1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2007
5 *
6 * Author: Artem Bityutskiy (Битюцкий Артём),
7 * Frank Haverkamp
8 */
9
10 /*
11 * This file includes UBI initialization and building of UBI devices.
12 *
13 * When UBI is initialized, it attaches all the MTD devices specified as the
14 * module load parameters or the kernel boot parameters. If MTD devices were
15 * specified, UBI does not attach any MTD device, but it is possible to do
16 * later using the "UBI control device".
17 */
18
19 #include <linux/err.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/stringify.h>
23 #include <linux/namei.h>
24 #include <linux/stat.h>
25 #include <linux/miscdevice.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/log2.h>
28 #include <linux/kthread.h>
29 #include <linux/kernel.h>
30 #include <linux/slab.h>
31 #include <linux/major.h>
32 #include "ubi.h"
33
34 /* Maximum length of the 'mtd=' parameter */
35 #define MTD_PARAM_LEN_MAX 64
36
37 /* Maximum number of comma-separated items in the 'mtd=' parameter */
38 #define MTD_PARAM_MAX_COUNT 5
39
40 /* Maximum value for the number of bad PEBs per 1024 PEBs */
41 #define MAX_MTD_UBI_BEB_LIMIT 768
42
43 #ifdef CONFIG_MTD_UBI_MODULE
44 #define ubi_is_module() 1
45 #else
46 #define ubi_is_module() 0
47 #endif
48
49 /**
50 * struct mtd_dev_param - MTD device parameter description data structure.
51 * @name: MTD character device node path, MTD device name, or MTD device number
52 * string
53 * @ubi_num: UBI number
54 * @vid_hdr_offs: VID header offset
55 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
56 * @enable_fm: enable fastmap when value is non-zero
57 */
58 struct mtd_dev_param {
59 char name[MTD_PARAM_LEN_MAX];
60 int ubi_num;
61 int vid_hdr_offs;
62 int max_beb_per1024;
63 int enable_fm;
64 };
65
66 /* Numbers of elements set in the @mtd_dev_param array */
67 static int mtd_devs;
68
69 /* MTD devices specification parameters */
70 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
71 #ifdef CONFIG_MTD_UBI_FASTMAP
72 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
73 static bool fm_autoconvert;
74 static bool fm_debug;
75 #endif
76
77 /* Slab cache for wear-leveling entries */
78 struct kmem_cache *ubi_wl_entry_slab;
79
80 /* UBI control character device */
81 static struct miscdevice ubi_ctrl_cdev = {
82 .minor = MISC_DYNAMIC_MINOR,
83 .name = "ubi_ctrl",
84 .fops = &ubi_ctrl_cdev_operations,
85 };
86
87 /* All UBI devices in system */
88 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
89
90 /* Serializes UBI devices creations and removals */
91 DEFINE_MUTEX(ubi_devices_mutex);
92
93 /* Protects @ubi_devices and @ubi->ref_count */
94 static DEFINE_SPINLOCK(ubi_devices_lock);
95
96 /* "Show" method for files in '/<sysfs>/class/ubi/' */
97 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
version_show(struct class * class,struct class_attribute * attr,char * buf)98 static ssize_t version_show(struct class *class, struct class_attribute *attr,
99 char *buf)
100 {
101 return sprintf(buf, "%d\n", UBI_VERSION);
102 }
103 static CLASS_ATTR_RO(version);
104
105 static struct attribute *ubi_class_attrs[] = {
106 &class_attr_version.attr,
107 NULL,
108 };
109 ATTRIBUTE_GROUPS(ubi_class);
110
111 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
112 struct class ubi_class = {
113 .name = UBI_NAME_STR,
114 .owner = THIS_MODULE,
115 .class_groups = ubi_class_groups,
116 };
117
118 static ssize_t dev_attribute_show(struct device *dev,
119 struct device_attribute *attr, char *buf);
120
121 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
122 static struct device_attribute dev_eraseblock_size =
123 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
124 static struct device_attribute dev_avail_eraseblocks =
125 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
126 static struct device_attribute dev_total_eraseblocks =
127 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
128 static struct device_attribute dev_volumes_count =
129 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
130 static struct device_attribute dev_max_ec =
131 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
132 static struct device_attribute dev_reserved_for_bad =
133 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
134 static struct device_attribute dev_bad_peb_count =
135 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
136 static struct device_attribute dev_max_vol_count =
137 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
138 static struct device_attribute dev_min_io_size =
139 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
140 static struct device_attribute dev_bgt_enabled =
141 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
142 static struct device_attribute dev_mtd_num =
143 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
144 static struct device_attribute dev_ro_mode =
145 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
146
147 /**
148 * ubi_volume_notify - send a volume change notification.
149 * @ubi: UBI device description object
150 * @vol: volume description object of the changed volume
151 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
152 *
153 * This is a helper function which notifies all subscribers about a volume
154 * change event (creation, removal, re-sizing, re-naming, updating). Returns
155 * zero in case of success and a negative error code in case of failure.
156 */
ubi_volume_notify(struct ubi_device * ubi,struct ubi_volume * vol,int ntype)157 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
158 {
159 int ret;
160 struct ubi_notification nt;
161
162 ubi_do_get_device_info(ubi, &nt.di);
163 ubi_do_get_volume_info(ubi, vol, &nt.vi);
164
165 switch (ntype) {
166 case UBI_VOLUME_ADDED:
167 case UBI_VOLUME_REMOVED:
168 case UBI_VOLUME_RESIZED:
169 case UBI_VOLUME_RENAMED:
170 ret = ubi_update_fastmap(ubi);
171 if (ret)
172 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
173 }
174
175 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
176 }
177
178 /**
179 * ubi_notify_all - send a notification to all volumes.
180 * @ubi: UBI device description object
181 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
182 * @nb: the notifier to call
183 *
184 * This function walks all volumes of UBI device @ubi and sends the @ntype
185 * notification for each volume. If @nb is %NULL, then all registered notifiers
186 * are called, otherwise only the @nb notifier is called. Returns the number of
187 * sent notifications.
188 */
ubi_notify_all(struct ubi_device * ubi,int ntype,struct notifier_block * nb)189 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
190 {
191 struct ubi_notification nt;
192 int i, count = 0;
193
194 ubi_do_get_device_info(ubi, &nt.di);
195
196 mutex_lock(&ubi->device_mutex);
197 for (i = 0; i < ubi->vtbl_slots; i++) {
198 /*
199 * Since the @ubi->device is locked, and we are not going to
200 * change @ubi->volumes, we do not have to lock
201 * @ubi->volumes_lock.
202 */
203 if (!ubi->volumes[i])
204 continue;
205
206 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
207 if (nb)
208 nb->notifier_call(nb, ntype, &nt);
209 else
210 blocking_notifier_call_chain(&ubi_notifiers, ntype,
211 &nt);
212 count += 1;
213 }
214 mutex_unlock(&ubi->device_mutex);
215
216 return count;
217 }
218
219 /**
220 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
221 * @nb: the notifier to call
222 *
223 * This function walks all UBI devices and volumes and sends the
224 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
225 * registered notifiers are called, otherwise only the @nb notifier is called.
226 * Returns the number of sent notifications.
227 */
ubi_enumerate_volumes(struct notifier_block * nb)228 int ubi_enumerate_volumes(struct notifier_block *nb)
229 {
230 int i, count = 0;
231
232 /*
233 * Since the @ubi_devices_mutex is locked, and we are not going to
234 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
235 */
236 for (i = 0; i < UBI_MAX_DEVICES; i++) {
237 struct ubi_device *ubi = ubi_devices[i];
238
239 if (!ubi)
240 continue;
241 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
242 }
243
244 return count;
245 }
246
247 /**
248 * ubi_get_device - get UBI device.
249 * @ubi_num: UBI device number
250 *
251 * This function returns UBI device description object for UBI device number
252 * @ubi_num, or %NULL if the device does not exist. This function increases the
253 * device reference count to prevent removal of the device. In other words, the
254 * device cannot be removed if its reference count is not zero.
255 */
ubi_get_device(int ubi_num)256 struct ubi_device *ubi_get_device(int ubi_num)
257 {
258 struct ubi_device *ubi;
259
260 spin_lock(&ubi_devices_lock);
261 ubi = ubi_devices[ubi_num];
262 if (ubi) {
263 ubi_assert(ubi->ref_count >= 0);
264 ubi->ref_count += 1;
265 get_device(&ubi->dev);
266 }
267 spin_unlock(&ubi_devices_lock);
268
269 return ubi;
270 }
271
272 /**
273 * ubi_put_device - drop an UBI device reference.
274 * @ubi: UBI device description object
275 */
ubi_put_device(struct ubi_device * ubi)276 void ubi_put_device(struct ubi_device *ubi)
277 {
278 spin_lock(&ubi_devices_lock);
279 ubi->ref_count -= 1;
280 put_device(&ubi->dev);
281 spin_unlock(&ubi_devices_lock);
282 }
283
284 /**
285 * ubi_get_by_major - get UBI device by character device major number.
286 * @major: major number
287 *
288 * This function is similar to 'ubi_get_device()', but it searches the device
289 * by its major number.
290 */
ubi_get_by_major(int major)291 struct ubi_device *ubi_get_by_major(int major)
292 {
293 int i;
294 struct ubi_device *ubi;
295
296 spin_lock(&ubi_devices_lock);
297 for (i = 0; i < UBI_MAX_DEVICES; i++) {
298 ubi = ubi_devices[i];
299 if (ubi && MAJOR(ubi->cdev.dev) == major) {
300 ubi_assert(ubi->ref_count >= 0);
301 ubi->ref_count += 1;
302 get_device(&ubi->dev);
303 spin_unlock(&ubi_devices_lock);
304 return ubi;
305 }
306 }
307 spin_unlock(&ubi_devices_lock);
308
309 return NULL;
310 }
311
312 /**
313 * ubi_major2num - get UBI device number by character device major number.
314 * @major: major number
315 *
316 * This function searches UBI device number object by its major number. If UBI
317 * device was not found, this function returns -ENODEV, otherwise the UBI device
318 * number is returned.
319 */
ubi_major2num(int major)320 int ubi_major2num(int major)
321 {
322 int i, ubi_num = -ENODEV;
323
324 spin_lock(&ubi_devices_lock);
325 for (i = 0; i < UBI_MAX_DEVICES; i++) {
326 struct ubi_device *ubi = ubi_devices[i];
327
328 if (ubi && MAJOR(ubi->cdev.dev) == major) {
329 ubi_num = ubi->ubi_num;
330 break;
331 }
332 }
333 spin_unlock(&ubi_devices_lock);
334
335 return ubi_num;
336 }
337
338 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
dev_attribute_show(struct device * dev,struct device_attribute * attr,char * buf)339 static ssize_t dev_attribute_show(struct device *dev,
340 struct device_attribute *attr, char *buf)
341 {
342 ssize_t ret;
343 struct ubi_device *ubi;
344
345 /*
346 * The below code looks weird, but it actually makes sense. We get the
347 * UBI device reference from the contained 'struct ubi_device'. But it
348 * is unclear if the device was removed or not yet. Indeed, if the
349 * device was removed before we increased its reference count,
350 * 'ubi_get_device()' will return -ENODEV and we fail.
351 *
352 * Remember, 'struct ubi_device' is freed in the release function, so
353 * we still can use 'ubi->ubi_num'.
354 */
355 ubi = container_of(dev, struct ubi_device, dev);
356
357 if (attr == &dev_eraseblock_size)
358 ret = sprintf(buf, "%d\n", ubi->leb_size);
359 else if (attr == &dev_avail_eraseblocks)
360 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
361 else if (attr == &dev_total_eraseblocks)
362 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
363 else if (attr == &dev_volumes_count)
364 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
365 else if (attr == &dev_max_ec)
366 ret = sprintf(buf, "%d\n", ubi->max_ec);
367 else if (attr == &dev_reserved_for_bad)
368 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
369 else if (attr == &dev_bad_peb_count)
370 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
371 else if (attr == &dev_max_vol_count)
372 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
373 else if (attr == &dev_min_io_size)
374 ret = sprintf(buf, "%d\n", ubi->min_io_size);
375 else if (attr == &dev_bgt_enabled)
376 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
377 else if (attr == &dev_mtd_num)
378 ret = sprintf(buf, "%d\n", ubi->mtd->index);
379 else if (attr == &dev_ro_mode)
380 ret = sprintf(buf, "%d\n", ubi->ro_mode);
381 else
382 ret = -EINVAL;
383
384 return ret;
385 }
386
387 static struct attribute *ubi_dev_attrs[] = {
388 &dev_eraseblock_size.attr,
389 &dev_avail_eraseblocks.attr,
390 &dev_total_eraseblocks.attr,
391 &dev_volumes_count.attr,
392 &dev_max_ec.attr,
393 &dev_reserved_for_bad.attr,
394 &dev_bad_peb_count.attr,
395 &dev_max_vol_count.attr,
396 &dev_min_io_size.attr,
397 &dev_bgt_enabled.attr,
398 &dev_mtd_num.attr,
399 &dev_ro_mode.attr,
400 NULL
401 };
402 ATTRIBUTE_GROUPS(ubi_dev);
403
dev_release(struct device * dev)404 static void dev_release(struct device *dev)
405 {
406 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
407
408 kfree(ubi);
409 }
410
411 /**
412 * kill_volumes - destroy all user volumes.
413 * @ubi: UBI device description object
414 */
kill_volumes(struct ubi_device * ubi)415 static void kill_volumes(struct ubi_device *ubi)
416 {
417 int i;
418
419 for (i = 0; i < ubi->vtbl_slots; i++)
420 if (ubi->volumes[i])
421 ubi_free_volume(ubi, ubi->volumes[i]);
422 }
423
424 /**
425 * uif_init - initialize user interfaces for an UBI device.
426 * @ubi: UBI device description object
427 *
428 * This function initializes various user interfaces for an UBI device. If the
429 * initialization fails at an early stage, this function frees all the
430 * resources it allocated, returns an error.
431 *
432 * This function returns zero in case of success and a negative error code in
433 * case of failure.
434 */
uif_init(struct ubi_device * ubi)435 static int uif_init(struct ubi_device *ubi)
436 {
437 int i, err;
438 dev_t dev;
439
440 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
441
442 /*
443 * Major numbers for the UBI character devices are allocated
444 * dynamically. Major numbers of volume character devices are
445 * equivalent to ones of the corresponding UBI character device. Minor
446 * numbers of UBI character devices are 0, while minor numbers of
447 * volume character devices start from 1. Thus, we allocate one major
448 * number and ubi->vtbl_slots + 1 minor numbers.
449 */
450 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
451 if (err) {
452 ubi_err(ubi, "cannot register UBI character devices");
453 return err;
454 }
455
456 ubi->dev.devt = dev;
457
458 ubi_assert(MINOR(dev) == 0);
459 cdev_init(&ubi->cdev, &ubi_cdev_operations);
460 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
461 ubi->cdev.owner = THIS_MODULE;
462
463 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num);
464 err = cdev_device_add(&ubi->cdev, &ubi->dev);
465 if (err)
466 goto out_unreg;
467
468 for (i = 0; i < ubi->vtbl_slots; i++)
469 if (ubi->volumes[i]) {
470 err = ubi_add_volume(ubi, ubi->volumes[i]);
471 if (err) {
472 ubi_err(ubi, "cannot add volume %d", i);
473 ubi->volumes[i] = NULL;
474 goto out_volumes;
475 }
476 }
477
478 return 0;
479
480 out_volumes:
481 kill_volumes(ubi);
482 cdev_device_del(&ubi->cdev, &ubi->dev);
483 out_unreg:
484 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
485 ubi_err(ubi, "cannot initialize UBI %s, error %d",
486 ubi->ubi_name, err);
487 return err;
488 }
489
490 /**
491 * uif_close - close user interfaces for an UBI device.
492 * @ubi: UBI device description object
493 *
494 * Note, since this function un-registers UBI volume device objects (@vol->dev),
495 * the memory allocated voe the volumes is freed as well (in the release
496 * function).
497 */
uif_close(struct ubi_device * ubi)498 static void uif_close(struct ubi_device *ubi)
499 {
500 kill_volumes(ubi);
501 cdev_device_del(&ubi->cdev, &ubi->dev);
502 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
503 }
504
505 /**
506 * ubi_free_volumes_from - free volumes from specific index.
507 * @ubi: UBI device description object
508 * @from: the start index used for volume free.
509 */
ubi_free_volumes_from(struct ubi_device * ubi,int from)510 static void ubi_free_volumes_from(struct ubi_device *ubi, int from)
511 {
512 int i;
513
514 for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
515 if (!ubi->volumes[i])
516 continue;
517 ubi_eba_replace_table(ubi->volumes[i], NULL);
518 ubi_fastmap_destroy_checkmap(ubi->volumes[i]);
519 kfree(ubi->volumes[i]);
520 ubi->volumes[i] = NULL;
521 }
522 }
523
524 /**
525 * ubi_free_all_volumes - free all volumes.
526 * @ubi: UBI device description object
527 */
ubi_free_all_volumes(struct ubi_device * ubi)528 void ubi_free_all_volumes(struct ubi_device *ubi)
529 {
530 ubi_free_volumes_from(ubi, 0);
531 }
532
533 /**
534 * ubi_free_internal_volumes - free internal volumes.
535 * @ubi: UBI device description object
536 */
ubi_free_internal_volumes(struct ubi_device * ubi)537 void ubi_free_internal_volumes(struct ubi_device *ubi)
538 {
539 ubi_free_volumes_from(ubi, ubi->vtbl_slots);
540 }
541
get_bad_peb_limit(const struct ubi_device * ubi,int max_beb_per1024)542 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
543 {
544 int limit, device_pebs;
545 uint64_t device_size;
546
547 if (!max_beb_per1024) {
548 /*
549 * Since max_beb_per1024 has not been set by the user in either
550 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
551 * limit if it is supported by the device.
552 */
553 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size);
554 if (limit < 0)
555 return 0;
556 return limit;
557 }
558
559 /*
560 * Here we are using size of the entire flash chip and
561 * not just the MTD partition size because the maximum
562 * number of bad eraseblocks is a percentage of the
563 * whole device and bad eraseblocks are not fairly
564 * distributed over the flash chip. So the worst case
565 * is that all the bad eraseblocks of the chip are in
566 * the MTD partition we are attaching (ubi->mtd).
567 */
568 device_size = mtd_get_device_size(ubi->mtd);
569 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
570 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
571
572 /* Round it up */
573 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
574 limit += 1;
575
576 return limit;
577 }
578
579 /**
580 * io_init - initialize I/O sub-system for a given UBI device.
581 * @ubi: UBI device description object
582 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
583 *
584 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
585 * assumed:
586 * o EC header is always at offset zero - this cannot be changed;
587 * o VID header starts just after the EC header at the closest address
588 * aligned to @io->hdrs_min_io_size;
589 * o data starts just after the VID header at the closest address aligned to
590 * @io->min_io_size
591 *
592 * This function returns zero in case of success and a negative error code in
593 * case of failure.
594 */
io_init(struct ubi_device * ubi,int max_beb_per1024)595 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
596 {
597 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
598 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
599
600 if (ubi->mtd->numeraseregions != 0) {
601 /*
602 * Some flashes have several erase regions. Different regions
603 * may have different eraseblock size and other
604 * characteristics. It looks like mostly multi-region flashes
605 * have one "main" region and one or more small regions to
606 * store boot loader code or boot parameters or whatever. I
607 * guess we should just pick the largest region. But this is
608 * not implemented.
609 */
610 ubi_err(ubi, "multiple regions, not implemented");
611 return -EINVAL;
612 }
613
614 if (ubi->vid_hdr_offset < 0)
615 return -EINVAL;
616
617 /*
618 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
619 * physical eraseblocks maximum.
620 */
621
622 ubi->peb_size = ubi->mtd->erasesize;
623 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
624 ubi->flash_size = ubi->mtd->size;
625
626 if (mtd_can_have_bb(ubi->mtd)) {
627 ubi->bad_allowed = 1;
628 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
629 }
630
631 if (ubi->mtd->type == MTD_NORFLASH)
632 ubi->nor_flash = 1;
633
634 ubi->min_io_size = ubi->mtd->writesize;
635 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
636
637 /*
638 * Make sure minimal I/O unit is power of 2. Note, there is no
639 * fundamental reason for this assumption. It is just an optimization
640 * which allows us to avoid costly division operations.
641 */
642 if (!is_power_of_2(ubi->min_io_size)) {
643 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
644 ubi->min_io_size);
645 return -EINVAL;
646 }
647
648 ubi_assert(ubi->hdrs_min_io_size > 0);
649 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
650 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
651
652 ubi->max_write_size = ubi->mtd->writebufsize;
653 /*
654 * Maximum write size has to be greater or equivalent to min. I/O
655 * size, and be multiple of min. I/O size.
656 */
657 if (ubi->max_write_size < ubi->min_io_size ||
658 ubi->max_write_size % ubi->min_io_size ||
659 !is_power_of_2(ubi->max_write_size)) {
660 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
661 ubi->max_write_size, ubi->min_io_size);
662 return -EINVAL;
663 }
664
665 /* Calculate default aligned sizes of EC and VID headers */
666 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
667 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
668
669 if (ubi->vid_hdr_offset && ((ubi->vid_hdr_offset + UBI_VID_HDR_SIZE) >
670 ubi->vid_hdr_alsize)) {
671 ubi_err(ubi, "VID header offset %d too large.", ubi->vid_hdr_offset);
672 return -EINVAL;
673 }
674
675 dbg_gen("min_io_size %d", ubi->min_io_size);
676 dbg_gen("max_write_size %d", ubi->max_write_size);
677 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
678 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
679 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
680
681 if (ubi->vid_hdr_offset == 0)
682 /* Default offset */
683 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
684 ubi->ec_hdr_alsize;
685 else {
686 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
687 ~(ubi->hdrs_min_io_size - 1);
688 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
689 ubi->vid_hdr_aloffset;
690 }
691
692 /* Similar for the data offset */
693 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
694 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
695
696 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
697 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
698 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
699 dbg_gen("leb_start %d", ubi->leb_start);
700
701 /* The shift must be aligned to 32-bit boundary */
702 if (ubi->vid_hdr_shift % 4) {
703 ubi_err(ubi, "unaligned VID header shift %d",
704 ubi->vid_hdr_shift);
705 return -EINVAL;
706 }
707
708 /* Check sanity */
709 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
710 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
711 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
712 ubi->leb_start & (ubi->min_io_size - 1)) {
713 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
714 ubi->vid_hdr_offset, ubi->leb_start);
715 return -EINVAL;
716 }
717
718 /*
719 * Set maximum amount of physical erroneous eraseblocks to be 10%.
720 * Erroneous PEB are those which have read errors.
721 */
722 ubi->max_erroneous = ubi->peb_count / 10;
723 if (ubi->max_erroneous < 16)
724 ubi->max_erroneous = 16;
725 dbg_gen("max_erroneous %d", ubi->max_erroneous);
726
727 /*
728 * It may happen that EC and VID headers are situated in one minimal
729 * I/O unit. In this case we can only accept this UBI image in
730 * read-only mode.
731 */
732 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
733 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
734 ubi->ro_mode = 1;
735 }
736
737 ubi->leb_size = ubi->peb_size - ubi->leb_start;
738
739 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
740 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
741 ubi->mtd->index);
742 ubi->ro_mode = 1;
743 }
744
745 /*
746 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
747 * unfortunately, MTD does not provide this information. We should loop
748 * over all physical eraseblocks and invoke mtd->block_is_bad() for
749 * each physical eraseblock. So, we leave @ubi->bad_peb_count
750 * uninitialized so far.
751 */
752
753 return 0;
754 }
755
756 /**
757 * autoresize - re-size the volume which has the "auto-resize" flag set.
758 * @ubi: UBI device description object
759 * @vol_id: ID of the volume to re-size
760 *
761 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
762 * the volume table to the largest possible size. See comments in ubi-header.h
763 * for more description of the flag. Returns zero in case of success and a
764 * negative error code in case of failure.
765 */
autoresize(struct ubi_device * ubi,int vol_id)766 static int autoresize(struct ubi_device *ubi, int vol_id)
767 {
768 struct ubi_volume_desc desc;
769 struct ubi_volume *vol = ubi->volumes[vol_id];
770 int err, old_reserved_pebs = vol->reserved_pebs;
771
772 if (ubi->ro_mode) {
773 ubi_warn(ubi, "skip auto-resize because of R/O mode");
774 return 0;
775 }
776
777 /*
778 * Clear the auto-resize flag in the volume in-memory copy of the
779 * volume table, and 'ubi_resize_volume()' will propagate this change
780 * to the flash.
781 */
782 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
783
784 if (ubi->avail_pebs == 0) {
785 struct ubi_vtbl_record vtbl_rec;
786
787 /*
788 * No available PEBs to re-size the volume, clear the flag on
789 * flash and exit.
790 */
791 vtbl_rec = ubi->vtbl[vol_id];
792 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
793 if (err)
794 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
795 vol_id);
796 } else {
797 desc.vol = vol;
798 err = ubi_resize_volume(&desc,
799 old_reserved_pebs + ubi->avail_pebs);
800 if (err)
801 ubi_err(ubi, "cannot auto-resize volume %d",
802 vol_id);
803 }
804
805 if (err)
806 return err;
807
808 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
809 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
810 return 0;
811 }
812
813 /**
814 * ubi_attach_mtd_dev - attach an MTD device.
815 * @mtd: MTD device description object
816 * @ubi_num: number to assign to the new UBI device
817 * @vid_hdr_offset: VID header offset
818 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
819 * @disable_fm: whether disable fastmap
820 *
821 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
822 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
823 * which case this function finds a vacant device number and assigns it
824 * automatically. Returns the new UBI device number in case of success and a
825 * negative error code in case of failure.
826 *
827 * If @disable_fm is true, ubi doesn't create new fastmap even the module param
828 * 'fm_autoconvert' is set, and existed old fastmap will be destroyed after
829 * doing full scanning.
830 *
831 * Note, the invocations of this function has to be serialized by the
832 * @ubi_devices_mutex.
833 */
ubi_attach_mtd_dev(struct mtd_info * mtd,int ubi_num,int vid_hdr_offset,int max_beb_per1024,bool disable_fm)834 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
835 int vid_hdr_offset, int max_beb_per1024, bool disable_fm)
836 {
837 struct ubi_device *ubi;
838 int i, err;
839
840 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
841 return -EINVAL;
842
843 if (!max_beb_per1024)
844 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
845
846 /*
847 * Check if we already have the same MTD device attached.
848 *
849 * Note, this function assumes that UBI devices creations and deletions
850 * are serialized, so it does not take the &ubi_devices_lock.
851 */
852 for (i = 0; i < UBI_MAX_DEVICES; i++) {
853 ubi = ubi_devices[i];
854 if (ubi && mtd->index == ubi->mtd->index) {
855 pr_err("ubi: mtd%d is already attached to ubi%d\n",
856 mtd->index, i);
857 return -EEXIST;
858 }
859 }
860
861 /*
862 * Make sure this MTD device is not emulated on top of an UBI volume
863 * already. Well, generally this recursion works fine, but there are
864 * different problems like the UBI module takes a reference to itself
865 * by attaching (and thus, opening) the emulated MTD device. This
866 * results in inability to unload the module. And in general it makes
867 * no sense to attach emulated MTD devices, so we prohibit this.
868 */
869 if (mtd->type == MTD_UBIVOLUME) {
870 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
871 mtd->index);
872 return -EINVAL;
873 }
874
875 /*
876 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes.
877 * MLC NAND is different and needs special care, otherwise UBI or UBIFS
878 * will die soon and you will lose all your data.
879 * Relax this rule if the partition we're attaching to operates in SLC
880 * mode.
881 */
882 if (mtd->type == MTD_MLCNANDFLASH &&
883 !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) {
884 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n",
885 mtd->index);
886 return -EINVAL;
887 }
888
889 if (ubi_num == UBI_DEV_NUM_AUTO) {
890 /* Search for an empty slot in the @ubi_devices array */
891 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
892 if (!ubi_devices[ubi_num])
893 break;
894 if (ubi_num == UBI_MAX_DEVICES) {
895 pr_err("ubi: only %d UBI devices may be created\n",
896 UBI_MAX_DEVICES);
897 return -ENFILE;
898 }
899 } else {
900 if (ubi_num >= UBI_MAX_DEVICES)
901 return -EINVAL;
902
903 /* Make sure ubi_num is not busy */
904 if (ubi_devices[ubi_num]) {
905 pr_err("ubi: ubi%i already exists\n", ubi_num);
906 return -EEXIST;
907 }
908 }
909
910 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
911 if (!ubi)
912 return -ENOMEM;
913
914 device_initialize(&ubi->dev);
915 ubi->dev.release = dev_release;
916 ubi->dev.class = &ubi_class;
917 ubi->dev.groups = ubi_dev_groups;
918 ubi->dev.parent = &mtd->dev;
919
920 ubi->mtd = mtd;
921 ubi->ubi_num = ubi_num;
922 ubi->vid_hdr_offset = vid_hdr_offset;
923 ubi->autoresize_vol_id = -1;
924
925 #ifdef CONFIG_MTD_UBI_FASTMAP
926 ubi->fm_pool.used = ubi->fm_pool.size = 0;
927 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
928
929 /*
930 * fm_pool.max_size is 5% of the total number of PEBs but it's also
931 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
932 */
933 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
934 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
935 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
936 UBI_FM_MIN_POOL_SIZE);
937
938 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
939 ubi->fm_disabled = (!fm_autoconvert || disable_fm) ? 1 : 0;
940 if (fm_debug)
941 ubi_enable_dbg_chk_fastmap(ubi);
942
943 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
944 <= UBI_FM_MAX_START) {
945 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
946 UBI_FM_MAX_START);
947 ubi->fm_disabled = 1;
948 }
949
950 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
951 ubi_msg(ubi, "default fastmap WL pool size: %d",
952 ubi->fm_wl_pool.max_size);
953 #else
954 ubi->fm_disabled = 1;
955 #endif
956 mutex_init(&ubi->buf_mutex);
957 mutex_init(&ubi->ckvol_mutex);
958 mutex_init(&ubi->device_mutex);
959 spin_lock_init(&ubi->volumes_lock);
960 init_rwsem(&ubi->fm_protect);
961 init_rwsem(&ubi->fm_eba_sem);
962
963 ubi_msg(ubi, "attaching mtd%d", mtd->index);
964
965 err = io_init(ubi, max_beb_per1024);
966 if (err)
967 goto out_free;
968
969 err = -ENOMEM;
970 ubi->peb_buf = vmalloc(ubi->peb_size);
971 if (!ubi->peb_buf)
972 goto out_free;
973
974 #ifdef CONFIG_MTD_UBI_FASTMAP
975 ubi->fm_size = ubi_calc_fm_size(ubi);
976 ubi->fm_buf = vzalloc(ubi->fm_size);
977 if (!ubi->fm_buf)
978 goto out_free;
979 #endif
980 err = ubi_attach(ubi, disable_fm ? 1 : 0);
981 if (err) {
982 ubi_err(ubi, "failed to attach mtd%d, error %d",
983 mtd->index, err);
984 goto out_free;
985 }
986
987 if (ubi->autoresize_vol_id != -1) {
988 err = autoresize(ubi, ubi->autoresize_vol_id);
989 if (err)
990 goto out_detach;
991 }
992
993 err = uif_init(ubi);
994 if (err)
995 goto out_detach;
996
997 err = ubi_debugfs_init_dev(ubi);
998 if (err)
999 goto out_uif;
1000
1001 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1002 if (IS_ERR(ubi->bgt_thread)) {
1003 err = PTR_ERR(ubi->bgt_thread);
1004 ubi_err(ubi, "cannot spawn \"%s\", error %d",
1005 ubi->bgt_name, err);
1006 goto out_debugfs;
1007 }
1008
1009 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1010 mtd->index, mtd->name, ubi->flash_size >> 20);
1011 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1012 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1013 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1014 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1015 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1016 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1017 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1018 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1019 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1020 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1021 ubi->vtbl_slots);
1022 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1023 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1024 ubi->image_seq);
1025 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1026 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1027
1028 /*
1029 * The below lock makes sure we do not race with 'ubi_thread()' which
1030 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1031 */
1032 spin_lock(&ubi->wl_lock);
1033 ubi->thread_enabled = 1;
1034 wake_up_process(ubi->bgt_thread);
1035 spin_unlock(&ubi->wl_lock);
1036
1037 ubi_devices[ubi_num] = ubi;
1038 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1039 return ubi_num;
1040
1041 out_debugfs:
1042 ubi_debugfs_exit_dev(ubi);
1043 out_uif:
1044 uif_close(ubi);
1045 out_detach:
1046 ubi_wl_close(ubi);
1047 ubi_free_all_volumes(ubi);
1048 vfree(ubi->vtbl);
1049 out_free:
1050 vfree(ubi->peb_buf);
1051 vfree(ubi->fm_buf);
1052 put_device(&ubi->dev);
1053 return err;
1054 }
1055
1056 /**
1057 * ubi_detach_mtd_dev - detach an MTD device.
1058 * @ubi_num: UBI device number to detach from
1059 * @anyway: detach MTD even if device reference count is not zero
1060 *
1061 * This function destroys an UBI device number @ubi_num and detaches the
1062 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1063 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1064 * exist.
1065 *
1066 * Note, the invocations of this function has to be serialized by the
1067 * @ubi_devices_mutex.
1068 */
ubi_detach_mtd_dev(int ubi_num,int anyway)1069 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1070 {
1071 struct ubi_device *ubi;
1072
1073 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1074 return -EINVAL;
1075
1076 ubi = ubi_get_device(ubi_num);
1077 if (!ubi)
1078 return -EINVAL;
1079
1080 spin_lock(&ubi_devices_lock);
1081 put_device(&ubi->dev);
1082 ubi->ref_count -= 1;
1083 if (ubi->ref_count) {
1084 if (!anyway) {
1085 spin_unlock(&ubi_devices_lock);
1086 return -EBUSY;
1087 }
1088 /* This may only happen if there is a bug */
1089 ubi_err(ubi, "%s reference count %d, destroy anyway",
1090 ubi->ubi_name, ubi->ref_count);
1091 }
1092 ubi_devices[ubi_num] = NULL;
1093 spin_unlock(&ubi_devices_lock);
1094
1095 ubi_assert(ubi_num == ubi->ubi_num);
1096 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1097 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1098 #ifdef CONFIG_MTD_UBI_FASTMAP
1099 /* If we don't write a new fastmap at detach time we lose all
1100 * EC updates that have been made since the last written fastmap.
1101 * In case of fastmap debugging we omit the update to simulate an
1102 * unclean shutdown. */
1103 if (!ubi_dbg_chk_fastmap(ubi))
1104 ubi_update_fastmap(ubi);
1105 #endif
1106 /*
1107 * Before freeing anything, we have to stop the background thread to
1108 * prevent it from doing anything on this device while we are freeing.
1109 */
1110 if (ubi->bgt_thread)
1111 kthread_stop(ubi->bgt_thread);
1112
1113 #ifdef CONFIG_MTD_UBI_FASTMAP
1114 cancel_work_sync(&ubi->fm_work);
1115 #endif
1116 ubi_debugfs_exit_dev(ubi);
1117 uif_close(ubi);
1118
1119 ubi_wl_close(ubi);
1120 ubi_free_internal_volumes(ubi);
1121 vfree(ubi->vtbl);
1122 vfree(ubi->peb_buf);
1123 vfree(ubi->fm_buf);
1124 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1125 put_mtd_device(ubi->mtd);
1126 put_device(&ubi->dev);
1127 return 0;
1128 }
1129
1130 /**
1131 * open_mtd_by_chdev - open an MTD device by its character device node path.
1132 * @mtd_dev: MTD character device node path
1133 *
1134 * This helper function opens an MTD device by its character node device path.
1135 * Returns MTD device description object in case of success and a negative
1136 * error code in case of failure.
1137 */
open_mtd_by_chdev(const char * mtd_dev)1138 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1139 {
1140 int err, minor;
1141 struct path path;
1142 struct kstat stat;
1143
1144 /* Probably this is an MTD character device node path */
1145 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1146 if (err)
1147 return ERR_PTR(err);
1148
1149 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1150 path_put(&path);
1151 if (err)
1152 return ERR_PTR(err);
1153
1154 /* MTD device number is defined by the major / minor numbers */
1155 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1156 return ERR_PTR(-EINVAL);
1157
1158 minor = MINOR(stat.rdev);
1159
1160 if (minor & 1)
1161 /*
1162 * Just do not think the "/dev/mtdrX" devices support is need,
1163 * so do not support them to avoid doing extra work.
1164 */
1165 return ERR_PTR(-EINVAL);
1166
1167 return get_mtd_device(NULL, minor / 2);
1168 }
1169
1170 /**
1171 * open_mtd_device - open MTD device by name, character device path, or number.
1172 * @mtd_dev: name, character device node path, or MTD device device number
1173 *
1174 * This function tries to open and MTD device described by @mtd_dev string,
1175 * which is first treated as ASCII MTD device number, and if it is not true, it
1176 * is treated as MTD device name, and if that is also not true, it is treated
1177 * as MTD character device node path. Returns MTD device description object in
1178 * case of success and a negative error code in case of failure.
1179 */
open_mtd_device(const char * mtd_dev)1180 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1181 {
1182 struct mtd_info *mtd;
1183 int mtd_num;
1184 char *endp;
1185
1186 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1187 if (*endp != '\0' || mtd_dev == endp) {
1188 /*
1189 * This does not look like an ASCII integer, probably this is
1190 * MTD device name.
1191 */
1192 mtd = get_mtd_device_nm(mtd_dev);
1193 if (PTR_ERR(mtd) == -ENODEV)
1194 /* Probably this is an MTD character device node path */
1195 mtd = open_mtd_by_chdev(mtd_dev);
1196 } else
1197 mtd = get_mtd_device(NULL, mtd_num);
1198
1199 return mtd;
1200 }
1201
ubi_init(void)1202 static int __init ubi_init(void)
1203 {
1204 int err, i, k;
1205
1206 /* Ensure that EC and VID headers have correct size */
1207 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1208 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1209
1210 if (mtd_devs > UBI_MAX_DEVICES) {
1211 pr_err("UBI error: too many MTD devices, maximum is %d\n",
1212 UBI_MAX_DEVICES);
1213 return -EINVAL;
1214 }
1215
1216 /* Create base sysfs directory and sysfs files */
1217 err = class_register(&ubi_class);
1218 if (err < 0)
1219 return err;
1220
1221 err = misc_register(&ubi_ctrl_cdev);
1222 if (err) {
1223 pr_err("UBI error: cannot register device\n");
1224 goto out;
1225 }
1226
1227 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1228 sizeof(struct ubi_wl_entry),
1229 0, 0, NULL);
1230 if (!ubi_wl_entry_slab) {
1231 err = -ENOMEM;
1232 goto out_dev_unreg;
1233 }
1234
1235 err = ubi_debugfs_init();
1236 if (err)
1237 goto out_slab;
1238
1239
1240 /* Attach MTD devices */
1241 for (i = 0; i < mtd_devs; i++) {
1242 struct mtd_dev_param *p = &mtd_dev_param[i];
1243 struct mtd_info *mtd;
1244
1245 cond_resched();
1246
1247 mtd = open_mtd_device(p->name);
1248 if (IS_ERR(mtd)) {
1249 err = PTR_ERR(mtd);
1250 pr_err("UBI error: cannot open mtd %s, error %d\n",
1251 p->name, err);
1252 /* See comment below re-ubi_is_module(). */
1253 if (ubi_is_module())
1254 goto out_detach;
1255 continue;
1256 }
1257
1258 mutex_lock(&ubi_devices_mutex);
1259 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1260 p->vid_hdr_offs, p->max_beb_per1024,
1261 p->enable_fm == 0 ? true : false);
1262 mutex_unlock(&ubi_devices_mutex);
1263 if (err < 0) {
1264 pr_err("UBI error: cannot attach mtd%d\n",
1265 mtd->index);
1266 put_mtd_device(mtd);
1267
1268 /*
1269 * Originally UBI stopped initializing on any error.
1270 * However, later on it was found out that this
1271 * behavior is not very good when UBI is compiled into
1272 * the kernel and the MTD devices to attach are passed
1273 * through the command line. Indeed, UBI failure
1274 * stopped whole boot sequence.
1275 *
1276 * To fix this, we changed the behavior for the
1277 * non-module case, but preserved the old behavior for
1278 * the module case, just for compatibility. This is a
1279 * little inconsistent, though.
1280 */
1281 if (ubi_is_module())
1282 goto out_detach;
1283 }
1284 }
1285
1286 err = ubiblock_init();
1287 if (err) {
1288 pr_err("UBI error: block: cannot initialize, error %d\n", err);
1289
1290 /* See comment above re-ubi_is_module(). */
1291 if (ubi_is_module())
1292 goto out_detach;
1293 }
1294
1295 return 0;
1296
1297 out_detach:
1298 for (k = 0; k < i; k++)
1299 if (ubi_devices[k]) {
1300 mutex_lock(&ubi_devices_mutex);
1301 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1302 mutex_unlock(&ubi_devices_mutex);
1303 }
1304 ubi_debugfs_exit();
1305 out_slab:
1306 kmem_cache_destroy(ubi_wl_entry_slab);
1307 out_dev_unreg:
1308 misc_deregister(&ubi_ctrl_cdev);
1309 out:
1310 class_unregister(&ubi_class);
1311 pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1312 return err;
1313 }
1314 late_initcall(ubi_init);
1315
ubi_exit(void)1316 static void __exit ubi_exit(void)
1317 {
1318 int i;
1319
1320 ubiblock_exit();
1321
1322 for (i = 0; i < UBI_MAX_DEVICES; i++)
1323 if (ubi_devices[i]) {
1324 mutex_lock(&ubi_devices_mutex);
1325 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1326 mutex_unlock(&ubi_devices_mutex);
1327 }
1328 ubi_debugfs_exit();
1329 kmem_cache_destroy(ubi_wl_entry_slab);
1330 misc_deregister(&ubi_ctrl_cdev);
1331 class_unregister(&ubi_class);
1332 }
1333 module_exit(ubi_exit);
1334
1335 /**
1336 * bytes_str_to_int - convert a number of bytes string into an integer.
1337 * @str: the string to convert
1338 *
1339 * This function returns positive resulting integer in case of success and a
1340 * negative error code in case of failure.
1341 */
bytes_str_to_int(const char * str)1342 static int bytes_str_to_int(const char *str)
1343 {
1344 char *endp;
1345 unsigned long result;
1346
1347 result = simple_strtoul(str, &endp, 0);
1348 if (str == endp || result >= INT_MAX) {
1349 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1350 return -EINVAL;
1351 }
1352
1353 switch (*endp) {
1354 case 'G':
1355 result *= 1024;
1356 fallthrough;
1357 case 'M':
1358 result *= 1024;
1359 fallthrough;
1360 case 'K':
1361 result *= 1024;
1362 break;
1363 case '\0':
1364 break;
1365 default:
1366 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1367 return -EINVAL;
1368 }
1369
1370 return result;
1371 }
1372
1373 /**
1374 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1375 * @val: the parameter value to parse
1376 * @kp: not used
1377 *
1378 * This function returns zero in case of success and a negative error code in
1379 * case of error.
1380 */
ubi_mtd_param_parse(const char * val,const struct kernel_param * kp)1381 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
1382 {
1383 int i, len;
1384 struct mtd_dev_param *p;
1385 char buf[MTD_PARAM_LEN_MAX];
1386 char *pbuf = &buf[0];
1387 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1388
1389 if (!val)
1390 return -EINVAL;
1391
1392 if (mtd_devs == UBI_MAX_DEVICES) {
1393 pr_err("UBI error: too many parameters, max. is %d\n",
1394 UBI_MAX_DEVICES);
1395 return -EINVAL;
1396 }
1397
1398 len = strnlen(val, MTD_PARAM_LEN_MAX);
1399 if (len == MTD_PARAM_LEN_MAX) {
1400 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1401 val, MTD_PARAM_LEN_MAX);
1402 return -EINVAL;
1403 }
1404
1405 if (len == 0) {
1406 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1407 return 0;
1408 }
1409
1410 strcpy(buf, val);
1411
1412 /* Get rid of the final newline */
1413 if (buf[len - 1] == '\n')
1414 buf[len - 1] = '\0';
1415
1416 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1417 tokens[i] = strsep(&pbuf, ",");
1418
1419 if (pbuf) {
1420 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1421 return -EINVAL;
1422 }
1423
1424 p = &mtd_dev_param[mtd_devs];
1425 strcpy(&p->name[0], tokens[0]);
1426
1427 token = tokens[1];
1428 if (token) {
1429 p->vid_hdr_offs = bytes_str_to_int(token);
1430
1431 if (p->vid_hdr_offs < 0)
1432 return p->vid_hdr_offs;
1433 }
1434
1435 token = tokens[2];
1436 if (token) {
1437 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1438
1439 if (err) {
1440 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s\n",
1441 token);
1442 return -EINVAL;
1443 }
1444 }
1445
1446 token = tokens[3];
1447 if (token) {
1448 int err = kstrtoint(token, 10, &p->ubi_num);
1449
1450 if (err) {
1451 pr_err("UBI error: bad value for ubi_num parameter: %s\n",
1452 token);
1453 return -EINVAL;
1454 }
1455 } else
1456 p->ubi_num = UBI_DEV_NUM_AUTO;
1457
1458 token = tokens[4];
1459 if (token) {
1460 int err = kstrtoint(token, 10, &p->enable_fm);
1461
1462 if (err) {
1463 pr_err("UBI error: bad value for enable_fm parameter: %s\n",
1464 token);
1465 return -EINVAL;
1466 }
1467 } else
1468 p->enable_fm = 0;
1469
1470 mtd_devs += 1;
1471 return 0;
1472 }
1473
1474 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);
1475 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1476 "Multiple \"mtd\" parameters may be specified.\n"
1477 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1478 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1479 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1480 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1481 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1482 "Optional \"enable_fm\" parameter determines whether to enable fastmap during attach. If the value is non-zero, fastmap is enabled. Default value is 0.\n"
1483 "\n"
1484 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1485 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1486 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1487 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1488 "example 5: mtd=1,0,0,5 mtd=2,0,0,6,1 - attach MTD device /dev/mtd1 to UBI 5 and disable fastmap; attach MTD device /dev/mtd2 to UBI 6 and enable fastmap.(only works when fastmap is enabled and fm_autoconvert=Y).\n"
1489 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1490 #ifdef CONFIG_MTD_UBI_FASTMAP
1491 module_param(fm_autoconvert, bool, 0644);
1492 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1493 module_param(fm_debug, bool, 0);
1494 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1495 #endif
1496 MODULE_VERSION(__stringify(UBI_VERSION));
1497 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1498 MODULE_AUTHOR("Artem Bityutskiy");
1499 MODULE_LICENSE("GPL");
1500