nb) && !ret;
1178 		     phase++) {
1179 			/* ordering alt setting by phase id */
1180 			part = NULL;
1181 			for (i = 0; i < data->part_nb; i++) {
1182 				if (phase == data->part_array[i].id) {
1183 					part = &data->part_array[i];
1184 					break;
1185 				}
1186 			}
1187 			if (!part)
1188 				continue;
1189 			if (part->target == STM32PROG_NONE)
1190 				continue;
1191 			part->alt_id = alt_id;
1192 			alt_id++;
1193 
1194 			ret = stm32prog_alt_add(data, dfu, part);
1195 		}
1196 	} else {
1197 		char buf[ALT_BUF_LEN];
1198 
1199 		sprintf(buf, "@FlashLayout/0x%02x/1*256Ke ram %x 40000",
1200 			PHASE_FLASHLAYOUT, STM32_DDR_BASE);
1201 		ret = dfu_alt_add(dfu, "ram", NULL, buf);
1202 		log_debug("dfu_alt_add(ram, NULL,%s) result %d\n", buf, ret);
1203 	}
1204 
1205 	if (!ret)
1206 		ret = stm32prog_alt_add_virt(dfu, "virtual", PHASE_CMD, CMD_SIZE);
1207 
1208 	if (!ret)
1209 		ret = stm32prog_alt_add_virt(dfu, "OTP", PHASE_OTP, OTP_SIZE);
1210 
1211 	if (!ret && CONFIG_IS_ENABLED(DM_PMIC))
1212 		ret = stm32prog_alt_add_virt(dfu, "PMIC", PHASE_PMIC, PMIC_SIZE);
1213 
1214 	if (ret)
1215 		stm32prog_err("dfu init failed: %d", ret);
1216 	puts("done\n");
1217 
1218 #ifdef DEBUG
1219 	dfu_show_entities();
1220 #endif
1221 	return ret;
1222 }
1223 
stm32prog_otp_write(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1224 int stm32prog_otp_write(struct stm32prog_data *data, u32 offset, u8 *buffer,
1225 			long *size)
1226 {
1227 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1228 
1229 	if (!data->otp_part) {
1230 		data->otp_part = memalign(CONFIG_SYS_CACHELINE_SIZE, OTP_SIZE);
1231 		if (!data->otp_part)
1232 			return -ENOMEM;
1233 	}
1234 
1235 	if (!offset)
1236 		memset(data->otp_part, 0, OTP_SIZE);
1237 
1238 	if (offset + *size > OTP_SIZE)
1239 		*size = OTP_SIZE - offset;
1240 
1241 	memcpy((void *)((u32)data->otp_part + offset), buffer, *size);
1242 
1243 	return 0;
1244 }
1245 
stm32prog_otp_read(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1246 int stm32prog_otp_read(struct stm32prog_data *data, u32 offset, u8 *buffer,
1247 		       long *size)
1248 {
1249 	int result = 0;
1250 
1251 	if (!IS_ENABLED(CONFIG_ARM_SMCCC)) {
1252 		stm32prog_err("OTP update not supported");
1253 
1254 		return -1;
1255 	}
1256 
1257 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1258 	/* alway read for first packet */
1259 	if (!offset) {
1260 		if (!data->otp_part)
1261 			data->otp_part =
1262 				memalign(CONFIG_SYS_CACHELINE_SIZE, OTP_SIZE);
1263 
1264 		if (!data->otp_part) {
1265 			result = -ENOMEM;
1266 			goto end_otp_read;
1267 		}
1268 
1269 		/* init struct with 0 */
1270 		memset(data->otp_part, 0, OTP_SIZE);
1271 
1272 		/* call the service */
1273 		result = stm32_smc_exec(STM32_SMC_BSEC, STM32_SMC_READ_ALL,
1274 					(u32)data->otp_part, 0);
1275 		if (result)
1276 			goto end_otp_read;
1277 	}
1278 
1279 	if (!data->otp_part) {
1280 		result = -ENOMEM;
1281 		goto end_otp_read;
1282 	}
1283 
1284 	if (offset + *size > OTP_SIZE)
1285 		*size = OTP_SIZE - offset;
1286 	memcpy(buffer, (void *)((u32)data->otp_part + offset), *size);
1287 
1288 end_otp_read:
1289 	log_debug("%s: result %i\n", __func__, result);
1290 
1291 	return result;
1292 }
1293 
stm32prog_otp_start(struct stm32prog_data * data)1294 int stm32prog_otp_start(struct stm32prog_data *data)
1295 {
1296 	int result = 0;
1297 	struct arm_smccc_res res;
1298 
1299 	if (!IS_ENABLED(CONFIG_ARM_SMCCC)) {
1300 		stm32prog_err("OTP update not supported");
1301 
1302 		return -1;
1303 	}
1304 
1305 	if (!data->otp_part) {
1306 		stm32prog_err("start OTP without data");
1307 		return -1;
1308 	}
1309 
1310 	arm_smccc_smc(STM32_SMC_BSEC, STM32_SMC_WRITE_ALL,
1311 		      (u32)data->otp_part, 0, 0, 0, 0, 0, &res);
1312 
1313 	if (!res.a0) {
1314 		switch (res.a1) {
1315 		case 0:
1316 			result = 0;
1317 			break;
1318 		case 1:
1319 			stm32prog_err("Provisioning");
1320 			result = 0;
1321 			break;
1322 		default:
1323 			log_err("%s: OTP incorrect value (err = %ld)\n",
1324 				__func__, res.a1);
1325 			result = -EINVAL;
1326 			break;
1327 		}
1328 	} else {
1329 		log_err("%s: Failed to exec svc=%x op=%x in secure mode (err = %ld)\n",
1330 			__func__, STM32_SMC_BSEC, STM32_SMC_WRITE_ALL, res.a0);
1331 		result = -EINVAL;
1332 	}
1333 
1334 	free(data->otp_part);
1335 	data->otp_part = NULL;
1336 	log_debug("%s: result %i\n", __func__, result);
1337 
1338 	return result;
1339 }
1340 
stm32prog_pmic_write(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1341 int stm32prog_pmic_write(struct stm32prog_data *data, u32 offset, u8 *buffer,
1342 			 long *size)
1343 {
1344 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1345 
1346 	if (!offset)
1347 		memset(data->pmic_part, 0, PMIC_SIZE);
1348 
1349 	if (offset + *size > PMIC_SIZE)
1350 		*size = PMIC_SIZE - offset;
1351 
1352 	memcpy(&data->pmic_part[offset], buffer, *size);
1353 
1354 	return 0;
1355 }
1356 
stm32prog_pmic_read(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1357 int stm32prog_pmic_read(struct stm32prog_data *data, u32 offset, u8 *buffer,
1358 			long *size)
1359 {
1360 	int result = 0, ret;
1361 	struct udevice *dev;
1362 
1363 	if (!CONFIG_IS_ENABLED(PMIC_STPMIC1)) {
1364 		stm32prog_err("PMIC update not supported");
1365 
1366 		return -EOPNOTSUPP;
1367 	}
1368 
1369 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1370 	ret = uclass_get_device_by_driver(UCLASS_MISC,
1371 					  DM_DRIVER_GET(stpmic1_nvm),
1372 					  &dev);
1373 	if (ret)
1374 		return ret;
1375 
1376 	/* alway request PMIC for first packet */
1377 	if (!offset) {
1378 		/* init struct with 0 */
1379 		memset(data->pmic_part, 0, PMIC_SIZE);
1380 
1381 		ret = uclass_get_device_by_driver(UCLASS_MISC,
1382 						  DM_DRIVER_GET(stpmic1_nvm),
1383 						  &dev);
1384 		if (ret)
1385 			return ret;
1386 
1387 		ret = misc_read(dev, 0xF8, data->pmic_part, PMIC_SIZE);
1388 		if (ret < 0) {
1389 			result = ret;
1390 			goto end_pmic_read;
1391 		}
1392 		if (ret != PMIC_SIZE) {
1393 			result = -EACCES;
1394 			goto end_pmic_read;
1395 		}
1396 	}
1397 
1398 	if (offset + *size > PMIC_SIZE)
1399 		*size = PMIC_SIZE - offset;
1400 
1401 	memcpy(buffer, &data->pmic_part[offset], *size);
1402 
1403 end_pmic_read:
1404 	log_debug("%s: result %i\n", __func__, result);
1405 	return result;
1406 }
1407 
stm32prog_pmic_start(struct stm32prog_data * data)1408 int stm32prog_pmic_start(struct stm32prog_data *data)
1409 {
1410 	int ret;
1411 	struct udevice *dev;
1412 
1413 	if (!CONFIG_IS_ENABLED(PMIC_STPMIC1)) {
1414 		stm32prog_err("PMIC update not supported");
1415 
1416 		return -EOPNOTSUPP;
1417 	}
1418 
1419 	ret = uclass_get_device_by_driver(UCLASS_MISC,
1420 					  DM_DRIVER_GET(stpmic1_nvm),
1421 					  &dev);
1422 	if (ret)
1423 		return ret;
1424 
1425 	return misc_write(dev, 0xF8, data->pmic_part, PMIC_SIZE);
1426 }
1427 
1428 /* copy FSBL on NAND to improve reliability on NAND */
stm32prog_copy_fsbl(struct stm32prog_part_t * part)1429 static int stm32prog_copy_fsbl(struct stm32prog_part_t *part)
1430 {
1431 	int ret, i;
1432 	void *fsbl;
1433 	struct image_header_s header;
1434 	struct raw_header_s raw_header;
1435 	struct dfu_entity *dfu;
1436 	long size, offset;
1437 
1438 	if (part->target != STM32PROG_NAND &&
1439 	    part->target != STM32PROG_SPI_NAND)
1440 		return -EINVAL;
1441 
1442 	dfu = dfu_get_entity(part->alt_id);
1443 
1444 	/* read header */
1445 	dfu_transaction_cleanup(dfu);
1446 	size = BL_HEADER_SIZE;
1447 	ret = dfu->read_medium(dfu, 0, (void *)&raw_header, &size);
1448 	if (ret)
1449 		return ret;
1450 
1451 	stm32prog_header_check(&raw_header, &header);
1452 	if (header.type != HEADER_STM32IMAGE)
1453 		return -ENOENT;
1454 
1455 	/* read header + payload */
1456 	size = header.image_length + BL_HEADER_SIZE;
1457 	size = round_up(size, part->dev->mtd->erasesize);
1458 	fsbl = calloc(1, size);
1459 	if (!fsbl)
1460 		return -ENOMEM;
1461 	ret = dfu->read_medium(dfu, 0, fsbl, &size);
1462 	log_debug("%s read size=%lx ret=%d\n", __func__, size, ret);
1463 	if (ret)
1464 		goto error;
1465 
1466 	dfu_transaction_cleanup(dfu);
1467 	offset = 0;
1468 	for (i = part->bin_nb - 1; i > 0; i--) {
1469 		offset += size;
1470 		/* write to the next erase block */
1471 		ret = dfu->write_medium(dfu, offset, fsbl, &size);
1472 		log_debug("%s copy at ofset=%lx size=%lx ret=%d",
1473 			  __func__, offset, size, ret);
1474 		if (ret)
1475 			goto error;
1476 	}
1477 
1478 error:
1479 	free(fsbl);
1480 	return ret;
1481 }
1482 
stm32prog_end_phase(struct stm32prog_data * data,u64 offset)1483 static void stm32prog_end_phase(struct stm32prog_data *data, u64 offset)
1484 {
1485 	if (data->phase == PHASE_FLASHLAYOUT) {
1486 		if (parse_flash_layout(data, STM32_DDR_BASE, 0))
1487 			stm32prog_err("Layout: invalid FlashLayout");
1488 		return;
1489 	}
1490 
1491 	if (!data->cur_part)
1492 		return;
1493 
1494 	if (data->cur_part->target == STM32PROG_RAM) {
1495 		if (data->cur_part->part_type == PART_SYSTEM)
1496 			data->uimage = data->cur_part->addr;
1497 		if (data->cur_part->part_type == PART_FILESYSTEM)
1498 			data->dtb = data->cur_part->addr;
1499 		if (data->cur_part->part_type == PART_BINARY) {
1500 			data->initrd = data->cur_part->addr;
1501 			data->initrd_size = offset;
1502 		}
1503 	}
1504 
1505 	if (CONFIG_IS_ENABLED(MMC) &&
1506 	    data->cur_part->part_id < 0) {
1507 		char cmdbuf[60];
1508 
1509 		sprintf(cmdbuf, "mmc bootbus %d 0 0 0; mmc partconf %d 1 %d 0",
1510 			data->cur_part->dev_id, data->cur_part->dev_id,
1511 			-(data->cur_part->part_id));
1512 		if (run_command(cmdbuf, 0)) {
1513 			stm32prog_err("commands '%s' failed", cmdbuf);
1514 			return;
1515 		}
1516 	}
1517 
1518 	if (CONFIG_IS_ENABLED(MTD) &&
1519 	    data->cur_part->bin_nb > 1) {
1520 		if (stm32prog_copy_fsbl(data->cur_part)) {
1521 			stm32prog_err("%s (0x%x): copy of fsbl failed",
1522 				      data->cur_part->name, data->cur_part->id);
1523 			return;
1524 		}
1525 	}
1526 }
1527 
stm32prog_do_reset(struct stm32prog_data * data)1528 void stm32prog_do_reset(struct stm32prog_data *data)
1529 {
1530 	if (data->phase == PHASE_RESET) {
1531 		data->phase = PHASE_DO_RESET;
1532 		puts("Reset requested\n");
1533 	}
1534 }
1535 
stm32prog_next_phase(struct stm32prog_data * data)1536 void stm32prog_next_phase(struct stm32prog_data *data)
1537 {
1538 	int phase, i;
1539 	struct stm32prog_part_t *part;
1540 	bool found;
1541 
1542 	phase = data->phase;
1543 	switch (phase) {
1544 	case PHASE_RESET:
1545 	case PHASE_END:
1546 	case PHASE_DO_RESET:
1547 		return;
1548 	}
1549 
1550 	/* found next selected partition */
1551 	data->dfu_seq = 0;
1552 	data->cur_part = NULL;
1553 	data->phase = PHASE_END;
1554 	found = false;
1555 	do {
1556 		phase++;
1557 		if (phase > PHASE_LAST_USER)
1558 			break;
1559 		for (i = 0; i < data->part_nb; i++) {
1560 			part = &data->part_array[i];
1561 			if (part->id == phase) {
1562 				if (IS_SELECT(part) && !IS_EMPTY(part)) {
1563 					data->cur_part = part;
1564 					data->phase = phase;
1565 					found = true;
1566 				}
1567 				break;
1568 			}
1569 		}
1570 	} while (!found);
1571 
1572 	if (data->phase == PHASE_END)
1573 		puts("Phase=END\n");
1574 }
1575 
part_delete(struct stm32prog_data * data,struct stm32prog_part_t * part)1576 static int part_delete(struct stm32prog_data *data,
1577 		       struct stm32prog_part_t *part)
1578 {
1579 	int ret = 0;
1580 	unsigned long blks, blks_offset, blks_size;
1581 	struct blk_desc *block_dev = NULL;
1582 	char cmdbuf[40];
1583 	char devstr[10];
1584 
1585 	printf("Erasing %s ", part->name);
1586 	switch (part->target) {
1587 	case STM32PROG_MMC:
1588 		if (!IS_ENABLED(CONFIG_MMC)) {
1589 			ret = -1;
1590 			stm32prog_err("%s (0x%x): erase invalid",
1591 				      part->name, part->id);
1592 			break;
1593 		}
1594 		printf("on mmc %d: ", part->dev->dev_id);
1595 		block_dev = mmc_get_blk_desc(part->dev->mmc);
1596 		blks_offset = lldiv(part->addr, part->dev->mmc->read_bl_len);
1597 		blks_size = lldiv(part->size, part->dev->mmc->read_bl_len);
1598 		/* -1 or -2 : delete boot partition of MMC
1599 		 * need to switch to associated hwpart 1 or 2
1600 		 */
1601 		if (part->part_id < 0)
1602 			if (blk_select_hwpart_devnum(IF_TYPE_MMC,
1603 						     part->dev->dev_id,
1604 						     -part->part_id))
1605 				return -1;
1606 
1607 		blks = blk_derase(block_dev, blks_offset, blks_size);
1608 
1609 		/* return to user partition */
1610 		if (part->part_id < 0)
1611 			blk_select_hwpart_devnum(IF_TYPE_MMC,
1612 						 part->dev->dev_id, 0);
1613 		if (blks != blks_size) {
1614 			ret = -1;
1615 			stm32prog_err("%s (0x%x): MMC erase failed",
1616 				      part->name, part->id);
1617 		}
1618 		break;
1619 	case STM32PROG_NOR:
1620 	case STM32PROG_NAND:
1621 	case STM32PROG_SPI_NAND:
1622 		if (!IS_ENABLED(CONFIG_MTD)) {
1623 			ret = -1;
1624 			stm32prog_err("%s (0x%x): erase invalid",
1625 				      part->name, part->id);
1626 			break;
1627 		}
1628 		get_mtd_by_target(devstr, part->target, part->dev->dev_id);
1629 		printf("on %s: ", devstr);
1630 		sprintf(cmdbuf, "mtd erase %s 0x%llx 0x%llx",
1631 			devstr, part->addr, part->size);
1632 		if (run_command(cmdbuf, 0)) {
1633 			ret = -1;
1634 			stm32prog_err("%s (0x%x): MTD erase commands failed (%s)",
1635 				      part->name, part->id, cmdbuf);
1636 		}
1637 		break;
1638 	case STM32PROG_RAM:
1639 		printf("on ram: ");
1640 		memset((void *)(uintptr_t)part->addr, 0, (size_t)part->size);
1641 		break;
1642 	default:
1643 		ret = -1;
1644 		stm32prog_err("%s (0x%x): erase invalid", part->name, part->id);
1645 		break;
1646 	}
1647 	if (!ret)
1648 		printf("done\n");
1649 
1650 	return ret;
1651 }
1652 
stm32prog_devices_init(struct stm32prog_data * data)1653 static void stm32prog_devices_init(struct stm32prog_data *data)
1654 {
1655 	int i;
1656 	int ret;
1657 	struct stm32prog_part_t *part;
1658 
1659 	ret = treat_partition_list(data);
1660 	if (ret)
1661 		goto error;
1662 
1663 	/* initialize the selected device */
1664 	for (i = 0; i < data->dev_nb; i++) {
1665 		ret = init_device(data, &data->dev[i]);
1666 		if (ret)
1667 			goto error;
1668 	}
1669 
1670 	/* delete RAW partition before create partition */
1671 	for (i = 0; i < data->part_nb; i++) {
1672 		part = &data->part_array[i];
1673 
1674 		if (part->part_type != RAW_IMAGE)
1675 			continue;
1676 
1677 		if (!IS_SELECT(part) || !IS_DELETE(part))
1678 			continue;
1679 
1680 		ret = part_delete(data, part);
1681 		if (ret)
1682 			goto error;
1683 	}
1684 
1685 	if (IS_ENABLED(CONFIG_MMC)) {
1686 		ret = create_gpt_partitions(data);
1687 		if (ret)
1688 			goto error;
1689 	}
1690 
1691 	/* delete partition GPT or MTD */
1692 	for (i = 0; i < data->part_nb; i++) {
1693 		part = &data->part_array[i];
1694 
1695 		if (part->part_type == RAW_IMAGE)
1696 			continue;
1697 
1698 		if (!IS_SELECT(part) || !IS_DELETE(part))
1699 			continue;
1700 
1701 		ret = part_delete(data, part);
1702 		if (ret)
1703 			goto error;
1704 	}
1705 
1706 	return;
1707 
1708 error:
1709 	data->part_nb = 0;
1710 }
1711 
stm32prog_dfu_init(struct stm32prog_data * data)1712 int stm32prog_dfu_init(struct stm32prog_data *data)
1713 {
1714 	/* init device if no error */
1715 	if (data->part_nb)
1716 		stm32prog_devices_init(data);
1717 
1718 	if (data->part_nb)
1719 		stm32prog_next_phase(data);
1720 
1721 	/* prepare DFU for device read/write */
1722 	dfu_free_entities();
1723 	return dfu_init_entities(data);
1724 }
1725 
stm32prog_init(struct stm32prog_data * data,ulong addr,ulong size)1726 int stm32prog_init(struct stm32prog_data *data, ulong addr, ulong size)
1727 {
1728 	memset(data, 0x0, sizeof(*data));
1729 	data->read_phase = PHASE_RESET;
1730 	data->phase = PHASE_FLASHLAYOUT;
1731 
1732 	return parse_flash_layout(data, addr, size);
1733 }
1734 
stm32prog_clean(struct stm32prog_data * data)1735 void stm32prog_clean(struct stm32prog_data *data)
1736 {
1737 	/* clean */
1738 	dfu_free_entities();
1739 	free(data->part_array);
1740 	free(data->otp_part);
1741 	free(data->buffer);
1742 }
1743 
1744 /* DFU callback: used after serial and direct DFU USB access */
dfu_flush_callback(struct dfu_entity * dfu)1745 void dfu_flush_callback(struct dfu_entity *dfu)
1746 {
1747 	if (!stm32prog_data)
1748 		return;
1749 
1750 	if (dfu->dev_type == DFU_DEV_VIRT) {
1751 		if (dfu->data.virt.dev_num == PHASE_OTP)
1752 			stm32prog_otp_start(stm32prog_data);
1753 		else if (dfu->data.virt.dev_num == PHASE_PMIC)
1754 			stm32prog_pmic_start(stm32prog_data);
1755 		return;
1756 	}
1757 
1758 	if (dfu->dev_type == DFU_DEV_RAM) {
1759 		if (dfu->alt == 0 &&
1760 		    stm32prog_data->phase == PHASE_FLASHLAYOUT) {
1761 			stm32prog_end_phase(stm32prog_data, dfu->offset);
1762 			/* waiting DFU DETACH for reenumeration */
1763 		}
1764 	}
1765 
1766 	if (!stm32prog_data->cur_part)
1767 		return;
1768 
1769 	if (dfu->alt == stm32prog_data->cur_part->alt_id) {
1770 		stm32prog_end_phase(stm32prog_data, dfu->offset);
1771 		stm32prog_next_phase(stm32prog_data);
1772 	}
1773 }
1774 
dfu_initiated_callback(struct dfu_entity * dfu)1775 void dfu_initiated_callback(struct dfu_entity *dfu)
1776 {
1777 	if (!stm32prog_data)
1778 		return;
1779 
1780 	if (!stm32prog_data->cur_part)
1781 		return;
1782 
1783 	/* force the saved offset for the current partition */
1784 	if (dfu->alt == stm32prog_data->cur_part->alt_id) {
1785 		dfu->offset = stm32prog_data->offset;
1786 		stm32prog_data->dfu_seq = 0;
1787 		log_debug("dfu offset = 0x%llx\n", dfu->offset);
1788 	}
1789 }
1790 
dfu_error_callback(struct dfu_entity * dfu,const char * msg)1791 void dfu_error_callback(struct dfu_entity *dfu, const char *msg)
1792 {
1793 	struct stm32prog_data *data = stm32prog_data;
1794 
1795 	if (!stm32prog_data)
1796 		return;
1797 
1798 	if (!stm32prog_data->cur_part)
1799 		return;
1800 
1801 	if (dfu->alt == stm32prog_data->cur_part->alt_id)
1802 		stm32prog_err(msg);
1803 }
1804