1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_btree.h"
15 #include "xfs_btree_staging.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_trans.h"
22 #include "xfs_rmap.h"
23 #include "xfs_ag.h"
24
25 static struct kmem_cache *xfs_inobt_cur_cache;
26
27 STATIC int
xfs_inobt_get_minrecs(struct xfs_btree_cur * cur,int level)28 xfs_inobt_get_minrecs(
29 struct xfs_btree_cur *cur,
30 int level)
31 {
32 return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
33 }
34
35 STATIC struct xfs_btree_cur *
xfs_inobt_dup_cursor(struct xfs_btree_cur * cur)36 xfs_inobt_dup_cursor(
37 struct xfs_btree_cur *cur)
38 {
39 return xfs_inobt_init_cursor(cur->bc_ag.pag, cur->bc_tp,
40 cur->bc_ag.agbp, cur->bc_btnum);
41 }
42
43 STATIC void
xfs_inobt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * nptr,int inc)44 xfs_inobt_set_root(
45 struct xfs_btree_cur *cur,
46 const union xfs_btree_ptr *nptr,
47 int inc) /* level change */
48 {
49 struct xfs_buf *agbp = cur->bc_ag.agbp;
50 struct xfs_agi *agi = agbp->b_addr;
51
52 agi->agi_root = nptr->s;
53 be32_add_cpu(&agi->agi_level, inc);
54 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
55 }
56
57 STATIC void
xfs_finobt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * nptr,int inc)58 xfs_finobt_set_root(
59 struct xfs_btree_cur *cur,
60 const union xfs_btree_ptr *nptr,
61 int inc) /* level change */
62 {
63 struct xfs_buf *agbp = cur->bc_ag.agbp;
64 struct xfs_agi *agi = agbp->b_addr;
65
66 agi->agi_free_root = nptr->s;
67 be32_add_cpu(&agi->agi_free_level, inc);
68 xfs_ialloc_log_agi(cur->bc_tp, agbp,
69 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
70 }
71
72 /* Update the inode btree block counter for this btree. */
73 static inline void
xfs_inobt_mod_blockcount(struct xfs_btree_cur * cur,int howmuch)74 xfs_inobt_mod_blockcount(
75 struct xfs_btree_cur *cur,
76 int howmuch)
77 {
78 struct xfs_buf *agbp = cur->bc_ag.agbp;
79 struct xfs_agi *agi = agbp->b_addr;
80
81 if (!xfs_has_inobtcounts(cur->bc_mp))
82 return;
83
84 if (cur->bc_btnum == XFS_BTNUM_FINO)
85 be32_add_cpu(&agi->agi_fblocks, howmuch);
86 else if (cur->bc_btnum == XFS_BTNUM_INO)
87 be32_add_cpu(&agi->agi_iblocks, howmuch);
88 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
89 }
90
91 STATIC int
__xfs_inobt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat,enum xfs_ag_resv_type resv)92 __xfs_inobt_alloc_block(
93 struct xfs_btree_cur *cur,
94 const union xfs_btree_ptr *start,
95 union xfs_btree_ptr *new,
96 int *stat,
97 enum xfs_ag_resv_type resv)
98 {
99 xfs_alloc_arg_t args; /* block allocation args */
100 int error; /* error return value */
101 xfs_agblock_t sbno = be32_to_cpu(start->s);
102
103 memset(&args, 0, sizeof(args));
104 args.tp = cur->bc_tp;
105 args.mp = cur->bc_mp;
106 args.pag = cur->bc_ag.pag;
107 args.oinfo = XFS_RMAP_OINFO_INOBT;
108 args.minlen = 1;
109 args.maxlen = 1;
110 args.prod = 1;
111 args.resv = resv;
112
113 error = xfs_alloc_vextent_near_bno(&args,
114 XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno, sbno));
115 if (error)
116 return error;
117
118 if (args.fsbno == NULLFSBLOCK) {
119 *stat = 0;
120 return 0;
121 }
122 ASSERT(args.len == 1);
123
124 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
125 *stat = 1;
126 xfs_inobt_mod_blockcount(cur, 1);
127 return 0;
128 }
129
130 STATIC int
xfs_inobt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)131 xfs_inobt_alloc_block(
132 struct xfs_btree_cur *cur,
133 const union xfs_btree_ptr *start,
134 union xfs_btree_ptr *new,
135 int *stat)
136 {
137 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
138 }
139
140 STATIC int
xfs_finobt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)141 xfs_finobt_alloc_block(
142 struct xfs_btree_cur *cur,
143 const union xfs_btree_ptr *start,
144 union xfs_btree_ptr *new,
145 int *stat)
146 {
147 if (cur->bc_mp->m_finobt_nores)
148 return xfs_inobt_alloc_block(cur, start, new, stat);
149 return __xfs_inobt_alloc_block(cur, start, new, stat,
150 XFS_AG_RESV_METADATA);
151 }
152
153 STATIC int
__xfs_inobt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,enum xfs_ag_resv_type resv)154 __xfs_inobt_free_block(
155 struct xfs_btree_cur *cur,
156 struct xfs_buf *bp,
157 enum xfs_ag_resv_type resv)
158 {
159 xfs_inobt_mod_blockcount(cur, -1);
160 return xfs_free_extent(cur->bc_tp,
161 XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp)), 1,
162 &XFS_RMAP_OINFO_INOBT, resv);
163 }
164
165 STATIC int
xfs_inobt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)166 xfs_inobt_free_block(
167 struct xfs_btree_cur *cur,
168 struct xfs_buf *bp)
169 {
170 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
171 }
172
173 STATIC int
xfs_finobt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)174 xfs_finobt_free_block(
175 struct xfs_btree_cur *cur,
176 struct xfs_buf *bp)
177 {
178 if (cur->bc_mp->m_finobt_nores)
179 return xfs_inobt_free_block(cur, bp);
180 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
181 }
182
183 STATIC int
xfs_inobt_get_maxrecs(struct xfs_btree_cur * cur,int level)184 xfs_inobt_get_maxrecs(
185 struct xfs_btree_cur *cur,
186 int level)
187 {
188 return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
189 }
190
191 STATIC void
xfs_inobt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)192 xfs_inobt_init_key_from_rec(
193 union xfs_btree_key *key,
194 const union xfs_btree_rec *rec)
195 {
196 key->inobt.ir_startino = rec->inobt.ir_startino;
197 }
198
199 STATIC void
xfs_inobt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)200 xfs_inobt_init_high_key_from_rec(
201 union xfs_btree_key *key,
202 const union xfs_btree_rec *rec)
203 {
204 __u32 x;
205
206 x = be32_to_cpu(rec->inobt.ir_startino);
207 x += XFS_INODES_PER_CHUNK - 1;
208 key->inobt.ir_startino = cpu_to_be32(x);
209 }
210
211 STATIC void
xfs_inobt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)212 xfs_inobt_init_rec_from_cur(
213 struct xfs_btree_cur *cur,
214 union xfs_btree_rec *rec)
215 {
216 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
217 if (xfs_has_sparseinodes(cur->bc_mp)) {
218 rec->inobt.ir_u.sp.ir_holemask =
219 cpu_to_be16(cur->bc_rec.i.ir_holemask);
220 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
221 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
222 } else {
223 /* ir_holemask/ir_count not supported on-disk */
224 rec->inobt.ir_u.f.ir_freecount =
225 cpu_to_be32(cur->bc_rec.i.ir_freecount);
226 }
227 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
228 }
229
230 /*
231 * initial value of ptr for lookup
232 */
233 STATIC void
xfs_inobt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)234 xfs_inobt_init_ptr_from_cur(
235 struct xfs_btree_cur *cur,
236 union xfs_btree_ptr *ptr)
237 {
238 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
239
240 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
241
242 ptr->s = agi->agi_root;
243 }
244
245 STATIC void
xfs_finobt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)246 xfs_finobt_init_ptr_from_cur(
247 struct xfs_btree_cur *cur,
248 union xfs_btree_ptr *ptr)
249 {
250 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
251
252 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
253 ptr->s = agi->agi_free_root;
254 }
255
256 STATIC int64_t
xfs_inobt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)257 xfs_inobt_key_diff(
258 struct xfs_btree_cur *cur,
259 const union xfs_btree_key *key)
260 {
261 return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
262 cur->bc_rec.i.ir_startino;
263 }
264
265 STATIC int64_t
xfs_inobt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)266 xfs_inobt_diff_two_keys(
267 struct xfs_btree_cur *cur,
268 const union xfs_btree_key *k1,
269 const union xfs_btree_key *k2)
270 {
271 return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
272 be32_to_cpu(k2->inobt.ir_startino);
273 }
274
275 static xfs_failaddr_t
xfs_inobt_verify(struct xfs_buf * bp)276 xfs_inobt_verify(
277 struct xfs_buf *bp)
278 {
279 struct xfs_mount *mp = bp->b_mount;
280 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
281 xfs_failaddr_t fa;
282 unsigned int level;
283
284 if (!xfs_verify_magic(bp, block->bb_magic))
285 return __this_address;
286
287 /*
288 * During growfs operations, we can't verify the exact owner as the
289 * perag is not fully initialised and hence not attached to the buffer.
290 *
291 * Similarly, during log recovery we will have a perag structure
292 * attached, but the agi information will not yet have been initialised
293 * from the on disk AGI. We don't currently use any of this information,
294 * but beware of the landmine (i.e. need to check
295 * xfs_perag_initialised_agi(pag)) if we ever do.
296 */
297 if (xfs_has_crc(mp)) {
298 fa = xfs_btree_sblock_v5hdr_verify(bp);
299 if (fa)
300 return fa;
301 }
302
303 /* level verification */
304 level = be16_to_cpu(block->bb_level);
305 if (level >= M_IGEO(mp)->inobt_maxlevels)
306 return __this_address;
307
308 return xfs_btree_sblock_verify(bp,
309 M_IGEO(mp)->inobt_mxr[level != 0]);
310 }
311
312 static void
xfs_inobt_read_verify(struct xfs_buf * bp)313 xfs_inobt_read_verify(
314 struct xfs_buf *bp)
315 {
316 xfs_failaddr_t fa;
317
318 if (!xfs_btree_sblock_verify_crc(bp))
319 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
320 else {
321 fa = xfs_inobt_verify(bp);
322 if (fa)
323 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
324 }
325
326 if (bp->b_error)
327 trace_xfs_btree_corrupt(bp, _RET_IP_);
328 }
329
330 static void
xfs_inobt_write_verify(struct xfs_buf * bp)331 xfs_inobt_write_verify(
332 struct xfs_buf *bp)
333 {
334 xfs_failaddr_t fa;
335
336 fa = xfs_inobt_verify(bp);
337 if (fa) {
338 trace_xfs_btree_corrupt(bp, _RET_IP_);
339 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
340 return;
341 }
342 xfs_btree_sblock_calc_crc(bp);
343
344 }
345
346 const struct xfs_buf_ops xfs_inobt_buf_ops = {
347 .name = "xfs_inobt",
348 .magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
349 .verify_read = xfs_inobt_read_verify,
350 .verify_write = xfs_inobt_write_verify,
351 .verify_struct = xfs_inobt_verify,
352 };
353
354 const struct xfs_buf_ops xfs_finobt_buf_ops = {
355 .name = "xfs_finobt",
356 .magic = { cpu_to_be32(XFS_FIBT_MAGIC),
357 cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
358 .verify_read = xfs_inobt_read_verify,
359 .verify_write = xfs_inobt_write_verify,
360 .verify_struct = xfs_inobt_verify,
361 };
362
363 STATIC int
xfs_inobt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)364 xfs_inobt_keys_inorder(
365 struct xfs_btree_cur *cur,
366 const union xfs_btree_key *k1,
367 const union xfs_btree_key *k2)
368 {
369 return be32_to_cpu(k1->inobt.ir_startino) <
370 be32_to_cpu(k2->inobt.ir_startino);
371 }
372
373 STATIC int
xfs_inobt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)374 xfs_inobt_recs_inorder(
375 struct xfs_btree_cur *cur,
376 const union xfs_btree_rec *r1,
377 const union xfs_btree_rec *r2)
378 {
379 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
380 be32_to_cpu(r2->inobt.ir_startino);
381 }
382
383 static const struct xfs_btree_ops xfs_inobt_ops = {
384 .rec_len = sizeof(xfs_inobt_rec_t),
385 .key_len = sizeof(xfs_inobt_key_t),
386
387 .dup_cursor = xfs_inobt_dup_cursor,
388 .set_root = xfs_inobt_set_root,
389 .alloc_block = xfs_inobt_alloc_block,
390 .free_block = xfs_inobt_free_block,
391 .get_minrecs = xfs_inobt_get_minrecs,
392 .get_maxrecs = xfs_inobt_get_maxrecs,
393 .init_key_from_rec = xfs_inobt_init_key_from_rec,
394 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
395 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
396 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
397 .key_diff = xfs_inobt_key_diff,
398 .buf_ops = &xfs_inobt_buf_ops,
399 .diff_two_keys = xfs_inobt_diff_two_keys,
400 .keys_inorder = xfs_inobt_keys_inorder,
401 .recs_inorder = xfs_inobt_recs_inorder,
402 };
403
404 static const struct xfs_btree_ops xfs_finobt_ops = {
405 .rec_len = sizeof(xfs_inobt_rec_t),
406 .key_len = sizeof(xfs_inobt_key_t),
407
408 .dup_cursor = xfs_inobt_dup_cursor,
409 .set_root = xfs_finobt_set_root,
410 .alloc_block = xfs_finobt_alloc_block,
411 .free_block = xfs_finobt_free_block,
412 .get_minrecs = xfs_inobt_get_minrecs,
413 .get_maxrecs = xfs_inobt_get_maxrecs,
414 .init_key_from_rec = xfs_inobt_init_key_from_rec,
415 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
416 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
417 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
418 .key_diff = xfs_inobt_key_diff,
419 .buf_ops = &xfs_finobt_buf_ops,
420 .diff_two_keys = xfs_inobt_diff_two_keys,
421 .keys_inorder = xfs_inobt_keys_inorder,
422 .recs_inorder = xfs_inobt_recs_inorder,
423 };
424
425 /*
426 * Initialize a new inode btree cursor.
427 */
428 static struct xfs_btree_cur *
xfs_inobt_init_common(struct xfs_perag * pag,struct xfs_trans * tp,xfs_btnum_t btnum)429 xfs_inobt_init_common(
430 struct xfs_perag *pag,
431 struct xfs_trans *tp, /* transaction pointer */
432 xfs_btnum_t btnum) /* ialloc or free ino btree */
433 {
434 struct xfs_mount *mp = pag->pag_mount;
435 struct xfs_btree_cur *cur;
436
437 cur = xfs_btree_alloc_cursor(mp, tp, btnum,
438 M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
439 if (btnum == XFS_BTNUM_INO) {
440 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
441 cur->bc_ops = &xfs_inobt_ops;
442 } else {
443 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
444 cur->bc_ops = &xfs_finobt_ops;
445 }
446
447 if (xfs_has_crc(mp))
448 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
449
450 /* take a reference for the cursor */
451 atomic_inc(&pag->pag_ref);
452 cur->bc_ag.pag = pag;
453 return cur;
454 }
455
456 /* Create an inode btree cursor. */
457 struct xfs_btree_cur *
xfs_inobt_init_cursor(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_btnum_t btnum)458 xfs_inobt_init_cursor(
459 struct xfs_perag *pag,
460 struct xfs_trans *tp,
461 struct xfs_buf *agbp,
462 xfs_btnum_t btnum)
463 {
464 struct xfs_btree_cur *cur;
465 struct xfs_agi *agi = agbp->b_addr;
466
467 cur = xfs_inobt_init_common(pag, tp, btnum);
468 if (btnum == XFS_BTNUM_INO)
469 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
470 else
471 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
472 cur->bc_ag.agbp = agbp;
473 return cur;
474 }
475
476 /* Create an inode btree cursor with a fake root for staging. */
477 struct xfs_btree_cur *
xfs_inobt_stage_cursor(struct xfs_perag * pag,struct xbtree_afakeroot * afake,xfs_btnum_t btnum)478 xfs_inobt_stage_cursor(
479 struct xfs_perag *pag,
480 struct xbtree_afakeroot *afake,
481 xfs_btnum_t btnum)
482 {
483 struct xfs_btree_cur *cur;
484
485 cur = xfs_inobt_init_common(pag, NULL, btnum);
486 xfs_btree_stage_afakeroot(cur, afake);
487 return cur;
488 }
489
490 /*
491 * Install a new inobt btree root. Caller is responsible for invalidating
492 * and freeing the old btree blocks.
493 */
494 void
xfs_inobt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)495 xfs_inobt_commit_staged_btree(
496 struct xfs_btree_cur *cur,
497 struct xfs_trans *tp,
498 struct xfs_buf *agbp)
499 {
500 struct xfs_agi *agi = agbp->b_addr;
501 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
502 int fields;
503
504 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
505
506 if (cur->bc_btnum == XFS_BTNUM_INO) {
507 fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
508 agi->agi_root = cpu_to_be32(afake->af_root);
509 agi->agi_level = cpu_to_be32(afake->af_levels);
510 if (xfs_has_inobtcounts(cur->bc_mp)) {
511 agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
512 fields |= XFS_AGI_IBLOCKS;
513 }
514 xfs_ialloc_log_agi(tp, agbp, fields);
515 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_inobt_ops);
516 } else {
517 fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
518 agi->agi_free_root = cpu_to_be32(afake->af_root);
519 agi->agi_free_level = cpu_to_be32(afake->af_levels);
520 if (xfs_has_inobtcounts(cur->bc_mp)) {
521 agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
522 fields |= XFS_AGI_IBLOCKS;
523 }
524 xfs_ialloc_log_agi(tp, agbp, fields);
525 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_finobt_ops);
526 }
527 }
528
529 /* Calculate number of records in an inode btree block. */
530 static inline unsigned int
xfs_inobt_block_maxrecs(unsigned int blocklen,bool leaf)531 xfs_inobt_block_maxrecs(
532 unsigned int blocklen,
533 bool leaf)
534 {
535 if (leaf)
536 return blocklen / sizeof(xfs_inobt_rec_t);
537 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
538 }
539
540 /*
541 * Calculate number of records in an inobt btree block.
542 */
543 int
xfs_inobt_maxrecs(struct xfs_mount * mp,int blocklen,int leaf)544 xfs_inobt_maxrecs(
545 struct xfs_mount *mp,
546 int blocklen,
547 int leaf)
548 {
549 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
550 return xfs_inobt_block_maxrecs(blocklen, leaf);
551 }
552
553 /*
554 * Maximum number of inode btree records per AG. Pretend that we can fill an
555 * entire AG completely full of inodes except for the AG headers.
556 */
557 #define XFS_MAX_INODE_RECORDS \
558 ((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
559 XFS_INODES_PER_CHUNK
560
561 /* Compute the max possible height for the inode btree. */
562 static inline unsigned int
xfs_inobt_maxlevels_ondisk(void)563 xfs_inobt_maxlevels_ondisk(void)
564 {
565 unsigned int minrecs[2];
566 unsigned int blocklen;
567
568 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
569 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
570
571 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
572 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
573
574 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
575 }
576
577 /* Compute the max possible height for the free inode btree. */
578 static inline unsigned int
xfs_finobt_maxlevels_ondisk(void)579 xfs_finobt_maxlevels_ondisk(void)
580 {
581 unsigned int minrecs[2];
582 unsigned int blocklen;
583
584 blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
585
586 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
587 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
588
589 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
590 }
591
592 /* Compute the max possible height for either inode btree. */
593 unsigned int
xfs_iallocbt_maxlevels_ondisk(void)594 xfs_iallocbt_maxlevels_ondisk(void)
595 {
596 return max(xfs_inobt_maxlevels_ondisk(),
597 xfs_finobt_maxlevels_ondisk());
598 }
599
600 /*
601 * Convert the inode record holemask to an inode allocation bitmap. The inode
602 * allocation bitmap is inode granularity and specifies whether an inode is
603 * physically allocated on disk (not whether the inode is considered allocated
604 * or free by the fs).
605 *
606 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
607 */
608 uint64_t
xfs_inobt_irec_to_allocmask(struct xfs_inobt_rec_incore * rec)609 xfs_inobt_irec_to_allocmask(
610 struct xfs_inobt_rec_incore *rec)
611 {
612 uint64_t bitmap = 0;
613 uint64_t inodespbit;
614 int nextbit;
615 uint allocbitmap;
616
617 /*
618 * The holemask has 16-bits for a 64 inode record. Therefore each
619 * holemask bit represents multiple inodes. Create a mask of bits to set
620 * in the allocmask for each holemask bit.
621 */
622 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
623
624 /*
625 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
626 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
627 * anything beyond the 16 holemask bits since this casts to a larger
628 * type.
629 */
630 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
631
632 /*
633 * allocbitmap is the inverted holemask so every set bit represents
634 * allocated inodes. To expand from 16-bit holemask granularity to
635 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
636 * bitmap for every holemask bit.
637 */
638 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
639 while (nextbit != -1) {
640 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
641
642 bitmap |= (inodespbit <<
643 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
644
645 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
646 }
647
648 return bitmap;
649 }
650
651 #if defined(DEBUG) || defined(XFS_WARN)
652 /*
653 * Verify that an in-core inode record has a valid inode count.
654 */
655 int
xfs_inobt_rec_check_count(struct xfs_mount * mp,struct xfs_inobt_rec_incore * rec)656 xfs_inobt_rec_check_count(
657 struct xfs_mount *mp,
658 struct xfs_inobt_rec_incore *rec)
659 {
660 int inocount = 0;
661 int nextbit = 0;
662 uint64_t allocbmap;
663 int wordsz;
664
665 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
666 allocbmap = xfs_inobt_irec_to_allocmask(rec);
667
668 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
669 while (nextbit != -1) {
670 inocount++;
671 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
672 nextbit + 1);
673 }
674
675 if (inocount != rec->ir_count)
676 return -EFSCORRUPTED;
677
678 return 0;
679 }
680 #endif /* DEBUG */
681
682 static xfs_extlen_t
xfs_inobt_max_size(struct xfs_perag * pag)683 xfs_inobt_max_size(
684 struct xfs_perag *pag)
685 {
686 struct xfs_mount *mp = pag->pag_mount;
687 xfs_agblock_t agblocks = pag->block_count;
688
689 /* Bail out if we're uninitialized, which can happen in mkfs. */
690 if (M_IGEO(mp)->inobt_mxr[0] == 0)
691 return 0;
692
693 /*
694 * The log is permanently allocated, so the space it occupies will
695 * never be available for the kinds of things that would require btree
696 * expansion. We therefore can pretend the space isn't there.
697 */
698 if (xfs_ag_contains_log(mp, pag->pag_agno))
699 agblocks -= mp->m_sb.sb_logblocks;
700
701 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
702 (uint64_t)agblocks * mp->m_sb.sb_inopblock /
703 XFS_INODES_PER_CHUNK);
704 }
705
706 /* Read AGI and create inobt cursor. */
707 int
xfs_inobt_cur(struct xfs_perag * pag,struct xfs_trans * tp,xfs_btnum_t which,struct xfs_btree_cur ** curpp,struct xfs_buf ** agi_bpp)708 xfs_inobt_cur(
709 struct xfs_perag *pag,
710 struct xfs_trans *tp,
711 xfs_btnum_t which,
712 struct xfs_btree_cur **curpp,
713 struct xfs_buf **agi_bpp)
714 {
715 struct xfs_btree_cur *cur;
716 int error;
717
718 ASSERT(*agi_bpp == NULL);
719 ASSERT(*curpp == NULL);
720
721 error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
722 if (error)
723 return error;
724
725 cur = xfs_inobt_init_cursor(pag, tp, *agi_bpp, which);
726 *curpp = cur;
727 return 0;
728 }
729
730 static int
xfs_inobt_count_blocks(struct xfs_perag * pag,struct xfs_trans * tp,xfs_btnum_t btnum,xfs_extlen_t * tree_blocks)731 xfs_inobt_count_blocks(
732 struct xfs_perag *pag,
733 struct xfs_trans *tp,
734 xfs_btnum_t btnum,
735 xfs_extlen_t *tree_blocks)
736 {
737 struct xfs_buf *agbp = NULL;
738 struct xfs_btree_cur *cur = NULL;
739 int error;
740
741 error = xfs_inobt_cur(pag, tp, btnum, &cur, &agbp);
742 if (error)
743 return error;
744
745 error = xfs_btree_count_blocks(cur, tree_blocks);
746 xfs_btree_del_cursor(cur, error);
747 xfs_trans_brelse(tp, agbp);
748
749 return error;
750 }
751
752 /* Read finobt block count from AGI header. */
753 static int
xfs_finobt_read_blocks(struct xfs_perag * pag,struct xfs_trans * tp,xfs_extlen_t * tree_blocks)754 xfs_finobt_read_blocks(
755 struct xfs_perag *pag,
756 struct xfs_trans *tp,
757 xfs_extlen_t *tree_blocks)
758 {
759 struct xfs_buf *agbp;
760 struct xfs_agi *agi;
761 int error;
762
763 error = xfs_ialloc_read_agi(pag, tp, &agbp);
764 if (error)
765 return error;
766
767 agi = agbp->b_addr;
768 *tree_blocks = be32_to_cpu(agi->agi_fblocks);
769 xfs_trans_brelse(tp, agbp);
770 return 0;
771 }
772
773 /*
774 * Figure out how many blocks to reserve and how many are used by this btree.
775 */
776 int
xfs_finobt_calc_reserves(struct xfs_perag * pag,struct xfs_trans * tp,xfs_extlen_t * ask,xfs_extlen_t * used)777 xfs_finobt_calc_reserves(
778 struct xfs_perag *pag,
779 struct xfs_trans *tp,
780 xfs_extlen_t *ask,
781 xfs_extlen_t *used)
782 {
783 xfs_extlen_t tree_len = 0;
784 int error;
785
786 if (!xfs_has_finobt(pag->pag_mount))
787 return 0;
788
789 if (xfs_has_inobtcounts(pag->pag_mount))
790 error = xfs_finobt_read_blocks(pag, tp, &tree_len);
791 else
792 error = xfs_inobt_count_blocks(pag, tp, XFS_BTNUM_FINO,
793 &tree_len);
794 if (error)
795 return error;
796
797 *ask += xfs_inobt_max_size(pag);
798 *used += tree_len;
799 return 0;
800 }
801
802 /* Calculate the inobt btree size for some records. */
803 xfs_extlen_t
xfs_iallocbt_calc_size(struct xfs_mount * mp,unsigned long long len)804 xfs_iallocbt_calc_size(
805 struct xfs_mount *mp,
806 unsigned long long len)
807 {
808 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
809 }
810
811 int __init
xfs_inobt_init_cur_cache(void)812 xfs_inobt_init_cur_cache(void)
813 {
814 xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
815 xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
816 0, 0, NULL);
817
818 if (!xfs_inobt_cur_cache)
819 return -ENOMEM;
820 return 0;
821 }
822
823 void
xfs_inobt_destroy_cur_cache(void)824 xfs_inobt_destroy_cur_cache(void)
825 {
826 kmem_cache_destroy(xfs_inobt_cur_cache);
827 xfs_inobt_cur_cache = NULL;
828 }
829