1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3  * Copied from kernel/include/uapi/linux/btrfs_btree.h.
4  *
5  * Only modified the header.
6  */
7 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
8 #ifndef __BTRFS_TREE_H__
9 #define __BTRFS_TREE_H__
10 
11 #include <linux/types.h>
12 
13 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
14 
15 /*
16  * The max metadata block size (node size).
17  *
18  * This limit is somewhat artificial. The memmove and tree block locking cost
19  * go up with larger node size.
20  */
21 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
22 
23 /*
24  * We can actually store much bigger names, but lets not confuse the rest
25  * of linux.
26  *
27  * btrfs_dir_item::name_len follows this limitation.
28  */
29 #define BTRFS_NAME_LEN 255
30 
31 /*
32  * Objectids start from here.
33  *
34  * Check btrfs_disk_key for the meaning of objectids.
35  */
36 
37 /*
38  * Root tree holds pointers to all of the tree roots.
39  * Without special mention, the root tree contains the root bytenr of all other
40  * trees, except the chunk tree and the log tree.
41  *
42  * The super block contains the root bytenr of this tree.
43  */
44 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
45 
46 /*
47  * Extent tree stores information about which extents are in use, and backrefs
48  * for each extent.
49  */
50 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
51 
52 /*
53  * Chunk tree stores btrfs logical address -> physical address mapping.
54  *
55  * The super block contains part of chunk tree for bootstrap, and contains
56  * the root bytenr of this tree.
57  */
58 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
59 
60 /*
61  * Device tree stores info about which areas of a given device are in use,
62  * and physical address -> btrfs logical address mapping.
63  */
64 #define BTRFS_DEV_TREE_OBJECTID 4ULL
65 
66 /* The fs tree is the first subvolume tree, storing files and directories. */
67 #define BTRFS_FS_TREE_OBJECTID 5ULL
68 
69 /* Shows the directory objectid inside the root tree. */
70 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
71 
72 /* Csum tree holds checksums of all the data extents. */
73 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
74 
75 /* Quota tree holds quota configuration and tracking. */
76 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
77 
78 /* UUID tree stores items that use the BTRFS_UUID_KEY* types. */
79 #define BTRFS_UUID_TREE_OBJECTID 9ULL
80 
81 /* Free space cache tree (v2 space cache) tracks free space in block groups. */
82 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
83 
84 /* Indicates device stats in the device tree. */
85 #define BTRFS_DEV_STATS_OBJECTID 0ULL
86 
87 /* For storing balance parameters in the root tree. */
88 #define BTRFS_BALANCE_OBJECTID -4ULL
89 
90 /* Orhpan objectid for tracking unlinked/truncated files. */
91 #define BTRFS_ORPHAN_OBJECTID -5ULL
92 
93 /* Does write ahead logging to speed up fsyncs. */
94 #define BTRFS_TREE_LOG_OBJECTID -6ULL
95 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
96 
97 /* For space balancing. */
98 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
99 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
100 
101 /* Extent checksums, shared between the csum tree and log trees. */
102 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
103 
104 /* For storing free space cache (v1 space cache). */
105 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
106 
107 /* The inode number assigned to the special inode for storing free ino cache. */
108 #define BTRFS_FREE_INO_OBJECTID -12ULL
109 
110 /* Dummy objectid represents multiple objectids. */
111 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
112 
113 /* All files have objectids in this range. */
114 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
115 #define BTRFS_LAST_FREE_OBJECTID -256ULL
116 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
117 
118 
119 /*
120  * The device items go into the chunk tree.
121  *
122  * The key is in the form
123  * (BTRFS_DEV_ITEMS_OBJECTID, BTRFS_DEV_ITEM_KEY,  <device_id>)
124  */
125 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
126 
127 #define BTRFS_BTREE_INODE_OBJECTID 1
128 
129 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
130 
131 #define BTRFS_DEV_REPLACE_DEVID 0ULL
132 
133 /*
134  * Types start from here.
135  *
136  * Check btrfs_disk_key for details about types.
137  */
138 
139 /*
140  * Inode items have the data typically returned from stat and store other
141  * info about object characteristics.
142  *
143  * There is one for every file and dir in the FS.
144  */
145 #define BTRFS_INODE_ITEM_KEY		1
146 /* reserve 2-11 close to the inode for later flexibility */
147 #define BTRFS_INODE_REF_KEY		12
148 #define BTRFS_INODE_EXTREF_KEY		13
149 #define BTRFS_XATTR_ITEM_KEY		24
150 #define BTRFS_ORPHAN_ITEM_KEY		48
151 
152 /*
153  * Dir items are the name -> inode pointers in a directory.
154  *
155  * There is one for every name in a directory.
156  */
157 #define BTRFS_DIR_LOG_ITEM_KEY  60
158 #define BTRFS_DIR_LOG_INDEX_KEY 72
159 #define BTRFS_DIR_ITEM_KEY	84
160 #define BTRFS_DIR_INDEX_KEY	96
161 
162 /* Stores info (position, size ...) about a data extent of a file */
163 #define BTRFS_EXTENT_DATA_KEY	108
164 
165 /*
166  * Extent csums are stored in a separate tree and hold csums for
167  * an entire extent on disk.
168  */
169 #define BTRFS_EXTENT_CSUM_KEY	128
170 
171 /*
172  * Root items point to tree roots.
173  *
174  * They are typically in the root tree used by the super block to find all the
175  * other trees.
176  */
177 #define BTRFS_ROOT_ITEM_KEY	132
178 
179 /*
180  * Root backrefs tie subvols and snapshots to the directory entries that
181  * reference them.
182  */
183 #define BTRFS_ROOT_BACKREF_KEY	144
184 
185 /*
186  * Root refs make a fast index for listing all of the snapshots and
187  * subvolumes referenced by a given root.  They point directly to the
188  * directory item in the root that references the subvol.
189  */
190 #define BTRFS_ROOT_REF_KEY	156
191 
192 /*
193  * Extent items are in the extent tree.
194  *
195  * These record which blocks are used, and how many references there are.
196  */
197 #define BTRFS_EXTENT_ITEM_KEY	168
198 
199 /*
200  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
201  * the length, so we save the level in key->offset instead of the length.
202  */
203 #define BTRFS_METADATA_ITEM_KEY	169
204 
205 #define BTRFS_TREE_BLOCK_REF_KEY	176
206 
207 #define BTRFS_EXTENT_DATA_REF_KEY	178
208 
209 #define BTRFS_EXTENT_REF_V0_KEY		180
210 
211 #define BTRFS_SHARED_BLOCK_REF_KEY	182
212 
213 #define BTRFS_SHARED_DATA_REF_KEY	184
214 
215 /*
216  * Block groups give us hints into the extent allocation trees.
217  *
218  * Stores how many free space there is in a block group.
219  */
220 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
221 
222 /*
223  * Every block group is represented in the free space tree by a free space info
224  * item, which stores some accounting information. It is keyed on
225  * (block_group_start, FREE_SPACE_INFO, block_group_length).
226  */
227 #define BTRFS_FREE_SPACE_INFO_KEY 198
228 
229 /*
230  * A free space extent tracks an extent of space that is free in a block group.
231  * It is keyed on (start, FREE_SPACE_EXTENT, length).
232  */
233 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
234 
235 /*
236  * When a block group becomes very fragmented, we convert it to use bitmaps
237  * instead of extents.
238  *
239  * A free space bitmap is keyed on (start, FREE_SPACE_BITMAP, length).
240  * The corresponding item is a bitmap with (length / sectorsize) bits.
241  */
242 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
243 
244 #define BTRFS_DEV_EXTENT_KEY	204
245 #define BTRFS_DEV_ITEM_KEY	216
246 #define BTRFS_CHUNK_ITEM_KEY	228
247 
248 /*
249  * Records the overall state of the qgroups.
250  *
251  * There's only one instance of this key present,
252  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
253  */
254 #define BTRFS_QGROUP_STATUS_KEY         240
255 /*
256  * Records the currently used space of the qgroup.
257  *
258  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
259  */
260 #define BTRFS_QGROUP_INFO_KEY           242
261 
262 /*
263  * Contains the user configured limits for the qgroup.
264  *
265  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
266  */
267 #define BTRFS_QGROUP_LIMIT_KEY          244
268 
269 /*
270  * Records the child-parent relationship of qgroups. For
271  * each relation, 2 keys are present:
272  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
273  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
274  */
275 #define BTRFS_QGROUP_RELATION_KEY       246
276 
277 /* Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. */
278 #define BTRFS_BALANCE_ITEM_KEY	248
279 
280 /*
281  * The key type for tree items that are stored persistently, but do not need to
282  * exist for extended period of time. The items can exist in any tree.
283  *
284  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
285  *
286  * Existing items:
287  *
288  * - balance status item
289  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
290  */
291 #define BTRFS_TEMPORARY_ITEM_KEY	248
292 
293 /* Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY */
294 #define BTRFS_DEV_STATS_KEY		249
295 
296 /*
297  * The key type for tree items that are stored persistently and usually exist
298  * for a long period, eg. filesystem lifetime. The item kinds can be status
299  * information, stats or preference values. The item can exist in any tree.
300  *
301  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
302  *
303  * Existing items:
304  *
305  * - device statistics, store IO stats in the device tree, one key for all
306  *   stats
307  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
308  */
309 #define BTRFS_PERSISTENT_ITEM_KEY	249
310 
311 /*
312  * Persistently stores the device replace state in the device tree.
313  *
314  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
315  */
316 #define BTRFS_DEV_REPLACE_KEY	250
317 
318 /*
319  * Stores items that allow to quickly map UUIDs to something else.
320  *
321  * These items are part of the filesystem UUID tree.
322  * The key is built like this:
323  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
324  */
325 #define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
326 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
327 						 * received subvols */
328 
329 /*
330  * String items are for debugging.
331  *
332  * They just store a short string of data in the FS.
333  */
334 #define BTRFS_STRING_ITEM_KEY	253
335 
336 
337 /* 32 bytes in various csum fields */
338 #define BTRFS_CSUM_SIZE 32
339 
340 /* Csum types */
341 enum btrfs_csum_type {
342 	BTRFS_CSUM_TYPE_CRC32	= 0,
343 	BTRFS_CSUM_TYPE_XXHASH	= 1,
344 	BTRFS_CSUM_TYPE_SHA256	= 2,
345 	BTRFS_CSUM_TYPE_BLAKE2	= 3,
346 };
347 
348 /*
349  * Flags definitions for directory entry item type.
350  *
351  * Used by:
352  * struct btrfs_dir_item.type
353  *
354  * Values 0..7 must match common file type values in fs_types.h.
355  */
356 #define BTRFS_FT_UNKNOWN	0
357 #define BTRFS_FT_REG_FILE	1
358 #define BTRFS_FT_DIR		2
359 #define BTRFS_FT_CHRDEV		3
360 #define BTRFS_FT_BLKDEV		4
361 #define BTRFS_FT_FIFO		5
362 #define BTRFS_FT_SOCK		6
363 #define BTRFS_FT_SYMLINK	7
364 #define BTRFS_FT_XATTR		8
365 #define BTRFS_FT_MAX		9
366 
367 #define BTRFS_FSID_SIZE 16
368 #define BTRFS_UUID_SIZE 16
369 
370 /*
371  * The key defines the order in the tree, and so it also defines (optimal)
372  * block layout.
373  *
374  * Objectid and offset are interpreted based on type.
375  * While normally for objectid, it either represents a root number, or an
376  * inode number.
377  *
378  * Type tells us things about the object, and is a kind of stream selector.
379  * Check the following URL for full references about btrfs_disk_key/btrfs_key:
380  * https://btrfs.wiki.kernel.org/index.php/Btree_Items
381  *
382  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
383  * in cpu native order.  Otherwise they are identical and their sizes
384  * should be the same (ie both packed)
385  */
386 struct btrfs_disk_key {
387 	__le64 objectid;
388 	__u8 type;
389 	__le64 offset;
390 } __attribute__ ((__packed__));
391 
392 struct btrfs_key {
393 	__u64 objectid;
394 	__u8 type;
395 	__u64 offset;
396 } __attribute__ ((__packed__));
397 
398 struct btrfs_dev_item {
399 	/* The internal btrfs device id */
400 	__le64 devid;
401 
402 	/* Size of the device */
403 	__le64 total_bytes;
404 
405 	/* Bytes used */
406 	__le64 bytes_used;
407 
408 	/* Optimal io alignment for this device */
409 	__le32 io_align;
410 
411 	/* Optimal io width for this device */
412 	__le32 io_width;
413 
414 	/* Minimal io size for this device */
415 	__le32 sector_size;
416 
417 	/* Type and info about this device */
418 	__le64 type;
419 
420 	/* Expected generation for this device */
421 	__le64 generation;
422 
423 	/*
424 	 * Starting byte of this partition on the device,
425 	 * to allow for stripe alignment in the future.
426 	 */
427 	__le64 start_offset;
428 
429 	/* Grouping information for allocation decisions */
430 	__le32 dev_group;
431 
432 	/* Optimal seek speed 0-100 where 100 is fastest */
433 	__u8 seek_speed;
434 
435 	/* Optimal bandwidth 0-100 where 100 is fastest */
436 	__u8 bandwidth;
437 
438 	/* Btrfs generated uuid for this device */
439 	__u8 uuid[BTRFS_UUID_SIZE];
440 
441 	/* UUID of FS who owns this device */
442 	__u8 fsid[BTRFS_UUID_SIZE];
443 } __attribute__ ((__packed__));
444 
445 struct btrfs_stripe {
446 	__le64 devid;
447 	__le64 offset;
448 	__u8 dev_uuid[BTRFS_UUID_SIZE];
449 } __attribute__ ((__packed__));
450 
451 struct btrfs_chunk {
452 	/* Size of this chunk in bytes */
453 	__le64 length;
454 
455 	/* Objectid of the root referencing this chunk */
456 	__le64 owner;
457 
458 	__le64 stripe_len;
459 	__le64 type;
460 
461 	/* Optimal io alignment for this chunk */
462 	__le32 io_align;
463 
464 	/* Optimal io width for this chunk */
465 	__le32 io_width;
466 
467 	/* Minimal io size for this chunk */
468 	__le32 sector_size;
469 
470 	/*
471 	 * 2^16 stripes is quite a lot, a second limit is the size of a single
472 	 * item in the btree.
473 	 */
474 	__le16 num_stripes;
475 
476 	/* Sub stripes only matter for raid10 */
477 	__le16 sub_stripes;
478 	struct btrfs_stripe stripe;
479 	/* additional stripes go here */
480 } __attribute__ ((__packed__));
481 
482 #define BTRFS_FREE_SPACE_EXTENT	1
483 #define BTRFS_FREE_SPACE_BITMAP	2
484 
485 struct btrfs_free_space_entry {
486 	__le64 offset;
487 	__le64 bytes;
488 	__u8 type;
489 } __attribute__ ((__packed__));
490 
491 struct btrfs_free_space_header {
492 	struct btrfs_disk_key location;
493 	__le64 generation;
494 	__le64 num_entries;
495 	__le64 num_bitmaps;
496 } __attribute__ ((__packed__));
497 
498 #define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
499 #define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
500 
501 /* Super block flags */
502 /* Errors detected */
503 #define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
504 
505 #define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
506 #define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
507 #define BTRFS_SUPER_FLAG_METADUMP_V2	(1ULL << 34)
508 #define BTRFS_SUPER_FLAG_CHANGING_FSID	(1ULL << 35)
509 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
510 
511 
512 /*
513  * Items in the extent tree are used to record the objectid of the
514  * owner of the block and the number of references.
515  */
516 struct btrfs_extent_item {
517 	__le64 refs;
518 	__le64 generation;
519 	__le64 flags;
520 } __attribute__ ((__packed__));
521 
522 struct btrfs_extent_item_v0 {
523 	__le32 refs;
524 } __attribute__ ((__packed__));
525 
526 
527 #define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
528 #define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
529 
530 /* Use full backrefs for extent pointers in the block */
531 #define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
532 
533 /*
534  * This flag is only used internally by scrub and may be changed at any time
535  * it is only declared here to avoid collisions.
536  */
537 #define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
538 
539 struct btrfs_tree_block_info {
540 	struct btrfs_disk_key key;
541 	__u8 level;
542 } __attribute__ ((__packed__));
543 
544 struct btrfs_extent_data_ref {
545 	__le64 root;
546 	__le64 objectid;
547 	__le64 offset;
548 	__le32 count;
549 } __attribute__ ((__packed__));
550 
551 struct btrfs_shared_data_ref {
552 	__le32 count;
553 } __attribute__ ((__packed__));
554 
555 struct btrfs_extent_inline_ref {
556 	__u8 type;
557 	__le64 offset;
558 } __attribute__ ((__packed__));
559 
560 /* Old style backrefs item */
561 struct btrfs_extent_ref_v0 {
562 	__le64 root;
563 	__le64 generation;
564 	__le64 objectid;
565 	__le32 count;
566 } __attribute__ ((__packed__));
567 
568 
569 /* Dev extents record used space on individual devices.
570  *
571  * The owner field points back to the chunk allocation mapping tree that
572  * allocated the extent.
573  * The chunk tree uuid field is a way to double check the owner.
574  */
575 struct btrfs_dev_extent {
576 	__le64 chunk_tree;
577 	__le64 chunk_objectid;
578 	__le64 chunk_offset;
579 	__le64 length;
580 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
581 } __attribute__ ((__packed__));
582 
583 struct btrfs_inode_ref {
584 	__le64 index;
585 	__le16 name_len;
586 	/* Name goes here */
587 } __attribute__ ((__packed__));
588 
589 struct btrfs_inode_extref {
590 	__le64 parent_objectid;
591 	__le64 index;
592 	__le16 name_len;
593 	__u8   name[0];
594 	/* Name goes here */
595 } __attribute__ ((__packed__));
596 
597 struct btrfs_timespec {
598 	__le64 sec;
599 	__le32 nsec;
600 } __attribute__ ((__packed__));
601 
602 /* Inode flags */
603 #define BTRFS_INODE_NODATASUM		(1 << 0)
604 #define BTRFS_INODE_NODATACOW		(1 << 1)
605 #define BTRFS_INODE_READONLY		(1 << 2)
606 #define BTRFS_INODE_NOCOMPRESS		(1 << 3)
607 #define BTRFS_INODE_PREALLOC		(1 << 4)
608 #define BTRFS_INODE_SYNC		(1 << 5)
609 #define BTRFS_INODE_IMMUTABLE		(1 << 6)
610 #define BTRFS_INODE_APPEND		(1 << 7)
611 #define BTRFS_INODE_NODUMP		(1 << 8)
612 #define BTRFS_INODE_NOATIME		(1 << 9)
613 #define BTRFS_INODE_DIRSYNC		(1 << 10)
614 #define BTRFS_INODE_COMPRESS		(1 << 11)
615 
616 #define BTRFS_INODE_ROOT_ITEM_INIT	(1 << 31)
617 
618 #define BTRFS_INODE_FLAG_MASK						\
619 	(BTRFS_INODE_NODATASUM |					\
620 	 BTRFS_INODE_NODATACOW |					\
621 	 BTRFS_INODE_READONLY |						\
622 	 BTRFS_INODE_NOCOMPRESS |					\
623 	 BTRFS_INODE_PREALLOC |						\
624 	 BTRFS_INODE_SYNC |						\
625 	 BTRFS_INODE_IMMUTABLE |					\
626 	 BTRFS_INODE_APPEND |						\
627 	 BTRFS_INODE_NODUMP |						\
628 	 BTRFS_INODE_NOATIME |						\
629 	 BTRFS_INODE_DIRSYNC |						\
630 	 BTRFS_INODE_COMPRESS |						\
631 	 BTRFS_INODE_ROOT_ITEM_INIT)
632 
633 struct btrfs_inode_item {
634 	/* Nfs style generation number */
635 	__le64 generation;
636 	/* Transid that last touched this inode */
637 	__le64 transid;
638 	__le64 size;
639 	__le64 nbytes;
640 	__le64 block_group;
641 	__le32 nlink;
642 	__le32 uid;
643 	__le32 gid;
644 	__le32 mode;
645 	__le64 rdev;
646 	__le64 flags;
647 
648 	/* Modification sequence number for NFS */
649 	__le64 sequence;
650 
651 	/*
652 	 * A little future expansion, for more than this we can just grow the
653 	 * inode item and version it
654 	 */
655 	__le64 reserved[4];
656 	struct btrfs_timespec atime;
657 	struct btrfs_timespec ctime;
658 	struct btrfs_timespec mtime;
659 	struct btrfs_timespec otime;
660 } __attribute__ ((__packed__));
661 
662 struct btrfs_dir_log_item {
663 	__le64 end;
664 } __attribute__ ((__packed__));
665 
666 struct btrfs_dir_item {
667 	struct btrfs_disk_key location;
668 	__le64 transid;
669 	__le16 data_len;
670 	__le16 name_len;
671 	__u8 type;
672 } __attribute__ ((__packed__));
673 
674 #define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
675 
676 /*
677  * Internal in-memory flag that a subvolume has been marked for deletion but
678  * still visible as a directory
679  */
680 #define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
681 
682 struct btrfs_root_item {
683 	struct btrfs_inode_item inode;
684 	__le64 generation;
685 	__le64 root_dirid;
686 	__le64 bytenr;
687 	__le64 byte_limit;
688 	__le64 bytes_used;
689 	__le64 last_snapshot;
690 	__le64 flags;
691 	__le32 refs;
692 	struct btrfs_disk_key drop_progress;
693 	__u8 drop_level;
694 	__u8 level;
695 
696 	/*
697 	 * The following fields appear after subvol_uuids+subvol_times
698 	 * were introduced.
699 	 */
700 
701 	/*
702 	 * This generation number is used to test if the new fields are valid
703 	 * and up to date while reading the root item. Every time the root item
704 	 * is written out, the "generation" field is copied into this field. If
705 	 * anyone ever mounted the fs with an older kernel, we will have
706 	 * mismatching generation values here and thus must invalidate the
707 	 * new fields. See btrfs_update_root and btrfs_find_last_root for
708 	 * details.
709 	 * The offset of generation_v2 is also used as the start for the memset
710 	 * when invalidating the fields.
711 	 */
712 	__le64 generation_v2;
713 	__u8 uuid[BTRFS_UUID_SIZE];
714 	__u8 parent_uuid[BTRFS_UUID_SIZE];
715 	__u8 received_uuid[BTRFS_UUID_SIZE];
716 	__le64 ctransid; /* Updated when an inode changes */
717 	__le64 otransid; /* Trans when created */
718 	__le64 stransid; /* Trans when sent. Non-zero for received subvol. */
719 	__le64 rtransid; /* Trans when received. Non-zero for received subvol.*/
720 	struct btrfs_timespec ctime;
721 	struct btrfs_timespec otime;
722 	struct btrfs_timespec stime;
723 	struct btrfs_timespec rtime;
724 	__le64 reserved[8]; /* For future */
725 } __attribute__ ((__packed__));
726 
727 /* This is used for both forward and backward root refs */
728 struct btrfs_root_ref {
729 	__le64 dirid;
730 	__le64 sequence;
731 	__le16 name_len;
732 } __attribute__ ((__packed__));
733 
734 struct btrfs_disk_balance_args {
735 	/*
736 	 * Profiles to operate on.
737 	 *
738 	 * SINGLE is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE.
739 	 */
740 	__le64 profiles;
741 
742 	/*
743 	 * Usage filter
744 	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
745 	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
746 	 */
747 	union {
748 		__le64 usage;
749 		struct {
750 			__le32 usage_min;
751 			__le32 usage_max;
752 		};
753 	};
754 
755 	/* Devid filter */
756 	__le64 devid;
757 
758 	/* Devid subset filter [pstart..pend) */
759 	__le64 pstart;
760 	__le64 pend;
761 
762 	/* Btrfs virtual address space subset filter [vstart..vend) */
763 	__le64 vstart;
764 	__le64 vend;
765 
766 	/*
767 	 * Profile to convert to.
768 	 *
769 	 * SINGLE is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE.
770 	 */
771 	__le64 target;
772 
773 	/* BTRFS_BALANCE_ARGS_* */
774 	__le64 flags;
775 
776 	/*
777 	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'.
778 	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
779 	 * and maximum.
780 	 */
781 	union {
782 		__le64 limit;
783 		struct {
784 			__le32 limit_min;
785 			__le32 limit_max;
786 		};
787 	};
788 
789 	/*
790 	 * Process chunks that cross stripes_min..stripes_max devices,
791 	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE.
792 	 */
793 	__le32 stripes_min;
794 	__le32 stripes_max;
795 
796 	__le64 unused[6];
797 } __attribute__ ((__packed__));
798 
799 /*
800  * Stores balance parameters to disk so that balance can be properly
801  * resumed after crash or unmount.
802  */
803 struct btrfs_balance_item {
804 	/* BTRFS_BALANCE_* */
805 	__le64 flags;
806 
807 	struct btrfs_disk_balance_args data;
808 	struct btrfs_disk_balance_args meta;
809 	struct btrfs_disk_balance_args sys;
810 
811 	__le64 unused[4];
812 } __attribute__ ((__packed__));
813 
814 enum {
815 	BTRFS_FILE_EXTENT_INLINE   = 0,
816 	BTRFS_FILE_EXTENT_REG      = 1,
817 	BTRFS_FILE_EXTENT_PREALLOC = 2,
818 	BTRFS_NR_FILE_EXTENT_TYPES = 3,
819 };
820 
821 enum btrfs_compression_type {
822 	BTRFS_COMPRESS_NONE  = 0,
823 	BTRFS_COMPRESS_ZLIB  = 1,
824 	BTRFS_COMPRESS_LZO   = 2,
825 	BTRFS_COMPRESS_ZSTD  = 3,
826 	BTRFS_NR_COMPRESS_TYPES = 4,
827 };
828 
829 struct btrfs_file_extent_item {
830 	/* Transaction id that created this extent */
831 	__le64 generation;
832 	/*
833 	 * Max number of bytes to hold this extent in ram.
834 	 *
835 	 * When we split a compressed extent we can't know how big each of the
836 	 * resulting pieces will be.  So, this is an upper limit on the size of
837 	 * the extent in ram instead of an exact limit.
838 	 */
839 	__le64 ram_bytes;
840 
841 	/*
842 	 * 32 bits for the various ways we might encode the data,
843 	 * including compression and encryption.  If any of these
844 	 * are set to something a given disk format doesn't understand
845 	 * it is treated like an incompat flag for reading and writing,
846 	 * but not for stat.
847 	 */
848 	__u8 compression;
849 	__u8 encryption;
850 	__le16 other_encoding; /* Spare for later use */
851 
852 	/* Are we inline data or a real extent? */
853 	__u8 type;
854 
855 	/*
856 	 * Disk space consumed by the extent, checksum blocks are not included
857 	 * in these numbers
858 	 *
859 	 * At this offset in the structure, the inline extent data start.
860 	 */
861 	__le64 disk_bytenr;
862 	__le64 disk_num_bytes;
863 
864 	/*
865 	 * The logical offset inside the file extent.
866 	 *
867 	 * This allows a file extent to point into the middle of an existing
868 	 * extent on disk, sharing it between two snapshots (useful if some
869 	 * bytes in the middle of the extent have changed).
870 	 */
871 	__le64 offset;
872 
873 	/*
874 	 * The logical number of bytes this file extent is referencing (no
875 	 * csums included).
876 	 *
877 	 * This always reflects the size uncompressed and without encoding.
878 	 */
879 	__le64 num_bytes;
880 
881 } __attribute__ ((__packed__));
882 
883 struct btrfs_csum_item {
884 	__u8 csum;
885 } __attribute__ ((__packed__));
886 
887 enum btrfs_dev_stat_values {
888 	/* Disk I/O failure stats */
889 	BTRFS_DEV_STAT_WRITE_ERRS, /* EIO or EREMOTEIO from lower layers */
890 	BTRFS_DEV_STAT_READ_ERRS, /* EIO or EREMOTEIO from lower layers */
891 	BTRFS_DEV_STAT_FLUSH_ERRS, /* EIO or EREMOTEIO from lower layers */
892 
893 	/* Stats for indirect indications for I/O failures */
894 	BTRFS_DEV_STAT_CORRUPTION_ERRS, /* Checksum error, bytenr error or
895 					 * contents is illegal: this is an
896 					 * indication that the block was damaged
897 					 * during read or write, or written to
898 					 * wrong location or read from wrong
899 					 * location */
900 	BTRFS_DEV_STAT_GENERATION_ERRS, /* An indication that blocks have not
901 					 * been written */
902 
903 	BTRFS_DEV_STAT_VALUES_MAX
904 };
905 
906 struct btrfs_dev_stats_item {
907 	/*
908 	 * Grow this item struct at the end for future enhancements and keep
909 	 * the existing values unchanged.
910 	 */
911 	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
912 } __attribute__ ((__packed__));
913 
914 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
915 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
916 
917 struct btrfs_dev_replace_item {
918 	/*
919 	 * Grow this item struct at the end for future enhancements and keep
920 	 * the existing values unchanged.
921 	 */
922 	__le64 src_devid;
923 	__le64 cursor_left;
924 	__le64 cursor_right;
925 	__le64 cont_reading_from_srcdev_mode;
926 
927 	__le64 replace_state;
928 	__le64 time_started;
929 	__le64 time_stopped;
930 	__le64 num_write_errors;
931 	__le64 num_uncorrectable_read_errors;
932 } __attribute__ ((__packed__));
933 
934 /* Different types of block groups (and chunks) */
935 #define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
936 #define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
937 #define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
938 #define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
939 #define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
940 #define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
941 #define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
942 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
943 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
944 #define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
945 #define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10)
946 #define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
947 					 BTRFS_SPACE_INFO_GLOBAL_RSV)
948 
949 enum btrfs_raid_types {
950 	BTRFS_RAID_RAID10,
951 	BTRFS_RAID_RAID1,
952 	BTRFS_RAID_DUP,
953 	BTRFS_RAID_RAID0,
954 	BTRFS_RAID_SINGLE,
955 	BTRFS_RAID_RAID5,
956 	BTRFS_RAID_RAID6,
957 	BTRFS_RAID_RAID1C3,
958 	BTRFS_RAID_RAID1C4,
959 	BTRFS_NR_RAID_TYPES
960 };
961 
962 #define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
963 					 BTRFS_BLOCK_GROUP_SYSTEM |  \
964 					 BTRFS_BLOCK_GROUP_METADATA)
965 
966 #define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
967 					 BTRFS_BLOCK_GROUP_RAID1 |   \
968 					 BTRFS_BLOCK_GROUP_RAID1C3 | \
969 					 BTRFS_BLOCK_GROUP_RAID1C4 | \
970 					 BTRFS_BLOCK_GROUP_RAID5 |   \
971 					 BTRFS_BLOCK_GROUP_RAID6 |   \
972 					 BTRFS_BLOCK_GROUP_DUP |     \
973 					 BTRFS_BLOCK_GROUP_RAID10)
974 #define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
975 					 BTRFS_BLOCK_GROUP_RAID6)
976 
977 #define BTRFS_BLOCK_GROUP_RAID1_MASK	(BTRFS_BLOCK_GROUP_RAID1 |   \
978 					 BTRFS_BLOCK_GROUP_RAID1C3 | \
979 					 BTRFS_BLOCK_GROUP_RAID1C4)
980 
981 /*
982  * We need a bit for restriper to be able to tell when chunks of type
983  * SINGLE are available.  This "extended" profile format is used in
984  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
985  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
986  * to avoid remappings between two formats in future.
987  */
988 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
989 
990 /*
991  * A fake block group type that is used to communicate global block reserve
992  * size to userspace via the SPACE_INFO ioctl.
993  */
994 #define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
995 
996 #define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
997 					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
998 
chunk_to_extended(__u64 flags)999 static inline __u64 chunk_to_extended(__u64 flags)
1000 {
1001 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1002 		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1003 
1004 	return flags;
1005 }
extended_to_chunk(__u64 flags)1006 static inline __u64 extended_to_chunk(__u64 flags)
1007 {
1008 	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1009 }
1010 
1011 struct btrfs_block_group_item {
1012 	__le64 used;
1013 	__le64 chunk_objectid;
1014 	__le64 flags;
1015 } __attribute__ ((__packed__));
1016 
1017 struct btrfs_free_space_info {
1018 	__le32 extent_count;
1019 	__le32 flags;
1020 } __attribute__ ((__packed__));
1021 
1022 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
1023 
1024 #define BTRFS_QGROUP_LEVEL_SHIFT		48
btrfs_qgroup_level(__u64 qgroupid)1025 static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
1026 {
1027 	return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
1028 }
1029 
1030 /* Is subvolume quota turned on? */
1031 #define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
1032 
1033 /* Is qgroup rescan running? */
1034 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
1035 
1036 /*
1037  * Some qgroup entries are known to be out of date, either because the
1038  * configuration has changed in a way that makes a rescan necessary, or
1039  * because the fs has been mounted with a non-qgroup-aware version.
1040  */
1041 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
1042 
1043 #define BTRFS_QGROUP_STATUS_VERSION        1
1044 
1045 struct btrfs_qgroup_status_item {
1046 	__le64 version;
1047 	/*
1048 	 * The generation is updated during every commit. As older
1049 	 * versions of btrfs are not aware of qgroups, it will be
1050 	 * possible to detect inconsistencies by checking the
1051 	 * generation on mount time.
1052 	 */
1053 	__le64 generation;
1054 
1055 	/* Flag definitions see above */
1056 	__le64 flags;
1057 
1058 	/*
1059 	 * Only used during scanning to record the progress of the scan.
1060 	 * It contains a logical address.
1061 	 */
1062 	__le64 rescan;
1063 } __attribute__ ((__packed__));
1064 
1065 struct btrfs_qgroup_info_item {
1066 	__le64 generation;
1067 	__le64 rfer;
1068 	__le64 rfer_cmpr;
1069 	__le64 excl;
1070 	__le64 excl_cmpr;
1071 } __attribute__ ((__packed__));
1072 
1073 /*
1074  * Flags definition for qgroup limits
1075  *
1076  * Used by:
1077  * struct btrfs_qgroup_limit.flags
1078  * struct btrfs_qgroup_limit_item.flags
1079  */
1080 #define BTRFS_QGROUP_LIMIT_MAX_RFER	(1ULL << 0)
1081 #define BTRFS_QGROUP_LIMIT_MAX_EXCL	(1ULL << 1)
1082 #define BTRFS_QGROUP_LIMIT_RSV_RFER	(1ULL << 2)
1083 #define BTRFS_QGROUP_LIMIT_RSV_EXCL	(1ULL << 3)
1084 #define BTRFS_QGROUP_LIMIT_RFER_CMPR	(1ULL << 4)
1085 #define BTRFS_QGROUP_LIMIT_EXCL_CMPR	(1ULL << 5)
1086 
1087 struct btrfs_qgroup_limit_item {
1088 	/* Only updated when any of the other values change. */
1089 	__le64 flags;
1090 	__le64 max_rfer;
1091 	__le64 max_excl;
1092 	__le64 rsv_rfer;
1093 	__le64 rsv_excl;
1094 } __attribute__ ((__packed__));
1095 
1096 /*
1097  * Just in case we somehow lose the roots and are not able to mount,
1098  * we store an array of the roots from previous transactions in the super.
1099  */
1100 #define BTRFS_NUM_BACKUP_ROOTS 4
1101 struct btrfs_root_backup {
1102 	__le64 tree_root;
1103 	__le64 tree_root_gen;
1104 
1105 	__le64 chunk_root;
1106 	__le64 chunk_root_gen;
1107 
1108 	__le64 extent_root;
1109 	__le64 extent_root_gen;
1110 
1111 	__le64 fs_root;
1112 	__le64 fs_root_gen;
1113 
1114 	__le64 dev_root;
1115 	__le64 dev_root_gen;
1116 
1117 	__le64 csum_root;
1118 	__le64 csum_root_gen;
1119 
1120 	__le64 total_bytes;
1121 	__le64 bytes_used;
1122 	__le64 num_devices;
1123 	/* future */
1124 	__le64 unused_64[4];
1125 
1126 	u8 tree_root_level;
1127 	u8 chunk_root_level;
1128 	u8 extent_root_level;
1129 	u8 fs_root_level;
1130 	u8 dev_root_level;
1131 	u8 csum_root_level;
1132 	/* future and to align */
1133 	u8 unused_8[10];
1134 } __attribute__ ((__packed__));
1135 
1136 /*
1137  * This is a very generous portion of the super block, giving us room to
1138  * translate 14 chunks with 3 stripes each.
1139  */
1140 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
1141 
1142 #define BTRFS_LABEL_SIZE 256
1143 
1144 /* The super block basically lists the main trees of the FS. */
1145 struct btrfs_super_block {
1146 	/* The first 4 fields must match struct btrfs_header */
1147 	u8 csum[BTRFS_CSUM_SIZE];
1148 	/* FS specific UUID, visible to user */
1149 	u8 fsid[BTRFS_FSID_SIZE];
1150 	__le64 bytenr; /* this block number */
1151 	__le64 flags;
1152 
1153 	/* Allowed to be different from the btrfs_header from here own down. */
1154 	__le64 magic;
1155 	__le64 generation;
1156 	__le64 root;
1157 	__le64 chunk_root;
1158 	__le64 log_root;
1159 
1160 	/* This will help find the new super based on the log root. */
1161 	__le64 log_root_transid;
1162 	__le64 total_bytes;
1163 	__le64 bytes_used;
1164 	__le64 root_dir_objectid;
1165 	__le64 num_devices;
1166 	__le32 sectorsize;
1167 	__le32 nodesize;
1168 	__le32 __unused_leafsize;
1169 	__le32 stripesize;
1170 	__le32 sys_chunk_array_size;
1171 	__le64 chunk_root_generation;
1172 	__le64 compat_flags;
1173 	__le64 compat_ro_flags;
1174 	__le64 incompat_flags;
1175 	__le16 csum_type;
1176 	u8 root_level;
1177 	u8 chunk_root_level;
1178 	u8 log_root_level;
1179 	struct btrfs_dev_item dev_item;
1180 
1181 	char label[BTRFS_LABEL_SIZE];
1182 
1183 	__le64 cache_generation;
1184 	__le64 uuid_tree_generation;
1185 
1186 	/* The UUID written into btree blocks */
1187 	u8 metadata_uuid[BTRFS_FSID_SIZE];
1188 
1189 	/* Future expansion */
1190 	__le64 reserved[28];
1191 	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
1192 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
1193 } __attribute__ ((__packed__));
1194 
1195 /*
1196  * Feature flags
1197  *
1198  * Used by:
1199  * struct btrfs_super_block::(compat|compat_ro|incompat)_flags
1200  * struct btrfs_ioctl_feature_flags
1201  */
1202 #define BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE		(1ULL << 0)
1203 
1204 /*
1205  * Older kernels (< 4.9) on big-endian systems produced broken free space tree
1206  * bitmaps, and btrfs-progs also used to corrupt the free space tree (versions
1207  * < 4.7.3).  If this bit is clear, then the free space tree cannot be trusted.
1208  * btrfs-progs can also intentionally clear this bit to ask the kernel to
1209  * rebuild the free space tree, however this might not work on older kernels
1210  * that do not know about this bit. If not sure, clear the cache manually on
1211  * first mount when booting older kernel versions.
1212  */
1213 #define BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID	(1ULL << 1)
1214 
1215 #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF	(1ULL << 0)
1216 #define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL	(1ULL << 1)
1217 #define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS	(1ULL << 2)
1218 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO	(1ULL << 3)
1219 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD	(1ULL << 4)
1220 
1221 /*
1222  * Older kernels tried to do bigger metadata blocks, but the
1223  * code was pretty buggy.  Lets not let them try anymore.
1224  */
1225 #define BTRFS_FEATURE_INCOMPAT_BIG_METADATA	(1ULL << 5)
1226 
1227 #define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF	(1ULL << 6)
1228 #define BTRFS_FEATURE_INCOMPAT_RAID56		(1ULL << 7)
1229 #define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA	(1ULL << 8)
1230 #define BTRFS_FEATURE_INCOMPAT_NO_HOLES		(1ULL << 9)
1231 #define BTRFS_FEATURE_INCOMPAT_METADATA_UUID	(1ULL << 10)
1232 #define BTRFS_FEATURE_INCOMPAT_RAID1C34		(1ULL << 11)
1233 
1234 /*
1235  * Compat flags that we support.
1236  *
1237  * If any incompat flags are set other than the ones specified below then we
1238  * will fail to mount.
1239  */
1240 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
1241 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
1242 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
1243 
1244 #define BTRFS_FEATURE_COMPAT_RO_SUPP			\
1245 	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
1246 	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
1247 
1248 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
1249 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
1250 
1251 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
1252 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
1253 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
1254 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
1255 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
1256 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
1257 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
1258 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
1259 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
1260 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
1261 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
1262 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
1263 	 BTRFS_FEATURE_INCOMPAT_RAID1C34)
1264 
1265 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
1266 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
1267 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
1268 
1269 #define BTRFS_BACKREF_REV_MAX		256
1270 #define BTRFS_BACKREF_REV_SHIFT		56
1271 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
1272 					 BTRFS_BACKREF_REV_SHIFT)
1273 
1274 #define BTRFS_OLD_BACKREF_REV		0
1275 #define BTRFS_MIXED_BACKREF_REV		1
1276 
1277 #define BTRFS_MAX_LEVEL 8
1278 
1279 /* Every tree block (leaf or node) starts with this header. */
1280 struct btrfs_header {
1281 	/* These first four must match the super block */
1282 	u8 csum[BTRFS_CSUM_SIZE];
1283 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
1284 	__le64 bytenr; /* Which block this node is supposed to live in */
1285 	__le64 flags;
1286 
1287 	/* Allowed to be different from the super from here on down. */
1288 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1289 	__le64 generation;
1290 	__le64 owner;
1291 	__le32 nritems;
1292 	u8 level;
1293 } __attribute__ ((__packed__));
1294 
1295 /*
1296  * A leaf is full of items. Offset and size tell us where to find
1297  * the item in the leaf (relative to the start of the data area).
1298  */
1299 struct btrfs_item {
1300 	struct btrfs_disk_key key;
1301 	__le32 offset;
1302 	__le32 size;
1303 } __attribute__ ((__packed__));
1304 
1305 /*
1306  * leaves have an item area and a data area:
1307  * [item0, item1....itemN] [free space] [dataN...data1, data0]
1308  *
1309  * The data is separate from the items to get the keys closer together
1310  * during searches.
1311  */
1312 struct btrfs_leaf {
1313 	struct btrfs_header header;
1314 	struct btrfs_item items[];
1315 } __attribute__ ((__packed__));
1316 
1317 /*
1318  * All non-leaf blocks are nodes, they hold only keys and pointers to children
1319  * blocks.
1320  */
1321 struct btrfs_key_ptr {
1322 	struct btrfs_disk_key key;
1323 	__le64 blockptr;
1324 	__le64 generation;
1325 } __attribute__ ((__packed__));
1326 
1327 struct btrfs_node {
1328 	struct btrfs_header header;
1329 	struct btrfs_key_ptr ptrs[];
1330 } __attribute__ ((__packed__));
1331 
1332 #endif /* __BTRFS_TREE_H__ */
1333