1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_bmap.h"
22 #include "xfs_trans.h"
23 #include "xfs_buf_item.h"
24 #include "xfs_icreate_item.h"
25 #include "xfs_icache.h"
26 #include "xfs_trace.h"
27 #include "xfs_log.h"
28 #include "xfs_rmap.h"
29 #include "xfs_ag.h"
30
31 /*
32 * Lookup a record by ino in the btree given by cur.
33 */
34 int /* error */
xfs_inobt_lookup(struct xfs_btree_cur * cur,xfs_agino_t ino,xfs_lookup_t dir,int * stat)35 xfs_inobt_lookup(
36 struct xfs_btree_cur *cur, /* btree cursor */
37 xfs_agino_t ino, /* starting inode of chunk */
38 xfs_lookup_t dir, /* <=, >=, == */
39 int *stat) /* success/failure */
40 {
41 cur->bc_rec.i.ir_startino = ino;
42 cur->bc_rec.i.ir_holemask = 0;
43 cur->bc_rec.i.ir_count = 0;
44 cur->bc_rec.i.ir_freecount = 0;
45 cur->bc_rec.i.ir_free = 0;
46 return xfs_btree_lookup(cur, dir, stat);
47 }
48
49 /*
50 * Update the record referred to by cur to the value given.
51 * This either works (return 0) or gets an EFSCORRUPTED error.
52 */
53 STATIC int /* error */
xfs_inobt_update(struct xfs_btree_cur * cur,xfs_inobt_rec_incore_t * irec)54 xfs_inobt_update(
55 struct xfs_btree_cur *cur, /* btree cursor */
56 xfs_inobt_rec_incore_t *irec) /* btree record */
57 {
58 union xfs_btree_rec rec;
59
60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 if (xfs_has_sparseinodes(cur->bc_mp)) {
62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 } else {
66 /* ir_holemask/ir_count not supported on-disk */
67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 }
69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 return xfs_btree_update(cur, &rec);
71 }
72
73 /* Convert on-disk btree record to incore inobt record. */
74 void
xfs_inobt_btrec_to_irec(struct xfs_mount * mp,const union xfs_btree_rec * rec,struct xfs_inobt_rec_incore * irec)75 xfs_inobt_btrec_to_irec(
76 struct xfs_mount *mp,
77 const union xfs_btree_rec *rec,
78 struct xfs_inobt_rec_incore *irec)
79 {
80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 if (xfs_has_sparseinodes(mp)) {
82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 } else {
86 /*
87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 * values for full inode chunks.
89 */
90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 irec->ir_count = XFS_INODES_PER_CHUNK;
92 irec->ir_freecount =
93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 }
95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96 }
97
98 /*
99 * Get the data from the pointed-to record.
100 */
101 int
xfs_inobt_get_rec(struct xfs_btree_cur * cur,struct xfs_inobt_rec_incore * irec,int * stat)102 xfs_inobt_get_rec(
103 struct xfs_btree_cur *cur,
104 struct xfs_inobt_rec_incore *irec,
105 int *stat)
106 {
107 struct xfs_mount *mp = cur->bc_mp;
108 union xfs_btree_rec *rec;
109 int error;
110 uint64_t realfree;
111
112 error = xfs_btree_get_rec(cur, &rec, stat);
113 if (error || *stat == 0)
114 return error;
115
116 xfs_inobt_btrec_to_irec(mp, rec, irec);
117
118 if (!xfs_verify_agino(cur->bc_ag.pag, irec->ir_startino))
119 goto out_bad_rec;
120 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
121 irec->ir_count > XFS_INODES_PER_CHUNK)
122 goto out_bad_rec;
123 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
124 goto out_bad_rec;
125
126 /* if there are no holes, return the first available offset */
127 if (!xfs_inobt_issparse(irec->ir_holemask))
128 realfree = irec->ir_free;
129 else
130 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
131 if (hweight64(realfree) != irec->ir_freecount)
132 goto out_bad_rec;
133
134 return 0;
135
136 out_bad_rec:
137 xfs_warn(mp,
138 "%s Inode BTree record corruption in AG %d detected!",
139 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free",
140 cur->bc_ag.pag->pag_agno);
141 xfs_warn(mp,
142 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 irec->ir_free, irec->ir_holemask);
145 return -EFSCORRUPTED;
146 }
147
148 /*
149 * Insert a single inobt record. Cursor must already point to desired location.
150 */
151 int
xfs_inobt_insert_rec(struct xfs_btree_cur * cur,uint16_t holemask,uint8_t count,int32_t freecount,xfs_inofree_t free,int * stat)152 xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
157 xfs_inofree_t free,
158 int *stat)
159 {
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
165 }
166
167 /*
168 * Insert records describing a newly allocated inode chunk into the inobt.
169 */
170 STATIC int
xfs_inobt_insert(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agino_t newino,xfs_agino_t newlen,xfs_btnum_t btnum)171 xfs_inobt_insert(
172 struct xfs_perag *pag,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 xfs_agino_t newino,
176 xfs_agino_t newlen,
177 xfs_btnum_t btnum)
178 {
179 struct xfs_btree_cur *cur;
180 xfs_agino_t thisino;
181 int i;
182 int error;
183
184 cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
185
186 for (thisino = newino;
187 thisino < newino + newlen;
188 thisino += XFS_INODES_PER_CHUNK) {
189 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
190 if (error) {
191 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
192 return error;
193 }
194 ASSERT(i == 0);
195
196 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
197 XFS_INODES_PER_CHUNK,
198 XFS_INODES_PER_CHUNK,
199 XFS_INOBT_ALL_FREE, &i);
200 if (error) {
201 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
202 return error;
203 }
204 ASSERT(i == 1);
205 }
206
207 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
208
209 return 0;
210 }
211
212 /*
213 * Verify that the number of free inodes in the AGI is correct.
214 */
215 #ifdef DEBUG
216 static int
xfs_check_agi_freecount(struct xfs_btree_cur * cur)217 xfs_check_agi_freecount(
218 struct xfs_btree_cur *cur)
219 {
220 if (cur->bc_nlevels == 1) {
221 xfs_inobt_rec_incore_t rec;
222 int freecount = 0;
223 int error;
224 int i;
225
226 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
227 if (error)
228 return error;
229
230 do {
231 error = xfs_inobt_get_rec(cur, &rec, &i);
232 if (error)
233 return error;
234
235 if (i) {
236 freecount += rec.ir_freecount;
237 error = xfs_btree_increment(cur, 0, &i);
238 if (error)
239 return error;
240 }
241 } while (i == 1);
242
243 if (!xfs_is_shutdown(cur->bc_mp))
244 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
245 }
246 return 0;
247 }
248 #else
249 #define xfs_check_agi_freecount(cur) 0
250 #endif
251
252 /*
253 * Initialise a new set of inodes. When called without a transaction context
254 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
255 * than logging them (which in a transaction context puts them into the AIL
256 * for writeback rather than the xfsbufd queue).
257 */
258 int
xfs_ialloc_inode_init(struct xfs_mount * mp,struct xfs_trans * tp,struct list_head * buffer_list,int icount,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_agblock_t length,unsigned int gen)259 xfs_ialloc_inode_init(
260 struct xfs_mount *mp,
261 struct xfs_trans *tp,
262 struct list_head *buffer_list,
263 int icount,
264 xfs_agnumber_t agno,
265 xfs_agblock_t agbno,
266 xfs_agblock_t length,
267 unsigned int gen)
268 {
269 struct xfs_buf *fbuf;
270 struct xfs_dinode *free;
271 int nbufs;
272 int version;
273 int i, j;
274 xfs_daddr_t d;
275 xfs_ino_t ino = 0;
276 int error;
277
278 /*
279 * Loop over the new block(s), filling in the inodes. For small block
280 * sizes, manipulate the inodes in buffers which are multiples of the
281 * blocks size.
282 */
283 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
284
285 /*
286 * Figure out what version number to use in the inodes we create. If
287 * the superblock version has caught up to the one that supports the new
288 * inode format, then use the new inode version. Otherwise use the old
289 * version so that old kernels will continue to be able to use the file
290 * system.
291 *
292 * For v3 inodes, we also need to write the inode number into the inode,
293 * so calculate the first inode number of the chunk here as
294 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
295 * across multiple filesystem blocks (such as a cluster) and so cannot
296 * be used in the cluster buffer loop below.
297 *
298 * Further, because we are writing the inode directly into the buffer
299 * and calculating a CRC on the entire inode, we have ot log the entire
300 * inode so that the entire range the CRC covers is present in the log.
301 * That means for v3 inode we log the entire buffer rather than just the
302 * inode cores.
303 */
304 if (xfs_has_v3inodes(mp)) {
305 version = 3;
306 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
307
308 /*
309 * log the initialisation that is about to take place as an
310 * logical operation. This means the transaction does not
311 * need to log the physical changes to the inode buffers as log
312 * recovery will know what initialisation is actually needed.
313 * Hence we only need to log the buffers as "ordered" buffers so
314 * they track in the AIL as if they were physically logged.
315 */
316 if (tp)
317 xfs_icreate_log(tp, agno, agbno, icount,
318 mp->m_sb.sb_inodesize, length, gen);
319 } else
320 version = 2;
321
322 for (j = 0; j < nbufs; j++) {
323 /*
324 * Get the block.
325 */
326 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
327 (j * M_IGEO(mp)->blocks_per_cluster));
328 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
329 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
330 XBF_UNMAPPED, &fbuf);
331 if (error)
332 return error;
333
334 /* Initialize the inode buffers and log them appropriately. */
335 fbuf->b_ops = &xfs_inode_buf_ops;
336 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
337 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
338 int ioffset = i << mp->m_sb.sb_inodelog;
339
340 free = xfs_make_iptr(mp, fbuf, i);
341 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
342 free->di_version = version;
343 free->di_gen = cpu_to_be32(gen);
344 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
345
346 if (version == 3) {
347 free->di_ino = cpu_to_be64(ino);
348 ino++;
349 uuid_copy(&free->di_uuid,
350 &mp->m_sb.sb_meta_uuid);
351 xfs_dinode_calc_crc(mp, free);
352 } else if (tp) {
353 /* just log the inode core */
354 xfs_trans_log_buf(tp, fbuf, ioffset,
355 ioffset + XFS_DINODE_SIZE(mp) - 1);
356 }
357 }
358
359 if (tp) {
360 /*
361 * Mark the buffer as an inode allocation buffer so it
362 * sticks in AIL at the point of this allocation
363 * transaction. This ensures the they are on disk before
364 * the tail of the log can be moved past this
365 * transaction (i.e. by preventing relogging from moving
366 * it forward in the log).
367 */
368 xfs_trans_inode_alloc_buf(tp, fbuf);
369 if (version == 3) {
370 /*
371 * Mark the buffer as ordered so that they are
372 * not physically logged in the transaction but
373 * still tracked in the AIL as part of the
374 * transaction and pin the log appropriately.
375 */
376 xfs_trans_ordered_buf(tp, fbuf);
377 }
378 } else {
379 fbuf->b_flags |= XBF_DONE;
380 xfs_buf_delwri_queue(fbuf, buffer_list);
381 xfs_buf_relse(fbuf);
382 }
383 }
384 return 0;
385 }
386
387 /*
388 * Align startino and allocmask for a recently allocated sparse chunk such that
389 * they are fit for insertion (or merge) into the on-disk inode btrees.
390 *
391 * Background:
392 *
393 * When enabled, sparse inode support increases the inode alignment from cluster
394 * size to inode chunk size. This means that the minimum range between two
395 * non-adjacent inode records in the inobt is large enough for a full inode
396 * record. This allows for cluster sized, cluster aligned block allocation
397 * without need to worry about whether the resulting inode record overlaps with
398 * another record in the tree. Without this basic rule, we would have to deal
399 * with the consequences of overlap by potentially undoing recent allocations in
400 * the inode allocation codepath.
401 *
402 * Because of this alignment rule (which is enforced on mount), there are two
403 * inobt possibilities for newly allocated sparse chunks. One is that the
404 * aligned inode record for the chunk covers a range of inodes not already
405 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
406 * other is that a record already exists at the aligned startino that considers
407 * the newly allocated range as sparse. In the latter case, record content is
408 * merged in hope that sparse inode chunks fill to full chunks over time.
409 */
410 STATIC void
xfs_align_sparse_ino(struct xfs_mount * mp,xfs_agino_t * startino,uint16_t * allocmask)411 xfs_align_sparse_ino(
412 struct xfs_mount *mp,
413 xfs_agino_t *startino,
414 uint16_t *allocmask)
415 {
416 xfs_agblock_t agbno;
417 xfs_agblock_t mod;
418 int offset;
419
420 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
421 mod = agbno % mp->m_sb.sb_inoalignmt;
422 if (!mod)
423 return;
424
425 /* calculate the inode offset and align startino */
426 offset = XFS_AGB_TO_AGINO(mp, mod);
427 *startino -= offset;
428
429 /*
430 * Since startino has been aligned down, left shift allocmask such that
431 * it continues to represent the same physical inodes relative to the
432 * new startino.
433 */
434 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
435 }
436
437 /*
438 * Determine whether the source inode record can merge into the target. Both
439 * records must be sparse, the inode ranges must match and there must be no
440 * allocation overlap between the records.
441 */
442 STATIC bool
__xfs_inobt_can_merge(struct xfs_inobt_rec_incore * trec,struct xfs_inobt_rec_incore * srec)443 __xfs_inobt_can_merge(
444 struct xfs_inobt_rec_incore *trec, /* tgt record */
445 struct xfs_inobt_rec_incore *srec) /* src record */
446 {
447 uint64_t talloc;
448 uint64_t salloc;
449
450 /* records must cover the same inode range */
451 if (trec->ir_startino != srec->ir_startino)
452 return false;
453
454 /* both records must be sparse */
455 if (!xfs_inobt_issparse(trec->ir_holemask) ||
456 !xfs_inobt_issparse(srec->ir_holemask))
457 return false;
458
459 /* both records must track some inodes */
460 if (!trec->ir_count || !srec->ir_count)
461 return false;
462
463 /* can't exceed capacity of a full record */
464 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
465 return false;
466
467 /* verify there is no allocation overlap */
468 talloc = xfs_inobt_irec_to_allocmask(trec);
469 salloc = xfs_inobt_irec_to_allocmask(srec);
470 if (talloc & salloc)
471 return false;
472
473 return true;
474 }
475
476 /*
477 * Merge the source inode record into the target. The caller must call
478 * __xfs_inobt_can_merge() to ensure the merge is valid.
479 */
480 STATIC void
__xfs_inobt_rec_merge(struct xfs_inobt_rec_incore * trec,struct xfs_inobt_rec_incore * srec)481 __xfs_inobt_rec_merge(
482 struct xfs_inobt_rec_incore *trec, /* target */
483 struct xfs_inobt_rec_incore *srec) /* src */
484 {
485 ASSERT(trec->ir_startino == srec->ir_startino);
486
487 /* combine the counts */
488 trec->ir_count += srec->ir_count;
489 trec->ir_freecount += srec->ir_freecount;
490
491 /*
492 * Merge the holemask and free mask. For both fields, 0 bits refer to
493 * allocated inodes. We combine the allocated ranges with bitwise AND.
494 */
495 trec->ir_holemask &= srec->ir_holemask;
496 trec->ir_free &= srec->ir_free;
497 }
498
499 /*
500 * Insert a new sparse inode chunk into the associated inode btree. The inode
501 * record for the sparse chunk is pre-aligned to a startino that should match
502 * any pre-existing sparse inode record in the tree. This allows sparse chunks
503 * to fill over time.
504 *
505 * This function supports two modes of handling preexisting records depending on
506 * the merge flag. If merge is true, the provided record is merged with the
507 * existing record and updated in place. The merged record is returned in nrec.
508 * If merge is false, an existing record is replaced with the provided record.
509 * If no preexisting record exists, the provided record is always inserted.
510 *
511 * It is considered corruption if a merge is requested and not possible. Given
512 * the sparse inode alignment constraints, this should never happen.
513 */
514 STATIC int
xfs_inobt_insert_sprec(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,int btnum,struct xfs_inobt_rec_incore * nrec,bool merge)515 xfs_inobt_insert_sprec(
516 struct xfs_perag *pag,
517 struct xfs_trans *tp,
518 struct xfs_buf *agbp,
519 int btnum,
520 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
521 bool merge) /* merge or replace */
522 {
523 struct xfs_mount *mp = pag->pag_mount;
524 struct xfs_btree_cur *cur;
525 int error;
526 int i;
527 struct xfs_inobt_rec_incore rec;
528
529 cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
530
531 /* the new record is pre-aligned so we know where to look */
532 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
533 if (error)
534 goto error;
535 /* if nothing there, insert a new record and return */
536 if (i == 0) {
537 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
538 nrec->ir_count, nrec->ir_freecount,
539 nrec->ir_free, &i);
540 if (error)
541 goto error;
542 if (XFS_IS_CORRUPT(mp, i != 1)) {
543 error = -EFSCORRUPTED;
544 goto error;
545 }
546
547 goto out;
548 }
549
550 /*
551 * A record exists at this startino. Merge or replace the record
552 * depending on what we've been asked to do.
553 */
554 if (merge) {
555 error = xfs_inobt_get_rec(cur, &rec, &i);
556 if (error)
557 goto error;
558 if (XFS_IS_CORRUPT(mp, i != 1)) {
559 error = -EFSCORRUPTED;
560 goto error;
561 }
562 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
563 error = -EFSCORRUPTED;
564 goto error;
565 }
566
567 /*
568 * This should never fail. If we have coexisting records that
569 * cannot merge, something is seriously wrong.
570 */
571 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
572 error = -EFSCORRUPTED;
573 goto error;
574 }
575
576 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
577 rec.ir_holemask, nrec->ir_startino,
578 nrec->ir_holemask);
579
580 /* merge to nrec to output the updated record */
581 __xfs_inobt_rec_merge(nrec, &rec);
582
583 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
584 nrec->ir_holemask);
585
586 error = xfs_inobt_rec_check_count(mp, nrec);
587 if (error)
588 goto error;
589 }
590
591 error = xfs_inobt_update(cur, nrec);
592 if (error)
593 goto error;
594
595 out:
596 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
597 return 0;
598 error:
599 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
600 return error;
601 }
602
603 /*
604 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
605 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
606 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
607 * inode count threshold, or the usual negative error code for other errors.
608 */
609 STATIC int
xfs_ialloc_ag_alloc(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp)610 xfs_ialloc_ag_alloc(
611 struct xfs_perag *pag,
612 struct xfs_trans *tp,
613 struct xfs_buf *agbp)
614 {
615 struct xfs_agi *agi;
616 struct xfs_alloc_arg args;
617 int error;
618 xfs_agino_t newino; /* new first inode's number */
619 xfs_agino_t newlen; /* new number of inodes */
620 int isaligned = 0; /* inode allocation at stripe */
621 /* unit boundary */
622 /* init. to full chunk */
623 struct xfs_inobt_rec_incore rec;
624 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
625 uint16_t allocmask = (uint16_t) -1;
626 int do_sparse = 0;
627
628 memset(&args, 0, sizeof(args));
629 args.tp = tp;
630 args.mp = tp->t_mountp;
631 args.fsbno = NULLFSBLOCK;
632 args.oinfo = XFS_RMAP_OINFO_INODES;
633 args.pag = pag;
634
635 #ifdef DEBUG
636 /* randomly do sparse inode allocations */
637 if (xfs_has_sparseinodes(tp->t_mountp) &&
638 igeo->ialloc_min_blks < igeo->ialloc_blks)
639 do_sparse = get_random_u32_below(2);
640 #endif
641
642 /*
643 * Locking will ensure that we don't have two callers in here
644 * at one time.
645 */
646 newlen = igeo->ialloc_inos;
647 if (igeo->maxicount &&
648 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
649 igeo->maxicount)
650 return -ENOSPC;
651 args.minlen = args.maxlen = igeo->ialloc_blks;
652 /*
653 * First try to allocate inodes contiguous with the last-allocated
654 * chunk of inodes. If the filesystem is striped, this will fill
655 * an entire stripe unit with inodes.
656 */
657 agi = agbp->b_addr;
658 newino = be32_to_cpu(agi->agi_newino);
659 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
660 igeo->ialloc_blks;
661 if (do_sparse)
662 goto sparse_alloc;
663 if (likely(newino != NULLAGINO &&
664 (args.agbno < be32_to_cpu(agi->agi_length)))) {
665 args.prod = 1;
666
667 /*
668 * We need to take into account alignment here to ensure that
669 * we don't modify the free list if we fail to have an exact
670 * block. If we don't have an exact match, and every oher
671 * attempt allocation attempt fails, we'll end up cancelling
672 * a dirty transaction and shutting down.
673 *
674 * For an exact allocation, alignment must be 1,
675 * however we need to take cluster alignment into account when
676 * fixing up the freelist. Use the minalignslop field to
677 * indicate that extra blocks might be required for alignment,
678 * but not to use them in the actual exact allocation.
679 */
680 args.alignment = 1;
681 args.minalignslop = igeo->cluster_align - 1;
682
683 /* Allow space for the inode btree to split. */
684 args.minleft = igeo->inobt_maxlevels;
685 error = xfs_alloc_vextent_exact_bno(&args,
686 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
687 args.agbno));
688 if (error)
689 return error;
690
691 /*
692 * This request might have dirtied the transaction if the AG can
693 * satisfy the request, but the exact block was not available.
694 * If the allocation did fail, subsequent requests will relax
695 * the exact agbno requirement and increase the alignment
696 * instead. It is critical that the total size of the request
697 * (len + alignment + slop) does not increase from this point
698 * on, so reset minalignslop to ensure it is not included in
699 * subsequent requests.
700 */
701 args.minalignslop = 0;
702 }
703
704 if (unlikely(args.fsbno == NULLFSBLOCK)) {
705 /*
706 * Set the alignment for the allocation.
707 * If stripe alignment is turned on then align at stripe unit
708 * boundary.
709 * If the cluster size is smaller than a filesystem block
710 * then we're doing I/O for inodes in filesystem block size
711 * pieces, so don't need alignment anyway.
712 */
713 isaligned = 0;
714 if (igeo->ialloc_align) {
715 ASSERT(!xfs_has_noalign(args.mp));
716 args.alignment = args.mp->m_dalign;
717 isaligned = 1;
718 } else
719 args.alignment = igeo->cluster_align;
720 /*
721 * Allocate a fixed-size extent of inodes.
722 */
723 args.prod = 1;
724 /*
725 * Allow space for the inode btree to split.
726 */
727 args.minleft = igeo->inobt_maxlevels;
728 error = xfs_alloc_vextent_near_bno(&args,
729 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
730 be32_to_cpu(agi->agi_root)));
731 if (error)
732 return error;
733 }
734
735 /*
736 * If stripe alignment is turned on, then try again with cluster
737 * alignment.
738 */
739 if (isaligned && args.fsbno == NULLFSBLOCK) {
740 args.alignment = igeo->cluster_align;
741 error = xfs_alloc_vextent_near_bno(&args,
742 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
743 be32_to_cpu(agi->agi_root)));
744 if (error)
745 return error;
746 }
747
748 /*
749 * Finally, try a sparse allocation if the filesystem supports it and
750 * the sparse allocation length is smaller than a full chunk.
751 */
752 if (xfs_has_sparseinodes(args.mp) &&
753 igeo->ialloc_min_blks < igeo->ialloc_blks &&
754 args.fsbno == NULLFSBLOCK) {
755 sparse_alloc:
756 args.alignment = args.mp->m_sb.sb_spino_align;
757 args.prod = 1;
758
759 args.minlen = igeo->ialloc_min_blks;
760 args.maxlen = args.minlen;
761
762 /*
763 * The inode record will be aligned to full chunk size. We must
764 * prevent sparse allocation from AG boundaries that result in
765 * invalid inode records, such as records that start at agbno 0
766 * or extend beyond the AG.
767 *
768 * Set min agbno to the first aligned, non-zero agbno and max to
769 * the last aligned agbno that is at least one full chunk from
770 * the end of the AG.
771 */
772 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
773 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
774 args.mp->m_sb.sb_inoalignmt) -
775 igeo->ialloc_blks;
776
777 error = xfs_alloc_vextent_near_bno(&args,
778 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
779 be32_to_cpu(agi->agi_root)));
780 if (error)
781 return error;
782
783 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
784 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
785 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
786 }
787
788 if (args.fsbno == NULLFSBLOCK)
789 return -EAGAIN;
790
791 ASSERT(args.len == args.minlen);
792
793 /*
794 * Stamp and write the inode buffers.
795 *
796 * Seed the new inode cluster with a random generation number. This
797 * prevents short-term reuse of generation numbers if a chunk is
798 * freed and then immediately reallocated. We use random numbers
799 * rather than a linear progression to prevent the next generation
800 * number from being easily guessable.
801 */
802 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
803 args.agbno, args.len, get_random_u32());
804
805 if (error)
806 return error;
807 /*
808 * Convert the results.
809 */
810 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
811
812 if (xfs_inobt_issparse(~allocmask)) {
813 /*
814 * We've allocated a sparse chunk. Align the startino and mask.
815 */
816 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
817
818 rec.ir_startino = newino;
819 rec.ir_holemask = ~allocmask;
820 rec.ir_count = newlen;
821 rec.ir_freecount = newlen;
822 rec.ir_free = XFS_INOBT_ALL_FREE;
823
824 /*
825 * Insert the sparse record into the inobt and allow for a merge
826 * if necessary. If a merge does occur, rec is updated to the
827 * merged record.
828 */
829 error = xfs_inobt_insert_sprec(pag, tp, agbp,
830 XFS_BTNUM_INO, &rec, true);
831 if (error == -EFSCORRUPTED) {
832 xfs_alert(args.mp,
833 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
834 XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
835 rec.ir_startino),
836 rec.ir_holemask, rec.ir_count);
837 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
838 }
839 if (error)
840 return error;
841
842 /*
843 * We can't merge the part we've just allocated as for the inobt
844 * due to finobt semantics. The original record may or may not
845 * exist independent of whether physical inodes exist in this
846 * sparse chunk.
847 *
848 * We must update the finobt record based on the inobt record.
849 * rec contains the fully merged and up to date inobt record
850 * from the previous call. Set merge false to replace any
851 * existing record with this one.
852 */
853 if (xfs_has_finobt(args.mp)) {
854 error = xfs_inobt_insert_sprec(pag, tp, agbp,
855 XFS_BTNUM_FINO, &rec, false);
856 if (error)
857 return error;
858 }
859 } else {
860 /* full chunk - insert new records to both btrees */
861 error = xfs_inobt_insert(pag, tp, agbp, newino, newlen,
862 XFS_BTNUM_INO);
863 if (error)
864 return error;
865
866 if (xfs_has_finobt(args.mp)) {
867 error = xfs_inobt_insert(pag, tp, agbp, newino,
868 newlen, XFS_BTNUM_FINO);
869 if (error)
870 return error;
871 }
872 }
873
874 /*
875 * Update AGI counts and newino.
876 */
877 be32_add_cpu(&agi->agi_count, newlen);
878 be32_add_cpu(&agi->agi_freecount, newlen);
879 pag->pagi_freecount += newlen;
880 pag->pagi_count += newlen;
881 agi->agi_newino = cpu_to_be32(newino);
882
883 /*
884 * Log allocation group header fields
885 */
886 xfs_ialloc_log_agi(tp, agbp,
887 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
888 /*
889 * Modify/log superblock values for inode count and inode free count.
890 */
891 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
892 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
893 return 0;
894 }
895
896 /*
897 * Try to retrieve the next record to the left/right from the current one.
898 */
899 STATIC int
xfs_ialloc_next_rec(struct xfs_btree_cur * cur,xfs_inobt_rec_incore_t * rec,int * done,int left)900 xfs_ialloc_next_rec(
901 struct xfs_btree_cur *cur,
902 xfs_inobt_rec_incore_t *rec,
903 int *done,
904 int left)
905 {
906 int error;
907 int i;
908
909 if (left)
910 error = xfs_btree_decrement(cur, 0, &i);
911 else
912 error = xfs_btree_increment(cur, 0, &i);
913
914 if (error)
915 return error;
916 *done = !i;
917 if (i) {
918 error = xfs_inobt_get_rec(cur, rec, &i);
919 if (error)
920 return error;
921 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
922 return -EFSCORRUPTED;
923 }
924
925 return 0;
926 }
927
928 STATIC int
xfs_ialloc_get_rec(struct xfs_btree_cur * cur,xfs_agino_t agino,xfs_inobt_rec_incore_t * rec,int * done)929 xfs_ialloc_get_rec(
930 struct xfs_btree_cur *cur,
931 xfs_agino_t agino,
932 xfs_inobt_rec_incore_t *rec,
933 int *done)
934 {
935 int error;
936 int i;
937
938 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
939 if (error)
940 return error;
941 *done = !i;
942 if (i) {
943 error = xfs_inobt_get_rec(cur, rec, &i);
944 if (error)
945 return error;
946 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
947 return -EFSCORRUPTED;
948 }
949
950 return 0;
951 }
952
953 /*
954 * Return the offset of the first free inode in the record. If the inode chunk
955 * is sparsely allocated, we convert the record holemask to inode granularity
956 * and mask off the unallocated regions from the inode free mask.
957 */
958 STATIC int
xfs_inobt_first_free_inode(struct xfs_inobt_rec_incore * rec)959 xfs_inobt_first_free_inode(
960 struct xfs_inobt_rec_incore *rec)
961 {
962 xfs_inofree_t realfree;
963
964 /* if there are no holes, return the first available offset */
965 if (!xfs_inobt_issparse(rec->ir_holemask))
966 return xfs_lowbit64(rec->ir_free);
967
968 realfree = xfs_inobt_irec_to_allocmask(rec);
969 realfree &= rec->ir_free;
970
971 return xfs_lowbit64(realfree);
972 }
973
974 /*
975 * Allocate an inode using the inobt-only algorithm.
976 */
977 STATIC int
xfs_dialloc_ag_inobt(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_ino_t parent,xfs_ino_t * inop)978 xfs_dialloc_ag_inobt(
979 struct xfs_perag *pag,
980 struct xfs_trans *tp,
981 struct xfs_buf *agbp,
982 xfs_ino_t parent,
983 xfs_ino_t *inop)
984 {
985 struct xfs_mount *mp = tp->t_mountp;
986 struct xfs_agi *agi = agbp->b_addr;
987 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
988 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
989 struct xfs_btree_cur *cur, *tcur;
990 struct xfs_inobt_rec_incore rec, trec;
991 xfs_ino_t ino;
992 int error;
993 int offset;
994 int i, j;
995 int searchdistance = 10;
996
997 ASSERT(xfs_perag_initialised_agi(pag));
998 ASSERT(xfs_perag_allows_inodes(pag));
999 ASSERT(pag->pagi_freecount > 0);
1000
1001 restart_pagno:
1002 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1003 /*
1004 * If pagino is 0 (this is the root inode allocation) use newino.
1005 * This must work because we've just allocated some.
1006 */
1007 if (!pagino)
1008 pagino = be32_to_cpu(agi->agi_newino);
1009
1010 error = xfs_check_agi_freecount(cur);
1011 if (error)
1012 goto error0;
1013
1014 /*
1015 * If in the same AG as the parent, try to get near the parent.
1016 */
1017 if (pagno == pag->pag_agno) {
1018 int doneleft; /* done, to the left */
1019 int doneright; /* done, to the right */
1020
1021 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1022 if (error)
1023 goto error0;
1024 if (XFS_IS_CORRUPT(mp, i != 1)) {
1025 error = -EFSCORRUPTED;
1026 goto error0;
1027 }
1028
1029 error = xfs_inobt_get_rec(cur, &rec, &j);
1030 if (error)
1031 goto error0;
1032 if (XFS_IS_CORRUPT(mp, j != 1)) {
1033 error = -EFSCORRUPTED;
1034 goto error0;
1035 }
1036
1037 if (rec.ir_freecount > 0) {
1038 /*
1039 * Found a free inode in the same chunk
1040 * as the parent, done.
1041 */
1042 goto alloc_inode;
1043 }
1044
1045
1046 /*
1047 * In the same AG as parent, but parent's chunk is full.
1048 */
1049
1050 /* duplicate the cursor, search left & right simultaneously */
1051 error = xfs_btree_dup_cursor(cur, &tcur);
1052 if (error)
1053 goto error0;
1054
1055 /*
1056 * Skip to last blocks looked up if same parent inode.
1057 */
1058 if (pagino != NULLAGINO &&
1059 pag->pagl_pagino == pagino &&
1060 pag->pagl_leftrec != NULLAGINO &&
1061 pag->pagl_rightrec != NULLAGINO) {
1062 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1063 &trec, &doneleft);
1064 if (error)
1065 goto error1;
1066
1067 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1068 &rec, &doneright);
1069 if (error)
1070 goto error1;
1071 } else {
1072 /* search left with tcur, back up 1 record */
1073 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1074 if (error)
1075 goto error1;
1076
1077 /* search right with cur, go forward 1 record. */
1078 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1079 if (error)
1080 goto error1;
1081 }
1082
1083 /*
1084 * Loop until we find an inode chunk with a free inode.
1085 */
1086 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1087 int useleft; /* using left inode chunk this time */
1088
1089 /* figure out the closer block if both are valid. */
1090 if (!doneleft && !doneright) {
1091 useleft = pagino -
1092 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1093 rec.ir_startino - pagino;
1094 } else {
1095 useleft = !doneleft;
1096 }
1097
1098 /* free inodes to the left? */
1099 if (useleft && trec.ir_freecount) {
1100 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1101 cur = tcur;
1102
1103 pag->pagl_leftrec = trec.ir_startino;
1104 pag->pagl_rightrec = rec.ir_startino;
1105 pag->pagl_pagino = pagino;
1106 rec = trec;
1107 goto alloc_inode;
1108 }
1109
1110 /* free inodes to the right? */
1111 if (!useleft && rec.ir_freecount) {
1112 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1113
1114 pag->pagl_leftrec = trec.ir_startino;
1115 pag->pagl_rightrec = rec.ir_startino;
1116 pag->pagl_pagino = pagino;
1117 goto alloc_inode;
1118 }
1119
1120 /* get next record to check */
1121 if (useleft) {
1122 error = xfs_ialloc_next_rec(tcur, &trec,
1123 &doneleft, 1);
1124 } else {
1125 error = xfs_ialloc_next_rec(cur, &rec,
1126 &doneright, 0);
1127 }
1128 if (error)
1129 goto error1;
1130 }
1131
1132 if (searchdistance <= 0) {
1133 /*
1134 * Not in range - save last search
1135 * location and allocate a new inode
1136 */
1137 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1138 pag->pagl_leftrec = trec.ir_startino;
1139 pag->pagl_rightrec = rec.ir_startino;
1140 pag->pagl_pagino = pagino;
1141
1142 } else {
1143 /*
1144 * We've reached the end of the btree. because
1145 * we are only searching a small chunk of the
1146 * btree each search, there is obviously free
1147 * inodes closer to the parent inode than we
1148 * are now. restart the search again.
1149 */
1150 pag->pagl_pagino = NULLAGINO;
1151 pag->pagl_leftrec = NULLAGINO;
1152 pag->pagl_rightrec = NULLAGINO;
1153 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1154 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1155 goto restart_pagno;
1156 }
1157 }
1158
1159 /*
1160 * In a different AG from the parent.
1161 * See if the most recently allocated block has any free.
1162 */
1163 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1164 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1165 XFS_LOOKUP_EQ, &i);
1166 if (error)
1167 goto error0;
1168
1169 if (i == 1) {
1170 error = xfs_inobt_get_rec(cur, &rec, &j);
1171 if (error)
1172 goto error0;
1173
1174 if (j == 1 && rec.ir_freecount > 0) {
1175 /*
1176 * The last chunk allocated in the group
1177 * still has a free inode.
1178 */
1179 goto alloc_inode;
1180 }
1181 }
1182 }
1183
1184 /*
1185 * None left in the last group, search the whole AG
1186 */
1187 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1188 if (error)
1189 goto error0;
1190 if (XFS_IS_CORRUPT(mp, i != 1)) {
1191 error = -EFSCORRUPTED;
1192 goto error0;
1193 }
1194
1195 for (;;) {
1196 error = xfs_inobt_get_rec(cur, &rec, &i);
1197 if (error)
1198 goto error0;
1199 if (XFS_IS_CORRUPT(mp, i != 1)) {
1200 error = -EFSCORRUPTED;
1201 goto error0;
1202 }
1203 if (rec.ir_freecount > 0)
1204 break;
1205 error = xfs_btree_increment(cur, 0, &i);
1206 if (error)
1207 goto error0;
1208 if (XFS_IS_CORRUPT(mp, i != 1)) {
1209 error = -EFSCORRUPTED;
1210 goto error0;
1211 }
1212 }
1213
1214 alloc_inode:
1215 offset = xfs_inobt_first_free_inode(&rec);
1216 ASSERT(offset >= 0);
1217 ASSERT(offset < XFS_INODES_PER_CHUNK);
1218 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1219 XFS_INODES_PER_CHUNK) == 0);
1220 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1221 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1222 rec.ir_freecount--;
1223 error = xfs_inobt_update(cur, &rec);
1224 if (error)
1225 goto error0;
1226 be32_add_cpu(&agi->agi_freecount, -1);
1227 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1228 pag->pagi_freecount--;
1229
1230 error = xfs_check_agi_freecount(cur);
1231 if (error)
1232 goto error0;
1233
1234 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1235 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1236 *inop = ino;
1237 return 0;
1238 error1:
1239 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1240 error0:
1241 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1242 return error;
1243 }
1244
1245 /*
1246 * Use the free inode btree to allocate an inode based on distance from the
1247 * parent. Note that the provided cursor may be deleted and replaced.
1248 */
1249 STATIC int
xfs_dialloc_ag_finobt_near(xfs_agino_t pagino,struct xfs_btree_cur ** ocur,struct xfs_inobt_rec_incore * rec)1250 xfs_dialloc_ag_finobt_near(
1251 xfs_agino_t pagino,
1252 struct xfs_btree_cur **ocur,
1253 struct xfs_inobt_rec_incore *rec)
1254 {
1255 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1256 struct xfs_btree_cur *rcur; /* right search cursor */
1257 struct xfs_inobt_rec_incore rrec;
1258 int error;
1259 int i, j;
1260
1261 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1262 if (error)
1263 return error;
1264
1265 if (i == 1) {
1266 error = xfs_inobt_get_rec(lcur, rec, &i);
1267 if (error)
1268 return error;
1269 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1270 return -EFSCORRUPTED;
1271
1272 /*
1273 * See if we've landed in the parent inode record. The finobt
1274 * only tracks chunks with at least one free inode, so record
1275 * existence is enough.
1276 */
1277 if (pagino >= rec->ir_startino &&
1278 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1279 return 0;
1280 }
1281
1282 error = xfs_btree_dup_cursor(lcur, &rcur);
1283 if (error)
1284 return error;
1285
1286 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1287 if (error)
1288 goto error_rcur;
1289 if (j == 1) {
1290 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1291 if (error)
1292 goto error_rcur;
1293 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1294 error = -EFSCORRUPTED;
1295 goto error_rcur;
1296 }
1297 }
1298
1299 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1300 error = -EFSCORRUPTED;
1301 goto error_rcur;
1302 }
1303 if (i == 1 && j == 1) {
1304 /*
1305 * Both the left and right records are valid. Choose the closer
1306 * inode chunk to the target.
1307 */
1308 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1309 (rrec.ir_startino - pagino)) {
1310 *rec = rrec;
1311 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1312 *ocur = rcur;
1313 } else {
1314 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1315 }
1316 } else if (j == 1) {
1317 /* only the right record is valid */
1318 *rec = rrec;
1319 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1320 *ocur = rcur;
1321 } else if (i == 1) {
1322 /* only the left record is valid */
1323 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1324 }
1325
1326 return 0;
1327
1328 error_rcur:
1329 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1330 return error;
1331 }
1332
1333 /*
1334 * Use the free inode btree to find a free inode based on a newino hint. If
1335 * the hint is NULL, find the first free inode in the AG.
1336 */
1337 STATIC int
xfs_dialloc_ag_finobt_newino(struct xfs_agi * agi,struct xfs_btree_cur * cur,struct xfs_inobt_rec_incore * rec)1338 xfs_dialloc_ag_finobt_newino(
1339 struct xfs_agi *agi,
1340 struct xfs_btree_cur *cur,
1341 struct xfs_inobt_rec_incore *rec)
1342 {
1343 int error;
1344 int i;
1345
1346 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1347 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1348 XFS_LOOKUP_EQ, &i);
1349 if (error)
1350 return error;
1351 if (i == 1) {
1352 error = xfs_inobt_get_rec(cur, rec, &i);
1353 if (error)
1354 return error;
1355 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1356 return -EFSCORRUPTED;
1357 return 0;
1358 }
1359 }
1360
1361 /*
1362 * Find the first inode available in the AG.
1363 */
1364 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1365 if (error)
1366 return error;
1367 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1368 return -EFSCORRUPTED;
1369
1370 error = xfs_inobt_get_rec(cur, rec, &i);
1371 if (error)
1372 return error;
1373 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1374 return -EFSCORRUPTED;
1375
1376 return 0;
1377 }
1378
1379 /*
1380 * Update the inobt based on a modification made to the finobt. Also ensure that
1381 * the records from both trees are equivalent post-modification.
1382 */
1383 STATIC int
xfs_dialloc_ag_update_inobt(struct xfs_btree_cur * cur,struct xfs_inobt_rec_incore * frec,int offset)1384 xfs_dialloc_ag_update_inobt(
1385 struct xfs_btree_cur *cur, /* inobt cursor */
1386 struct xfs_inobt_rec_incore *frec, /* finobt record */
1387 int offset) /* inode offset */
1388 {
1389 struct xfs_inobt_rec_incore rec;
1390 int error;
1391 int i;
1392
1393 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1394 if (error)
1395 return error;
1396 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1397 return -EFSCORRUPTED;
1398
1399 error = xfs_inobt_get_rec(cur, &rec, &i);
1400 if (error)
1401 return error;
1402 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1403 return -EFSCORRUPTED;
1404 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1405 XFS_INODES_PER_CHUNK) == 0);
1406
1407 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1408 rec.ir_freecount--;
1409
1410 if (XFS_IS_CORRUPT(cur->bc_mp,
1411 rec.ir_free != frec->ir_free ||
1412 rec.ir_freecount != frec->ir_freecount))
1413 return -EFSCORRUPTED;
1414
1415 return xfs_inobt_update(cur, &rec);
1416 }
1417
1418 /*
1419 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1420 * back to the inobt search algorithm.
1421 *
1422 * The caller selected an AG for us, and made sure that free inodes are
1423 * available.
1424 */
1425 static int
xfs_dialloc_ag(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_ino_t parent,xfs_ino_t * inop)1426 xfs_dialloc_ag(
1427 struct xfs_perag *pag,
1428 struct xfs_trans *tp,
1429 struct xfs_buf *agbp,
1430 xfs_ino_t parent,
1431 xfs_ino_t *inop)
1432 {
1433 struct xfs_mount *mp = tp->t_mountp;
1434 struct xfs_agi *agi = agbp->b_addr;
1435 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1436 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1437 struct xfs_btree_cur *cur; /* finobt cursor */
1438 struct xfs_btree_cur *icur; /* inobt cursor */
1439 struct xfs_inobt_rec_incore rec;
1440 xfs_ino_t ino;
1441 int error;
1442 int offset;
1443 int i;
1444
1445 if (!xfs_has_finobt(mp))
1446 return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1447
1448 /*
1449 * If pagino is 0 (this is the root inode allocation) use newino.
1450 * This must work because we've just allocated some.
1451 */
1452 if (!pagino)
1453 pagino = be32_to_cpu(agi->agi_newino);
1454
1455 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
1456
1457 error = xfs_check_agi_freecount(cur);
1458 if (error)
1459 goto error_cur;
1460
1461 /*
1462 * The search algorithm depends on whether we're in the same AG as the
1463 * parent. If so, find the closest available inode to the parent. If
1464 * not, consider the agi hint or find the first free inode in the AG.
1465 */
1466 if (pag->pag_agno == pagno)
1467 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1468 else
1469 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1470 if (error)
1471 goto error_cur;
1472
1473 offset = xfs_inobt_first_free_inode(&rec);
1474 ASSERT(offset >= 0);
1475 ASSERT(offset < XFS_INODES_PER_CHUNK);
1476 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1477 XFS_INODES_PER_CHUNK) == 0);
1478 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1479
1480 /*
1481 * Modify or remove the finobt record.
1482 */
1483 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1484 rec.ir_freecount--;
1485 if (rec.ir_freecount)
1486 error = xfs_inobt_update(cur, &rec);
1487 else
1488 error = xfs_btree_delete(cur, &i);
1489 if (error)
1490 goto error_cur;
1491
1492 /*
1493 * The finobt has now been updated appropriately. We haven't updated the
1494 * agi and superblock yet, so we can create an inobt cursor and validate
1495 * the original freecount. If all is well, make the equivalent update to
1496 * the inobt using the finobt record and offset information.
1497 */
1498 icur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1499
1500 error = xfs_check_agi_freecount(icur);
1501 if (error)
1502 goto error_icur;
1503
1504 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1505 if (error)
1506 goto error_icur;
1507
1508 /*
1509 * Both trees have now been updated. We must update the perag and
1510 * superblock before we can check the freecount for each btree.
1511 */
1512 be32_add_cpu(&agi->agi_freecount, -1);
1513 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1514 pag->pagi_freecount--;
1515
1516 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1517
1518 error = xfs_check_agi_freecount(icur);
1519 if (error)
1520 goto error_icur;
1521 error = xfs_check_agi_freecount(cur);
1522 if (error)
1523 goto error_icur;
1524
1525 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1526 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1527 *inop = ino;
1528 return 0;
1529
1530 error_icur:
1531 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1532 error_cur:
1533 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1534 return error;
1535 }
1536
1537 static int
xfs_dialloc_roll(struct xfs_trans ** tpp,struct xfs_buf * agibp)1538 xfs_dialloc_roll(
1539 struct xfs_trans **tpp,
1540 struct xfs_buf *agibp)
1541 {
1542 struct xfs_trans *tp = *tpp;
1543 struct xfs_dquot_acct *dqinfo;
1544 int error;
1545
1546 /*
1547 * Hold to on to the agibp across the commit so no other allocation can
1548 * come in and take the free inodes we just allocated for our caller.
1549 */
1550 xfs_trans_bhold(tp, agibp);
1551
1552 /*
1553 * We want the quota changes to be associated with the next transaction,
1554 * NOT this one. So, detach the dqinfo from this and attach it to the
1555 * next transaction.
1556 */
1557 dqinfo = tp->t_dqinfo;
1558 tp->t_dqinfo = NULL;
1559
1560 error = xfs_trans_roll(&tp);
1561
1562 /* Re-attach the quota info that we detached from prev trx. */
1563 tp->t_dqinfo = dqinfo;
1564
1565 /*
1566 * Join the buffer even on commit error so that the buffer is released
1567 * when the caller cancels the transaction and doesn't have to handle
1568 * this error case specially.
1569 */
1570 xfs_trans_bjoin(tp, agibp);
1571 *tpp = tp;
1572 return error;
1573 }
1574
1575 static bool
xfs_dialloc_good_ag(struct xfs_perag * pag,struct xfs_trans * tp,umode_t mode,int flags,bool ok_alloc)1576 xfs_dialloc_good_ag(
1577 struct xfs_perag *pag,
1578 struct xfs_trans *tp,
1579 umode_t mode,
1580 int flags,
1581 bool ok_alloc)
1582 {
1583 struct xfs_mount *mp = tp->t_mountp;
1584 xfs_extlen_t ineed;
1585 xfs_extlen_t longest = 0;
1586 int needspace;
1587 int error;
1588
1589 if (!pag)
1590 return false;
1591 if (!xfs_perag_allows_inodes(pag))
1592 return false;
1593
1594 if (!xfs_perag_initialised_agi(pag)) {
1595 error = xfs_ialloc_read_agi(pag, tp, NULL);
1596 if (error)
1597 return false;
1598 }
1599
1600 if (pag->pagi_freecount)
1601 return true;
1602 if (!ok_alloc)
1603 return false;
1604
1605 if (!xfs_perag_initialised_agf(pag)) {
1606 error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1607 if (error)
1608 return false;
1609 }
1610
1611 /*
1612 * Check that there is enough free space for the file plus a chunk of
1613 * inodes if we need to allocate some. If this is the first pass across
1614 * the AGs, take into account the potential space needed for alignment
1615 * of inode chunks when checking the longest contiguous free space in
1616 * the AG - this prevents us from getting ENOSPC because we have free
1617 * space larger than ialloc_blks but alignment constraints prevent us
1618 * from using it.
1619 *
1620 * If we can't find an AG with space for full alignment slack to be
1621 * taken into account, we must be near ENOSPC in all AGs. Hence we
1622 * don't include alignment for the second pass and so if we fail
1623 * allocation due to alignment issues then it is most likely a real
1624 * ENOSPC condition.
1625 *
1626 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1627 * reservations that xfs_alloc_fix_freelist() now does via
1628 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1629 * be more than large enough for the check below to succeed, but
1630 * xfs_alloc_space_available() will fail because of the non-zero
1631 * metadata reservation and hence we won't actually be able to allocate
1632 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1633 * because of this.
1634 */
1635 ineed = M_IGEO(mp)->ialloc_min_blks;
1636 if (flags && ineed > 1)
1637 ineed += M_IGEO(mp)->cluster_align;
1638 longest = pag->pagf_longest;
1639 if (!longest)
1640 longest = pag->pagf_flcount > 0;
1641 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1642
1643 if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1644 return false;
1645 return true;
1646 }
1647
1648 static int
xfs_dialloc_try_ag(struct xfs_perag * pag,struct xfs_trans ** tpp,xfs_ino_t parent,xfs_ino_t * new_ino,bool ok_alloc)1649 xfs_dialloc_try_ag(
1650 struct xfs_perag *pag,
1651 struct xfs_trans **tpp,
1652 xfs_ino_t parent,
1653 xfs_ino_t *new_ino,
1654 bool ok_alloc)
1655 {
1656 struct xfs_buf *agbp;
1657 xfs_ino_t ino;
1658 int error;
1659
1660 /*
1661 * Then read in the AGI buffer and recheck with the AGI buffer
1662 * lock held.
1663 */
1664 error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1665 if (error)
1666 return error;
1667
1668 if (!pag->pagi_freecount) {
1669 if (!ok_alloc) {
1670 error = -EAGAIN;
1671 goto out_release;
1672 }
1673
1674 error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1675 if (error < 0)
1676 goto out_release;
1677
1678 /*
1679 * We successfully allocated space for an inode cluster in this
1680 * AG. Roll the transaction so that we can allocate one of the
1681 * new inodes.
1682 */
1683 ASSERT(pag->pagi_freecount > 0);
1684 error = xfs_dialloc_roll(tpp, agbp);
1685 if (error)
1686 goto out_release;
1687 }
1688
1689 /* Allocate an inode in the found AG */
1690 error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1691 if (!error)
1692 *new_ino = ino;
1693 return error;
1694
1695 out_release:
1696 xfs_trans_brelse(*tpp, agbp);
1697 return error;
1698 }
1699
1700 /*
1701 * Allocate an on-disk inode.
1702 *
1703 * Mode is used to tell whether the new inode is a directory and hence where to
1704 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1705 * on success, otherwise an error will be set to indicate the failure (e.g.
1706 * -ENOSPC).
1707 */
1708 int
xfs_dialloc(struct xfs_trans ** tpp,xfs_ino_t parent,umode_t mode,xfs_ino_t * new_ino)1709 xfs_dialloc(
1710 struct xfs_trans **tpp,
1711 xfs_ino_t parent,
1712 umode_t mode,
1713 xfs_ino_t *new_ino)
1714 {
1715 struct xfs_mount *mp = (*tpp)->t_mountp;
1716 xfs_agnumber_t agno;
1717 int error = 0;
1718 xfs_agnumber_t start_agno;
1719 struct xfs_perag *pag;
1720 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1721 bool ok_alloc = true;
1722 bool low_space = false;
1723 int flags;
1724 xfs_ino_t ino = NULLFSINO;
1725
1726 /*
1727 * Directories, symlinks, and regular files frequently allocate at least
1728 * one block, so factor that potential expansion when we examine whether
1729 * an AG has enough space for file creation.
1730 */
1731 if (S_ISDIR(mode))
1732 start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1733 mp->m_maxagi;
1734 else {
1735 start_agno = XFS_INO_TO_AGNO(mp, parent);
1736 if (start_agno >= mp->m_maxagi)
1737 start_agno = 0;
1738 }
1739
1740 /*
1741 * If we have already hit the ceiling of inode blocks then clear
1742 * ok_alloc so we scan all available agi structures for a free
1743 * inode.
1744 *
1745 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1746 * which will sacrifice the preciseness but improve the performance.
1747 */
1748 if (igeo->maxicount &&
1749 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1750 > igeo->maxicount) {
1751 ok_alloc = false;
1752 }
1753
1754 /*
1755 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1756 * have free inodes in them rather than use up free space allocating new
1757 * inode chunks. Hence we turn off allocation for the first non-blocking
1758 * pass through the AGs if we are near ENOSPC to consume free inodes
1759 * that we can immediately allocate, but then we allow allocation on the
1760 * second pass if we fail to find an AG with free inodes in it.
1761 */
1762 if (percpu_counter_read_positive(&mp->m_fdblocks) <
1763 mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1764 ok_alloc = false;
1765 low_space = true;
1766 }
1767
1768 /*
1769 * Loop until we find an allocation group that either has free inodes
1770 * or in which we can allocate some inodes. Iterate through the
1771 * allocation groups upward, wrapping at the end.
1772 */
1773 flags = XFS_ALLOC_FLAG_TRYLOCK;
1774 retry:
1775 for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1776 if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1777 error = xfs_dialloc_try_ag(pag, tpp, parent,
1778 &ino, ok_alloc);
1779 if (error != -EAGAIN)
1780 break;
1781 error = 0;
1782 }
1783
1784 if (xfs_is_shutdown(mp)) {
1785 error = -EFSCORRUPTED;
1786 break;
1787 }
1788 }
1789 if (pag)
1790 xfs_perag_rele(pag);
1791 if (error)
1792 return error;
1793 if (ino == NULLFSINO) {
1794 if (flags) {
1795 flags = 0;
1796 if (low_space)
1797 ok_alloc = true;
1798 goto retry;
1799 }
1800 return -ENOSPC;
1801 }
1802 *new_ino = ino;
1803 return 0;
1804 }
1805
1806 /*
1807 * Free the blocks of an inode chunk. We must consider that the inode chunk
1808 * might be sparse and only free the regions that are allocated as part of the
1809 * chunk.
1810 */
1811 STATIC void
xfs_difree_inode_chunk(struct xfs_trans * tp,xfs_agnumber_t agno,struct xfs_inobt_rec_incore * rec)1812 xfs_difree_inode_chunk(
1813 struct xfs_trans *tp,
1814 xfs_agnumber_t agno,
1815 struct xfs_inobt_rec_incore *rec)
1816 {
1817 struct xfs_mount *mp = tp->t_mountp;
1818 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1819 rec->ir_startino);
1820 int startidx, endidx;
1821 int nextbit;
1822 xfs_agblock_t agbno;
1823 int contigblk;
1824 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1825
1826 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1827 /* not sparse, calculate extent info directly */
1828 xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1829 M_IGEO(mp)->ialloc_blks,
1830 &XFS_RMAP_OINFO_INODES);
1831 return;
1832 }
1833
1834 /* holemask is only 16-bits (fits in an unsigned long) */
1835 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1836 holemask[0] = rec->ir_holemask;
1837
1838 /*
1839 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1840 * holemask and convert the start/end index of each range to an extent.
1841 * We start with the start and end index both pointing at the first 0 in
1842 * the mask.
1843 */
1844 startidx = endidx = find_first_zero_bit(holemask,
1845 XFS_INOBT_HOLEMASK_BITS);
1846 nextbit = startidx + 1;
1847 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1848 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1849 nextbit);
1850 /*
1851 * If the next zero bit is contiguous, update the end index of
1852 * the current range and continue.
1853 */
1854 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1855 nextbit == endidx + 1) {
1856 endidx = nextbit;
1857 goto next;
1858 }
1859
1860 /*
1861 * nextbit is not contiguous with the current end index. Convert
1862 * the current start/end to an extent and add it to the free
1863 * list.
1864 */
1865 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1866 mp->m_sb.sb_inopblock;
1867 contigblk = ((endidx - startidx + 1) *
1868 XFS_INODES_PER_HOLEMASK_BIT) /
1869 mp->m_sb.sb_inopblock;
1870
1871 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1872 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1873 xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1874 contigblk, &XFS_RMAP_OINFO_INODES);
1875
1876 /* reset range to current bit and carry on... */
1877 startidx = endidx = nextbit;
1878
1879 next:
1880 nextbit++;
1881 }
1882 }
1883
1884 STATIC int
xfs_difree_inobt(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agino_t agino,struct xfs_icluster * xic,struct xfs_inobt_rec_incore * orec)1885 xfs_difree_inobt(
1886 struct xfs_perag *pag,
1887 struct xfs_trans *tp,
1888 struct xfs_buf *agbp,
1889 xfs_agino_t agino,
1890 struct xfs_icluster *xic,
1891 struct xfs_inobt_rec_incore *orec)
1892 {
1893 struct xfs_mount *mp = pag->pag_mount;
1894 struct xfs_agi *agi = agbp->b_addr;
1895 struct xfs_btree_cur *cur;
1896 struct xfs_inobt_rec_incore rec;
1897 int ilen;
1898 int error;
1899 int i;
1900 int off;
1901
1902 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1903 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1904
1905 /*
1906 * Initialize the cursor.
1907 */
1908 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1909
1910 error = xfs_check_agi_freecount(cur);
1911 if (error)
1912 goto error0;
1913
1914 /*
1915 * Look for the entry describing this inode.
1916 */
1917 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1918 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1919 __func__, error);
1920 goto error0;
1921 }
1922 if (XFS_IS_CORRUPT(mp, i != 1)) {
1923 error = -EFSCORRUPTED;
1924 goto error0;
1925 }
1926 error = xfs_inobt_get_rec(cur, &rec, &i);
1927 if (error) {
1928 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1929 __func__, error);
1930 goto error0;
1931 }
1932 if (XFS_IS_CORRUPT(mp, i != 1)) {
1933 error = -EFSCORRUPTED;
1934 goto error0;
1935 }
1936 /*
1937 * Get the offset in the inode chunk.
1938 */
1939 off = agino - rec.ir_startino;
1940 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1941 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1942 /*
1943 * Mark the inode free & increment the count.
1944 */
1945 rec.ir_free |= XFS_INOBT_MASK(off);
1946 rec.ir_freecount++;
1947
1948 /*
1949 * When an inode chunk is free, it becomes eligible for removal. Don't
1950 * remove the chunk if the block size is large enough for multiple inode
1951 * chunks (that might not be free).
1952 */
1953 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
1954 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1955 struct xfs_perag *pag = agbp->b_pag;
1956
1957 xic->deleted = true;
1958 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1959 rec.ir_startino);
1960 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1961
1962 /*
1963 * Remove the inode cluster from the AGI B+Tree, adjust the
1964 * AGI and Superblock inode counts, and mark the disk space
1965 * to be freed when the transaction is committed.
1966 */
1967 ilen = rec.ir_freecount;
1968 be32_add_cpu(&agi->agi_count, -ilen);
1969 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1970 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1971 pag->pagi_freecount -= ilen - 1;
1972 pag->pagi_count -= ilen;
1973 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1974 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1975
1976 if ((error = xfs_btree_delete(cur, &i))) {
1977 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1978 __func__, error);
1979 goto error0;
1980 }
1981
1982 xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
1983 } else {
1984 xic->deleted = false;
1985
1986 error = xfs_inobt_update(cur, &rec);
1987 if (error) {
1988 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1989 __func__, error);
1990 goto error0;
1991 }
1992
1993 /*
1994 * Change the inode free counts and log the ag/sb changes.
1995 */
1996 be32_add_cpu(&agi->agi_freecount, 1);
1997 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1998 pag->pagi_freecount++;
1999 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2000 }
2001
2002 error = xfs_check_agi_freecount(cur);
2003 if (error)
2004 goto error0;
2005
2006 *orec = rec;
2007 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2008 return 0;
2009
2010 error0:
2011 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2012 return error;
2013 }
2014
2015 /*
2016 * Free an inode in the free inode btree.
2017 */
2018 STATIC int
xfs_difree_finobt(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agino_t agino,struct xfs_inobt_rec_incore * ibtrec)2019 xfs_difree_finobt(
2020 struct xfs_perag *pag,
2021 struct xfs_trans *tp,
2022 struct xfs_buf *agbp,
2023 xfs_agino_t agino,
2024 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2025 {
2026 struct xfs_mount *mp = pag->pag_mount;
2027 struct xfs_btree_cur *cur;
2028 struct xfs_inobt_rec_incore rec;
2029 int offset = agino - ibtrec->ir_startino;
2030 int error;
2031 int i;
2032
2033 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
2034
2035 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2036 if (error)
2037 goto error;
2038 if (i == 0) {
2039 /*
2040 * If the record does not exist in the finobt, we must have just
2041 * freed an inode in a previously fully allocated chunk. If not,
2042 * something is out of sync.
2043 */
2044 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2045 error = -EFSCORRUPTED;
2046 goto error;
2047 }
2048
2049 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2050 ibtrec->ir_count,
2051 ibtrec->ir_freecount,
2052 ibtrec->ir_free, &i);
2053 if (error)
2054 goto error;
2055 ASSERT(i == 1);
2056
2057 goto out;
2058 }
2059
2060 /*
2061 * Read and update the existing record. We could just copy the ibtrec
2062 * across here, but that would defeat the purpose of having redundant
2063 * metadata. By making the modifications independently, we can catch
2064 * corruptions that we wouldn't see if we just copied from one record
2065 * to another.
2066 */
2067 error = xfs_inobt_get_rec(cur, &rec, &i);
2068 if (error)
2069 goto error;
2070 if (XFS_IS_CORRUPT(mp, i != 1)) {
2071 error = -EFSCORRUPTED;
2072 goto error;
2073 }
2074
2075 rec.ir_free |= XFS_INOBT_MASK(offset);
2076 rec.ir_freecount++;
2077
2078 if (XFS_IS_CORRUPT(mp,
2079 rec.ir_free != ibtrec->ir_free ||
2080 rec.ir_freecount != ibtrec->ir_freecount)) {
2081 error = -EFSCORRUPTED;
2082 goto error;
2083 }
2084
2085 /*
2086 * The content of inobt records should always match between the inobt
2087 * and finobt. The lifecycle of records in the finobt is different from
2088 * the inobt in that the finobt only tracks records with at least one
2089 * free inode. Hence, if all of the inodes are free and we aren't
2090 * keeping inode chunks permanently on disk, remove the record.
2091 * Otherwise, update the record with the new information.
2092 *
2093 * Note that we currently can't free chunks when the block size is large
2094 * enough for multiple chunks. Leave the finobt record to remain in sync
2095 * with the inobt.
2096 */
2097 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2098 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2099 error = xfs_btree_delete(cur, &i);
2100 if (error)
2101 goto error;
2102 ASSERT(i == 1);
2103 } else {
2104 error = xfs_inobt_update(cur, &rec);
2105 if (error)
2106 goto error;
2107 }
2108
2109 out:
2110 error = xfs_check_agi_freecount(cur);
2111 if (error)
2112 goto error;
2113
2114 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2115 return 0;
2116
2117 error:
2118 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2119 return error;
2120 }
2121
2122 /*
2123 * Free disk inode. Carefully avoids touching the incore inode, all
2124 * manipulations incore are the caller's responsibility.
2125 * The on-disk inode is not changed by this operation, only the
2126 * btree (free inode mask) is changed.
2127 */
2128 int
xfs_difree(struct xfs_trans * tp,struct xfs_perag * pag,xfs_ino_t inode,struct xfs_icluster * xic)2129 xfs_difree(
2130 struct xfs_trans *tp,
2131 struct xfs_perag *pag,
2132 xfs_ino_t inode,
2133 struct xfs_icluster *xic)
2134 {
2135 /* REFERENCED */
2136 xfs_agblock_t agbno; /* block number containing inode */
2137 struct xfs_buf *agbp; /* buffer for allocation group header */
2138 xfs_agino_t agino; /* allocation group inode number */
2139 int error; /* error return value */
2140 struct xfs_mount *mp = tp->t_mountp;
2141 struct xfs_inobt_rec_incore rec;/* btree record */
2142
2143 /*
2144 * Break up inode number into its components.
2145 */
2146 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2147 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2148 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2149 ASSERT(0);
2150 return -EINVAL;
2151 }
2152 agino = XFS_INO_TO_AGINO(mp, inode);
2153 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2154 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2155 __func__, (unsigned long long)inode,
2156 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2157 ASSERT(0);
2158 return -EINVAL;
2159 }
2160 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2161 if (agbno >= mp->m_sb.sb_agblocks) {
2162 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2163 __func__, agbno, mp->m_sb.sb_agblocks);
2164 ASSERT(0);
2165 return -EINVAL;
2166 }
2167 /*
2168 * Get the allocation group header.
2169 */
2170 error = xfs_ialloc_read_agi(pag, tp, &agbp);
2171 if (error) {
2172 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2173 __func__, error);
2174 return error;
2175 }
2176
2177 /*
2178 * Fix up the inode allocation btree.
2179 */
2180 error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2181 if (error)
2182 goto error0;
2183
2184 /*
2185 * Fix up the free inode btree.
2186 */
2187 if (xfs_has_finobt(mp)) {
2188 error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2189 if (error)
2190 goto error0;
2191 }
2192
2193 return 0;
2194
2195 error0:
2196 return error;
2197 }
2198
2199 STATIC int
xfs_imap_lookup(struct xfs_perag * pag,struct xfs_trans * tp,xfs_agino_t agino,xfs_agblock_t agbno,xfs_agblock_t * chunk_agbno,xfs_agblock_t * offset_agbno,int flags)2200 xfs_imap_lookup(
2201 struct xfs_perag *pag,
2202 struct xfs_trans *tp,
2203 xfs_agino_t agino,
2204 xfs_agblock_t agbno,
2205 xfs_agblock_t *chunk_agbno,
2206 xfs_agblock_t *offset_agbno,
2207 int flags)
2208 {
2209 struct xfs_mount *mp = pag->pag_mount;
2210 struct xfs_inobt_rec_incore rec;
2211 struct xfs_btree_cur *cur;
2212 struct xfs_buf *agbp;
2213 int error;
2214 int i;
2215
2216 error = xfs_ialloc_read_agi(pag, tp, &agbp);
2217 if (error) {
2218 xfs_alert(mp,
2219 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2220 __func__, error, pag->pag_agno);
2221 return error;
2222 }
2223
2224 /*
2225 * Lookup the inode record for the given agino. If the record cannot be
2226 * found, then it's an invalid inode number and we should abort. Once
2227 * we have a record, we need to ensure it contains the inode number
2228 * we are looking up.
2229 */
2230 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
2231 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2232 if (!error) {
2233 if (i)
2234 error = xfs_inobt_get_rec(cur, &rec, &i);
2235 if (!error && i == 0)
2236 error = -EINVAL;
2237 }
2238
2239 xfs_trans_brelse(tp, agbp);
2240 xfs_btree_del_cursor(cur, error);
2241 if (error)
2242 return error;
2243
2244 /* check that the returned record contains the required inode */
2245 if (rec.ir_startino > agino ||
2246 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2247 return -EINVAL;
2248
2249 /* for untrusted inodes check it is allocated first */
2250 if ((flags & XFS_IGET_UNTRUSTED) &&
2251 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2252 return -EINVAL;
2253
2254 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2255 *offset_agbno = agbno - *chunk_agbno;
2256 return 0;
2257 }
2258
2259 /*
2260 * Return the location of the inode in imap, for mapping it into a buffer.
2261 */
2262 int
xfs_imap(struct xfs_perag * pag,struct xfs_trans * tp,xfs_ino_t ino,struct xfs_imap * imap,uint flags)2263 xfs_imap(
2264 struct xfs_perag *pag,
2265 struct xfs_trans *tp,
2266 xfs_ino_t ino, /* inode to locate */
2267 struct xfs_imap *imap, /* location map structure */
2268 uint flags) /* flags for inode btree lookup */
2269 {
2270 struct xfs_mount *mp = pag->pag_mount;
2271 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2272 xfs_agino_t agino; /* inode number within alloc group */
2273 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2274 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2275 int error; /* error code */
2276 int offset; /* index of inode in its buffer */
2277 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2278
2279 ASSERT(ino != NULLFSINO);
2280
2281 /*
2282 * Split up the inode number into its parts.
2283 */
2284 agino = XFS_INO_TO_AGINO(mp, ino);
2285 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2286 if (agbno >= mp->m_sb.sb_agblocks ||
2287 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2288 error = -EINVAL;
2289 #ifdef DEBUG
2290 /*
2291 * Don't output diagnostic information for untrusted inodes
2292 * as they can be invalid without implying corruption.
2293 */
2294 if (flags & XFS_IGET_UNTRUSTED)
2295 return error;
2296 if (agbno >= mp->m_sb.sb_agblocks) {
2297 xfs_alert(mp,
2298 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2299 __func__, (unsigned long long)agbno,
2300 (unsigned long)mp->m_sb.sb_agblocks);
2301 }
2302 if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2303 xfs_alert(mp,
2304 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2305 __func__, ino,
2306 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2307 }
2308 xfs_stack_trace();
2309 #endif /* DEBUG */
2310 return error;
2311 }
2312
2313 /*
2314 * For bulkstat and handle lookups, we have an untrusted inode number
2315 * that we have to verify is valid. We cannot do this just by reading
2316 * the inode buffer as it may have been unlinked and removed leaving
2317 * inodes in stale state on disk. Hence we have to do a btree lookup
2318 * in all cases where an untrusted inode number is passed.
2319 */
2320 if (flags & XFS_IGET_UNTRUSTED) {
2321 error = xfs_imap_lookup(pag, tp, agino, agbno,
2322 &chunk_agbno, &offset_agbno, flags);
2323 if (error)
2324 return error;
2325 goto out_map;
2326 }
2327
2328 /*
2329 * If the inode cluster size is the same as the blocksize or
2330 * smaller we get to the buffer by simple arithmetics.
2331 */
2332 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2333 offset = XFS_INO_TO_OFFSET(mp, ino);
2334 ASSERT(offset < mp->m_sb.sb_inopblock);
2335
2336 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2337 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2338 imap->im_boffset = (unsigned short)(offset <<
2339 mp->m_sb.sb_inodelog);
2340 return 0;
2341 }
2342
2343 /*
2344 * If the inode chunks are aligned then use simple maths to
2345 * find the location. Otherwise we have to do a btree
2346 * lookup to find the location.
2347 */
2348 if (M_IGEO(mp)->inoalign_mask) {
2349 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2350 chunk_agbno = agbno - offset_agbno;
2351 } else {
2352 error = xfs_imap_lookup(pag, tp, agino, agbno,
2353 &chunk_agbno, &offset_agbno, flags);
2354 if (error)
2355 return error;
2356 }
2357
2358 out_map:
2359 ASSERT(agbno >= chunk_agbno);
2360 cluster_agbno = chunk_agbno +
2361 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2362 M_IGEO(mp)->blocks_per_cluster);
2363 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2364 XFS_INO_TO_OFFSET(mp, ino);
2365
2366 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2367 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2368 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2369
2370 /*
2371 * If the inode number maps to a block outside the bounds
2372 * of the file system then return NULL rather than calling
2373 * read_buf and panicing when we get an error from the
2374 * driver.
2375 */
2376 if ((imap->im_blkno + imap->im_len) >
2377 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2378 xfs_alert(mp,
2379 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2380 __func__, (unsigned long long) imap->im_blkno,
2381 (unsigned long long) imap->im_len,
2382 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2383 return -EINVAL;
2384 }
2385 return 0;
2386 }
2387
2388 /*
2389 * Log specified fields for the ag hdr (inode section). The growth of the agi
2390 * structure over time requires that we interpret the buffer as two logical
2391 * regions delineated by the end of the unlinked list. This is due to the size
2392 * of the hash table and its location in the middle of the agi.
2393 *
2394 * For example, a request to log a field before agi_unlinked and a field after
2395 * agi_unlinked could cause us to log the entire hash table and use an excessive
2396 * amount of log space. To avoid this behavior, log the region up through
2397 * agi_unlinked in one call and the region after agi_unlinked through the end of
2398 * the structure in another.
2399 */
2400 void
xfs_ialloc_log_agi(struct xfs_trans * tp,struct xfs_buf * bp,uint32_t fields)2401 xfs_ialloc_log_agi(
2402 struct xfs_trans *tp,
2403 struct xfs_buf *bp,
2404 uint32_t fields)
2405 {
2406 int first; /* first byte number */
2407 int last; /* last byte number */
2408 static const short offsets[] = { /* field starting offsets */
2409 /* keep in sync with bit definitions */
2410 offsetof(xfs_agi_t, agi_magicnum),
2411 offsetof(xfs_agi_t, agi_versionnum),
2412 offsetof(xfs_agi_t, agi_seqno),
2413 offsetof(xfs_agi_t, agi_length),
2414 offsetof(xfs_agi_t, agi_count),
2415 offsetof(xfs_agi_t, agi_root),
2416 offsetof(xfs_agi_t, agi_level),
2417 offsetof(xfs_agi_t, agi_freecount),
2418 offsetof(xfs_agi_t, agi_newino),
2419 offsetof(xfs_agi_t, agi_dirino),
2420 offsetof(xfs_agi_t, agi_unlinked),
2421 offsetof(xfs_agi_t, agi_free_root),
2422 offsetof(xfs_agi_t, agi_free_level),
2423 offsetof(xfs_agi_t, agi_iblocks),
2424 sizeof(xfs_agi_t)
2425 };
2426 #ifdef DEBUG
2427 struct xfs_agi *agi = bp->b_addr;
2428
2429 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2430 #endif
2431
2432 /*
2433 * Compute byte offsets for the first and last fields in the first
2434 * region and log the agi buffer. This only logs up through
2435 * agi_unlinked.
2436 */
2437 if (fields & XFS_AGI_ALL_BITS_R1) {
2438 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2439 &first, &last);
2440 xfs_trans_log_buf(tp, bp, first, last);
2441 }
2442
2443 /*
2444 * Mask off the bits in the first region and calculate the first and
2445 * last field offsets for any bits in the second region.
2446 */
2447 fields &= ~XFS_AGI_ALL_BITS_R1;
2448 if (fields) {
2449 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2450 &first, &last);
2451 xfs_trans_log_buf(tp, bp, first, last);
2452 }
2453 }
2454
2455 static xfs_failaddr_t
xfs_agi_verify(struct xfs_buf * bp)2456 xfs_agi_verify(
2457 struct xfs_buf *bp)
2458 {
2459 struct xfs_mount *mp = bp->b_mount;
2460 struct xfs_agi *agi = bp->b_addr;
2461 int i;
2462
2463 if (xfs_has_crc(mp)) {
2464 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2465 return __this_address;
2466 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2467 return __this_address;
2468 }
2469
2470 /*
2471 * Validate the magic number of the agi block.
2472 */
2473 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2474 return __this_address;
2475 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2476 return __this_address;
2477
2478 if (be32_to_cpu(agi->agi_level) < 1 ||
2479 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2480 return __this_address;
2481
2482 if (xfs_has_finobt(mp) &&
2483 (be32_to_cpu(agi->agi_free_level) < 1 ||
2484 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2485 return __this_address;
2486
2487 /*
2488 * during growfs operations, the perag is not fully initialised,
2489 * so we can't use it for any useful checking. growfs ensures we can't
2490 * use it by using uncached buffers that don't have the perag attached
2491 * so we can detect and avoid this problem.
2492 */
2493 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2494 return __this_address;
2495
2496 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2497 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2498 continue;
2499 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2500 return __this_address;
2501 }
2502
2503 return NULL;
2504 }
2505
2506 static void
xfs_agi_read_verify(struct xfs_buf * bp)2507 xfs_agi_read_verify(
2508 struct xfs_buf *bp)
2509 {
2510 struct xfs_mount *mp = bp->b_mount;
2511 xfs_failaddr_t fa;
2512
2513 if (xfs_has_crc(mp) &&
2514 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2515 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2516 else {
2517 fa = xfs_agi_verify(bp);
2518 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2519 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2520 }
2521 }
2522
2523 static void
xfs_agi_write_verify(struct xfs_buf * bp)2524 xfs_agi_write_verify(
2525 struct xfs_buf *bp)
2526 {
2527 struct xfs_mount *mp = bp->b_mount;
2528 struct xfs_buf_log_item *bip = bp->b_log_item;
2529 struct xfs_agi *agi = bp->b_addr;
2530 xfs_failaddr_t fa;
2531
2532 fa = xfs_agi_verify(bp);
2533 if (fa) {
2534 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2535 return;
2536 }
2537
2538 if (!xfs_has_crc(mp))
2539 return;
2540
2541 if (bip)
2542 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2543 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2544 }
2545
2546 const struct xfs_buf_ops xfs_agi_buf_ops = {
2547 .name = "xfs_agi",
2548 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2549 .verify_read = xfs_agi_read_verify,
2550 .verify_write = xfs_agi_write_verify,
2551 .verify_struct = xfs_agi_verify,
2552 };
2553
2554 /*
2555 * Read in the allocation group header (inode allocation section)
2556 */
2557 int
xfs_read_agi(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf ** agibpp)2558 xfs_read_agi(
2559 struct xfs_perag *pag,
2560 struct xfs_trans *tp,
2561 struct xfs_buf **agibpp)
2562 {
2563 struct xfs_mount *mp = pag->pag_mount;
2564 int error;
2565
2566 trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2567
2568 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2569 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2570 XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2571 if (error)
2572 return error;
2573 if (tp)
2574 xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2575
2576 xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2577 return 0;
2578 }
2579
2580 /*
2581 * Read in the agi and initialise the per-ag data. If the caller supplies a
2582 * @agibpp, return the locked AGI buffer to them, otherwise release it.
2583 */
2584 int
xfs_ialloc_read_agi(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf ** agibpp)2585 xfs_ialloc_read_agi(
2586 struct xfs_perag *pag,
2587 struct xfs_trans *tp,
2588 struct xfs_buf **agibpp)
2589 {
2590 struct xfs_buf *agibp;
2591 struct xfs_agi *agi;
2592 int error;
2593
2594 trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2595
2596 error = xfs_read_agi(pag, tp, &agibp);
2597 if (error)
2598 return error;
2599
2600 agi = agibp->b_addr;
2601 if (!xfs_perag_initialised_agi(pag)) {
2602 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2603 pag->pagi_count = be32_to_cpu(agi->agi_count);
2604 set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2605 }
2606
2607 /*
2608 * It's possible for these to be out of sync if
2609 * we are in the middle of a forced shutdown.
2610 */
2611 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2612 xfs_is_shutdown(pag->pag_mount));
2613 if (agibpp)
2614 *agibpp = agibp;
2615 else
2616 xfs_trans_brelse(tp, agibp);
2617 return 0;
2618 }
2619
2620 /* Is there an inode record covering a given range of inode numbers? */
2621 int
xfs_ialloc_has_inode_record(struct xfs_btree_cur * cur,xfs_agino_t low,xfs_agino_t high,bool * exists)2622 xfs_ialloc_has_inode_record(
2623 struct xfs_btree_cur *cur,
2624 xfs_agino_t low,
2625 xfs_agino_t high,
2626 bool *exists)
2627 {
2628 struct xfs_inobt_rec_incore irec;
2629 xfs_agino_t agino;
2630 uint16_t holemask;
2631 int has_record;
2632 int i;
2633 int error;
2634
2635 *exists = false;
2636 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2637 while (error == 0 && has_record) {
2638 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2639 if (error || irec.ir_startino > high)
2640 break;
2641
2642 agino = irec.ir_startino;
2643 holemask = irec.ir_holemask;
2644 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2645 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2646 if (holemask & 1)
2647 continue;
2648 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2649 agino <= high) {
2650 *exists = true;
2651 return 0;
2652 }
2653 }
2654
2655 error = xfs_btree_increment(cur, 0, &has_record);
2656 }
2657 return error;
2658 }
2659
2660 /* Is there an inode record covering a given extent? */
2661 int
xfs_ialloc_has_inodes_at_extent(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,bool * exists)2662 xfs_ialloc_has_inodes_at_extent(
2663 struct xfs_btree_cur *cur,
2664 xfs_agblock_t bno,
2665 xfs_extlen_t len,
2666 bool *exists)
2667 {
2668 xfs_agino_t low;
2669 xfs_agino_t high;
2670
2671 low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2672 high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2673
2674 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2675 }
2676
2677 struct xfs_ialloc_count_inodes {
2678 xfs_agino_t count;
2679 xfs_agino_t freecount;
2680 };
2681
2682 /* Record inode counts across all inobt records. */
2683 STATIC int
xfs_ialloc_count_inodes_rec(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)2684 xfs_ialloc_count_inodes_rec(
2685 struct xfs_btree_cur *cur,
2686 const union xfs_btree_rec *rec,
2687 void *priv)
2688 {
2689 struct xfs_inobt_rec_incore irec;
2690 struct xfs_ialloc_count_inodes *ci = priv;
2691
2692 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2693 ci->count += irec.ir_count;
2694 ci->freecount += irec.ir_freecount;
2695
2696 return 0;
2697 }
2698
2699 /* Count allocated and free inodes under an inobt. */
2700 int
xfs_ialloc_count_inodes(struct xfs_btree_cur * cur,xfs_agino_t * count,xfs_agino_t * freecount)2701 xfs_ialloc_count_inodes(
2702 struct xfs_btree_cur *cur,
2703 xfs_agino_t *count,
2704 xfs_agino_t *freecount)
2705 {
2706 struct xfs_ialloc_count_inodes ci = {0};
2707 int error;
2708
2709 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2710 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2711 if (error)
2712 return error;
2713
2714 *count = ci.count;
2715 *freecount = ci.freecount;
2716 return 0;
2717 }
2718
2719 /*
2720 * Initialize inode-related geometry information.
2721 *
2722 * Compute the inode btree min and max levels and set maxicount.
2723 *
2724 * Set the inode cluster size. This may still be overridden by the file
2725 * system block size if it is larger than the chosen cluster size.
2726 *
2727 * For v5 filesystems, scale the cluster size with the inode size to keep a
2728 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2729 * inode alignment value appropriately for larger cluster sizes.
2730 *
2731 * Then compute the inode cluster alignment information.
2732 */
2733 void
xfs_ialloc_setup_geometry(struct xfs_mount * mp)2734 xfs_ialloc_setup_geometry(
2735 struct xfs_mount *mp)
2736 {
2737 struct xfs_sb *sbp = &mp->m_sb;
2738 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2739 uint64_t icount;
2740 uint inodes;
2741
2742 igeo->new_diflags2 = 0;
2743 if (xfs_has_bigtime(mp))
2744 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2745 if (xfs_has_large_extent_counts(mp))
2746 igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2747
2748 /* Compute inode btree geometry. */
2749 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2750 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2751 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2752 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2753 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2754
2755 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2756 sbp->sb_inopblock);
2757 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2758
2759 if (sbp->sb_spino_align)
2760 igeo->ialloc_min_blks = sbp->sb_spino_align;
2761 else
2762 igeo->ialloc_min_blks = igeo->ialloc_blks;
2763
2764 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2765 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2766 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2767 inodes);
2768 ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2769
2770 /*
2771 * Set the maximum inode count for this filesystem, being careful not
2772 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2773 * users should never get here due to failing sb verification, but
2774 * certain users (xfs_db) need to be usable even with corrupt metadata.
2775 */
2776 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2777 /*
2778 * Make sure the maximum inode count is a multiple
2779 * of the units we allocate inodes in.
2780 */
2781 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2782 do_div(icount, 100);
2783 do_div(icount, igeo->ialloc_blks);
2784 igeo->maxicount = XFS_FSB_TO_INO(mp,
2785 icount * igeo->ialloc_blks);
2786 } else {
2787 igeo->maxicount = 0;
2788 }
2789
2790 /*
2791 * Compute the desired size of an inode cluster buffer size, which
2792 * starts at 8K and (on v5 filesystems) scales up with larger inode
2793 * sizes.
2794 *
2795 * Preserve the desired inode cluster size because the sparse inodes
2796 * feature uses that desired size (not the actual size) to compute the
2797 * sparse inode alignment. The mount code validates this value, so we
2798 * cannot change the behavior.
2799 */
2800 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2801 if (xfs_has_v3inodes(mp)) {
2802 int new_size = igeo->inode_cluster_size_raw;
2803
2804 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2805 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2806 igeo->inode_cluster_size_raw = new_size;
2807 }
2808
2809 /* Calculate inode cluster ratios. */
2810 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2811 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2812 igeo->inode_cluster_size_raw);
2813 else
2814 igeo->blocks_per_cluster = 1;
2815 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2816 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2817
2818 /* Calculate inode cluster alignment. */
2819 if (xfs_has_align(mp) &&
2820 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2821 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2822 else
2823 igeo->cluster_align = 1;
2824 igeo->inoalign_mask = igeo->cluster_align - 1;
2825 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2826
2827 /*
2828 * If we are using stripe alignment, check whether
2829 * the stripe unit is a multiple of the inode alignment
2830 */
2831 if (mp->m_dalign && igeo->inoalign_mask &&
2832 !(mp->m_dalign & igeo->inoalign_mask))
2833 igeo->ialloc_align = mp->m_dalign;
2834 else
2835 igeo->ialloc_align = 0;
2836 }
2837
2838 /* Compute the location of the root directory inode that is laid out by mkfs. */
2839 xfs_ino_t
xfs_ialloc_calc_rootino(struct xfs_mount * mp,int sunit)2840 xfs_ialloc_calc_rootino(
2841 struct xfs_mount *mp,
2842 int sunit)
2843 {
2844 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2845 xfs_agblock_t first_bno;
2846
2847 /*
2848 * Pre-calculate the geometry of AG 0. We know what it looks like
2849 * because libxfs knows how to create allocation groups now.
2850 *
2851 * first_bno is the first block in which mkfs could possibly have
2852 * allocated the root directory inode, once we factor in the metadata
2853 * that mkfs formats before it. Namely, the four AG headers...
2854 */
2855 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2856
2857 /* ...the two free space btree roots... */
2858 first_bno += 2;
2859
2860 /* ...the inode btree root... */
2861 first_bno += 1;
2862
2863 /* ...the initial AGFL... */
2864 first_bno += xfs_alloc_min_freelist(mp, NULL);
2865
2866 /* ...the free inode btree root... */
2867 if (xfs_has_finobt(mp))
2868 first_bno++;
2869
2870 /* ...the reverse mapping btree root... */
2871 if (xfs_has_rmapbt(mp))
2872 first_bno++;
2873
2874 /* ...the reference count btree... */
2875 if (xfs_has_reflink(mp))
2876 first_bno++;
2877
2878 /*
2879 * ...and the log, if it is allocated in the first allocation group.
2880 *
2881 * This can happen with filesystems that only have a single
2882 * allocation group, or very odd geometries created by old mkfs
2883 * versions on very small filesystems.
2884 */
2885 if (xfs_ag_contains_log(mp, 0))
2886 first_bno += mp->m_sb.sb_logblocks;
2887
2888 /*
2889 * Now round first_bno up to whatever allocation alignment is given
2890 * by the filesystem or was passed in.
2891 */
2892 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
2893 first_bno = roundup(first_bno, sunit);
2894 else if (xfs_has_align(mp) &&
2895 mp->m_sb.sb_inoalignmt > 1)
2896 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2897
2898 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2899 }
2900
2901 /*
2902 * Ensure there are not sparse inode clusters that cross the new EOAG.
2903 *
2904 * This is a no-op for non-spinode filesystems since clusters are always fully
2905 * allocated and checking the bnobt suffices. However, a spinode filesystem
2906 * could have a record where the upper inodes are free blocks. If those blocks
2907 * were removed from the filesystem, the inode record would extend beyond EOAG,
2908 * which will be flagged as corruption.
2909 */
2910 int
xfs_ialloc_check_shrink(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agibp,xfs_agblock_t new_length)2911 xfs_ialloc_check_shrink(
2912 struct xfs_perag *pag,
2913 struct xfs_trans *tp,
2914 struct xfs_buf *agibp,
2915 xfs_agblock_t new_length)
2916 {
2917 struct xfs_inobt_rec_incore rec;
2918 struct xfs_btree_cur *cur;
2919 xfs_agino_t agino;
2920 int has;
2921 int error;
2922
2923 if (!xfs_has_sparseinodes(pag->pag_mount))
2924 return 0;
2925
2926 cur = xfs_inobt_init_cursor(pag, tp, agibp, XFS_BTNUM_INO);
2927
2928 /* Look up the inobt record that would correspond to the new EOFS. */
2929 agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
2930 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2931 if (error || !has)
2932 goto out;
2933
2934 error = xfs_inobt_get_rec(cur, &rec, &has);
2935 if (error)
2936 goto out;
2937
2938 if (!has) {
2939 error = -EFSCORRUPTED;
2940 goto out;
2941 }
2942
2943 /* If the record covers inodes that would be beyond EOFS, bail out. */
2944 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
2945 error = -ENOSPC;
2946 goto out;
2947 }
2948 out:
2949 xfs_btree_del_cursor(cur, error);
2950 return error;
2951 }
2952