1 /**
2  * @file
3  * Dynamic memory manager
4  *
5  * This is a lightweight replacement for the standard C library malloc().
6  *
7  * If you want to use the standard C library malloc() instead, define
8  * MEM_LIBC_MALLOC to 1 in your lwipopts.h
9  *
10  * To let mem_malloc() use pools (prevents fragmentation and is much faster than
11  * a heap but might waste some memory), define MEM_USE_POOLS to 1, define
12  * MEMP_USE_CUSTOM_POOLS to 1 and create a file "lwippools.h" that includes a list
13  * of pools like this (more pools can be added between _START and _END):
14  *
15  * Define three pools with sizes 256, 512, and 1512 bytes
16  * LWIP_MALLOC_MEMPOOL_START
17  * LWIP_MALLOC_MEMPOOL(20, 256)
18  * LWIP_MALLOC_MEMPOOL(10, 512)
19  * LWIP_MALLOC_MEMPOOL(5, 1512)
20  * LWIP_MALLOC_MEMPOOL_END
21  */
22 
23 /*
24  * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
25  * All rights reserved.
26  *
27  * Redistribution and use in source and binary forms, with or without modification,
28  * are permitted provided that the following conditions are met:
29  *
30  * 1. Redistributions of source code must retain the above copyright notice,
31  *    this list of conditions and the following disclaimer.
32  * 2. Redistributions in binary form must reproduce the above copyright notice,
33  *    this list of conditions and the following disclaimer in the documentation
34  *    and/or other materials provided with the distribution.
35  * 3. The name of the author may not be used to endorse or promote products
36  *    derived from this software without specific prior written permission.
37  *
38  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
39  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
40  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
41  * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
42  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
43  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
44  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
45  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
46  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
47  * OF SUCH DAMAGE.
48  *
49  * This file is part of the lwIP TCP/IP stack.
50  *
51  * Author: Adam Dunkels <adam@sics.se>
52  *         Simon Goldschmidt
53  *
54  */
55 
56 #include "lwip/opt.h"
57 #include "lwip/mem.h"
58 #include "lwip/def.h"
59 #include "lwip/sys.h"
60 #include "lwip/stats.h"
61 #include "lwip/err.h"
62 
63 #include <string.h>
64 #include <stdlib.h>
65 
66 #if MEM_LIBC_MALLOC || MEM_USE_POOLS
67 /** mem_init is not used when using pools instead of a heap or using
68  * C library malloc().
69  */
70 void
mem_init(void)71 mem_init(void)
72 {
73 }
74 
75 /** mem_trim is not used when using pools instead of a heap or using
76  * C library malloc(): we can't free part of a pool element and the stack
77  * support mem_trim() to return a different pointer
78  */
79 void*
mem_trim(void * mem,mem_size_t size)80 mem_trim(void *mem, mem_size_t size)
81 {
82   LWIP_UNUSED_ARG(size);
83   return mem;
84 }
85 #endif /* MEM_LIBC_MALLOC || MEM_USE_POOLS */
86 
87 #if MEM_LIBC_MALLOC
88 /* lwIP heap implemented using C library malloc() */
89 
90 /* in case C library malloc() needs extra protection,
91  * allow these defines to be overridden.
92  */
93 #ifndef mem_clib_free
94 #define mem_clib_free free
95 #endif
96 #ifndef mem_clib_malloc
97 #define mem_clib_malloc malloc
98 #endif
99 #ifndef mem_clib_calloc
100 #define mem_clib_calloc calloc
101 #endif
102 
103 #if LWIP_STATS && MEM_STATS
104 #define MEM_LIBC_STATSHELPER_SIZE LWIP_MEM_ALIGN_SIZE(sizeof(mem_size_t))
105 #else
106 #define MEM_LIBC_STATSHELPER_SIZE 0
107 #endif
108 
109 /**
110  * Allocate a block of memory with a minimum of 'size' bytes.
111  *
112  * @param size is the minimum size of the requested block in bytes.
113  * @return pointer to allocated memory or NULL if no free memory was found.
114  *
115  * Note that the returned value must always be aligned (as defined by MEM_ALIGNMENT).
116  */
117 void *
mem_malloc(mem_size_t size)118 mem_malloc(mem_size_t size)
119 {
120   void* ret = mem_clib_malloc(size + MEM_LIBC_STATSHELPER_SIZE);
121   if (ret == NULL) {
122     MEM_STATS_INC(err);
123   } else {
124     LWIP_ASSERT("malloc() must return aligned memory", LWIP_MEM_ALIGN(ret) == ret);
125 #if LWIP_STATS && MEM_STATS
126     *(mem_size_t*)ret = size;
127     ret = (u8_t*)ret + MEM_LIBC_STATSHELPER_SIZE;
128     MEM_STATS_INC_USED(used, size);
129 #endif
130   }
131   return ret;
132 }
133 
134 /** Put memory back on the heap
135  *
136  * @param rmem is the pointer as returned by a previous call to mem_malloc()
137  */
138 void
mem_free(void * rmem)139 mem_free(void *rmem)
140 {
141   LWIP_ASSERT("rmem != NULL", (rmem != NULL));
142   LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem)));
143 #if LWIP_STATS && MEM_STATS
144   rmem = (u8_t*)rmem - MEM_LIBC_STATSHELPER_SIZE;
145   MEM_STATS_DEC_USED(used, *(mem_size_t*)rmem);
146 #endif
147   mem_clib_free(rmem);
148 }
149 
150 #elif MEM_USE_POOLS
151 
152 /* lwIP heap implemented with different sized pools */
153 
154 /**
155  * Allocate memory: determine the smallest pool that is big enough
156  * to contain an element of 'size' and get an element from that pool.
157  *
158  * @param size the size in bytes of the memory needed
159  * @return a pointer to the allocated memory or NULL if the pool is empty
160  */
161 void *
mem_malloc(mem_size_t size)162 mem_malloc(mem_size_t size)
163 {
164   void *ret;
165   struct memp_malloc_helper *element;
166   memp_t poolnr;
167   mem_size_t required_size = size + LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper));
168 
169   for (poolnr = MEMP_POOL_FIRST; poolnr <= MEMP_POOL_LAST; poolnr = (memp_t)(poolnr + 1)) {
170     /* is this pool big enough to hold an element of the required size
171        plus a struct memp_malloc_helper that saves the pool this element came from? */
172     if (required_size <= memp_pools[poolnr]->size) {
173       element = (struct memp_malloc_helper*)memp_malloc(poolnr);
174       if (element == NULL) {
175         /* No need to DEBUGF or ASSERT: This error is already taken care of in memp.c */
176 #if MEM_USE_POOLS_TRY_BIGGER_POOL
177         /** Try a bigger pool if this one is empty! */
178         if (poolnr < MEMP_POOL_LAST) {
179           continue;
180         }
181 #endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */
182         MEM_STATS_INC(err);
183         return NULL;
184       }
185       break;
186     }
187   }
188   if (poolnr > MEMP_POOL_LAST) {
189     LWIP_ASSERT("mem_malloc(): no pool is that big!", 0);
190     MEM_STATS_INC(err);
191     return NULL;
192   }
193 
194   /* save the pool number this element came from */
195   element->poolnr = poolnr;
196   /* and return a pointer to the memory directly after the struct memp_malloc_helper */
197   ret = (u8_t*)element + LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper));
198 
199 #if MEMP_OVERFLOW_CHECK || (LWIP_STATS && MEM_STATS)
200   /* truncating to u16_t is safe because struct memp_desc::size is u16_t */
201   element->size = (u16_t)size;
202   MEM_STATS_INC_USED(used, element->size);
203 #endif /* MEMP_OVERFLOW_CHECK || (LWIP_STATS && MEM_STATS) */
204 #if MEMP_OVERFLOW_CHECK
205   /* initialize unused memory (diff between requested size and selected pool's size) */
206   memset((u8_t*)ret + size, 0xcd, memp_pools[poolnr]->size - size);
207 #endif /* MEMP_OVERFLOW_CHECK */
208   return ret;
209 }
210 
211 /**
212  * Free memory previously allocated by mem_malloc. Loads the pool number
213  * and calls memp_free with that pool number to put the element back into
214  * its pool
215  *
216  * @param rmem the memory element to free
217  */
218 void
mem_free(void * rmem)219 mem_free(void *rmem)
220 {
221   struct memp_malloc_helper *hmem;
222 
223   LWIP_ASSERT("rmem != NULL", (rmem != NULL));
224   LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem)));
225 
226   /* get the original struct memp_malloc_helper */
227   /* cast through void* to get rid of alignment warnings */
228   hmem = (struct memp_malloc_helper*)(void*)((u8_t*)rmem - LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper)));
229 
230   LWIP_ASSERT("hmem != NULL", (hmem != NULL));
231   LWIP_ASSERT("hmem == MEM_ALIGN(hmem)", (hmem == LWIP_MEM_ALIGN(hmem)));
232   LWIP_ASSERT("hmem->poolnr < MEMP_MAX", (hmem->poolnr < MEMP_MAX));
233 
234   MEM_STATS_DEC_USED(used, hmem->size);
235 #if MEMP_OVERFLOW_CHECK
236   {
237      u16_t i;
238      LWIP_ASSERT("MEM_USE_POOLS: invalid chunk size",
239         hmem->size <= memp_pools[hmem->poolnr]->size);
240      /* check that unused memory remained untouched (diff between requested size and selected pool's size) */
241      for (i = hmem->size; i < memp_pools[hmem->poolnr]->size; i++) {
242         u8_t data = *((u8_t*)rmem + i);
243         LWIP_ASSERT("MEM_USE_POOLS: mem overflow detected", data == 0xcd);
244      }
245   }
246 #endif /* MEMP_OVERFLOW_CHECK */
247 
248   /* and put it in the pool we saved earlier */
249   memp_free(hmem->poolnr, hmem);
250 }
251 
252 #else /* MEM_USE_POOLS */
253 /* lwIP replacement for your libc malloc() */
254 
255 /**
256  * The heap is made up as a list of structs of this type.
257  * This does not have to be aligned since for getting its size,
258  * we only use the macro SIZEOF_STRUCT_MEM, which automatically aligns.
259  */
260 struct mem {
261   /** index (-> ram[next]) of the next struct */
262   mem_size_t next;
263   /** index (-> ram[prev]) of the previous struct */
264   mem_size_t prev;
265   /** 1: this area is used; 0: this area is unused */
266   u8_t used;
267 };
268 
269 /** All allocated blocks will be MIN_SIZE bytes big, at least!
270  * MIN_SIZE can be overridden to suit your needs. Smaller values save space,
271  * larger values could prevent too small blocks to fragment the RAM too much. */
272 #ifndef MIN_SIZE
273 #define MIN_SIZE             12
274 #endif /* MIN_SIZE */
275 /* some alignment macros: we define them here for better source code layout */
276 #define MIN_SIZE_ALIGNED     LWIP_MEM_ALIGN_SIZE(MIN_SIZE)
277 #define SIZEOF_STRUCT_MEM    LWIP_MEM_ALIGN_SIZE(sizeof(struct mem))
278 #define MEM_SIZE_ALIGNED     LWIP_MEM_ALIGN_SIZE(MEM_SIZE)
279 
280 /** If you want to relocate the heap to external memory, simply define
281  * LWIP_RAM_HEAP_POINTER as a void-pointer to that location.
282  * If so, make sure the memory at that location is big enough (see below on
283  * how that space is calculated). */
284 #ifndef LWIP_RAM_HEAP_POINTER
285 /** the heap. we need one struct mem at the end and some room for alignment */
286 LWIP_DECLARE_MEMORY_ALIGNED(ram_heap, MEM_SIZE_ALIGNED + (2U*SIZEOF_STRUCT_MEM));
287 #define LWIP_RAM_HEAP_POINTER ram_heap
288 #endif /* LWIP_RAM_HEAP_POINTER */
289 
290 /** pointer to the heap (ram_heap): for alignment, ram is now a pointer instead of an array */
291 static u8_t *ram;
292 /** the last entry, always unused! */
293 static struct mem *ram_end;
294 /** pointer to the lowest free block, this is used for faster search */
295 static struct mem *lfree;
296 
297 /** concurrent access protection */
298 #if !NO_SYS
299 static sys_mutex_t mem_mutex;
300 #endif
301 
302 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
303 
304 static volatile u8_t mem_free_count;
305 
306 /* Allow mem_free from other (e.g. interrupt) context */
307 #define LWIP_MEM_FREE_DECL_PROTECT()  SYS_ARCH_DECL_PROTECT(lev_free)
308 #define LWIP_MEM_FREE_PROTECT()       SYS_ARCH_PROTECT(lev_free)
309 #define LWIP_MEM_FREE_UNPROTECT()     SYS_ARCH_UNPROTECT(lev_free)
310 #define LWIP_MEM_ALLOC_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_alloc)
311 #define LWIP_MEM_ALLOC_PROTECT()      SYS_ARCH_PROTECT(lev_alloc)
312 #define LWIP_MEM_ALLOC_UNPROTECT()    SYS_ARCH_UNPROTECT(lev_alloc)
313 
314 #else /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
315 
316 /* Protect the heap only by using a semaphore */
317 #define LWIP_MEM_FREE_DECL_PROTECT()
318 #define LWIP_MEM_FREE_PROTECT()    sys_mutex_lock(&mem_mutex)
319 #define LWIP_MEM_FREE_UNPROTECT()  sys_mutex_unlock(&mem_mutex)
320 /* mem_malloc is protected using semaphore AND LWIP_MEM_ALLOC_PROTECT */
321 #define LWIP_MEM_ALLOC_DECL_PROTECT()
322 #define LWIP_MEM_ALLOC_PROTECT()
323 #define LWIP_MEM_ALLOC_UNPROTECT()
324 
325 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
326 
327 
328 /**
329  * "Plug holes" by combining adjacent empty struct mems.
330  * After this function is through, there should not exist
331  * one empty struct mem pointing to another empty struct mem.
332  *
333  * @param mem this points to a struct mem which just has been freed
334  * @internal this function is only called by mem_free() and mem_trim()
335  *
336  * This assumes access to the heap is protected by the calling function
337  * already.
338  */
339 static void
plug_holes(struct mem * mem)340 plug_holes(struct mem *mem)
341 {
342   struct mem *nmem;
343   struct mem *pmem;
344 
345   LWIP_ASSERT("plug_holes: mem >= ram", (u8_t *)mem >= ram);
346   LWIP_ASSERT("plug_holes: mem < ram_end", (u8_t *)mem < (u8_t *)ram_end);
347   LWIP_ASSERT("plug_holes: mem->used == 0", mem->used == 0);
348 
349   /* plug hole forward */
350   LWIP_ASSERT("plug_holes: mem->next <= MEM_SIZE_ALIGNED", mem->next <= MEM_SIZE_ALIGNED);
351 
352   nmem = (struct mem *)(void *)&ram[mem->next];
353   if (mem != nmem && nmem->used == 0 && (u8_t *)nmem != (u8_t *)ram_end) {
354     /* if mem->next is unused and not end of ram, combine mem and mem->next */
355     if (lfree == nmem) {
356       lfree = mem;
357     }
358     mem->next = nmem->next;
359     ((struct mem *)(void *)&ram[nmem->next])->prev = (mem_size_t)((u8_t *)mem - ram);
360   }
361 
362   /* plug hole backward */
363   pmem = (struct mem *)(void *)&ram[mem->prev];
364   if (pmem != mem && pmem->used == 0) {
365     /* if mem->prev is unused, combine mem and mem->prev */
366     if (lfree == mem) {
367       lfree = pmem;
368     }
369     pmem->next = mem->next;
370     ((struct mem *)(void *)&ram[mem->next])->prev = (mem_size_t)((u8_t *)pmem - ram);
371   }
372 }
373 
374 /**
375  * Zero the heap and initialize start, end and lowest-free
376  */
377 void
mem_init(void)378 mem_init(void)
379 {
380   struct mem *mem;
381 
382   LWIP_ASSERT("Sanity check alignment",
383     (SIZEOF_STRUCT_MEM & (MEM_ALIGNMENT-1)) == 0);
384 
385   /* align the heap */
386   ram = (u8_t *)LWIP_MEM_ALIGN(LWIP_RAM_HEAP_POINTER);
387   /* initialize the start of the heap */
388   mem = (struct mem *)(void *)ram;
389   mem->next = MEM_SIZE_ALIGNED;
390   mem->prev = 0;
391   mem->used = 0;
392   /* initialize the end of the heap */
393   ram_end = (struct mem *)(void *)&ram[MEM_SIZE_ALIGNED];
394   ram_end->used = 1;
395   ram_end->next = MEM_SIZE_ALIGNED;
396   ram_end->prev = MEM_SIZE_ALIGNED;
397 
398   /* initialize the lowest-free pointer to the start of the heap */
399   lfree = (struct mem *)(void *)ram;
400 
401   MEM_STATS_AVAIL(avail, MEM_SIZE_ALIGNED);
402 
403   if (sys_mutex_new(&mem_mutex) != ERR_OK) {
404     LWIP_ASSERT("failed to create mem_mutex", 0);
405   }
406 }
407 
408 /**
409  * Put a struct mem back on the heap
410  *
411  * @param rmem is the data portion of a struct mem as returned by a previous
412  *             call to mem_malloc()
413  */
414 void
mem_free(void * rmem)415 mem_free(void *rmem)
416 {
417   struct mem *mem;
418   LWIP_MEM_FREE_DECL_PROTECT();
419 
420   if (rmem == NULL) {
421     LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_SERIOUS, ("mem_free(p == NULL) was called.\n"));
422     return;
423   }
424   LWIP_ASSERT("mem_free: sanity check alignment", (((mem_ptr_t)rmem) & (MEM_ALIGNMENT-1)) == 0);
425 
426   LWIP_ASSERT("mem_free: legal memory", (u8_t *)rmem >= (u8_t *)ram &&
427     (u8_t *)rmem < (u8_t *)ram_end);
428 
429   if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) {
430     SYS_ARCH_DECL_PROTECT(lev);
431     LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory\n"));
432     /* protect mem stats from concurrent access */
433     SYS_ARCH_PROTECT(lev);
434     MEM_STATS_INC(illegal);
435     SYS_ARCH_UNPROTECT(lev);
436     return;
437   }
438   /* protect the heap from concurrent access */
439   LWIP_MEM_FREE_PROTECT();
440   /* Get the corresponding struct mem ... */
441   /* cast through void* to get rid of alignment warnings */
442   mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM);
443   /* ... which has to be in a used state ... */
444   LWIP_ASSERT("mem_free: mem->used", mem->used);
445   /* ... and is now unused. */
446   mem->used = 0;
447 
448   if (mem < lfree) {
449     /* the newly freed struct is now the lowest */
450     lfree = mem;
451   }
452 
453   MEM_STATS_DEC_USED(used, mem->next - (mem_size_t)(((u8_t *)mem - ram)));
454 
455   /* finally, see if prev or next are free also */
456   plug_holes(mem);
457 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
458   mem_free_count = 1;
459 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
460   LWIP_MEM_FREE_UNPROTECT();
461 }
462 
463 /**
464  * Shrink memory returned by mem_malloc().
465  *
466  * @param rmem pointer to memory allocated by mem_malloc the is to be shrinked
467  * @param newsize required size after shrinking (needs to be smaller than or
468  *                equal to the previous size)
469  * @return for compatibility reasons: is always == rmem, at the moment
470  *         or NULL if newsize is > old size, in which case rmem is NOT touched
471  *         or freed!
472  */
473 void *
mem_trim(void * rmem,mem_size_t newsize)474 mem_trim(void *rmem, mem_size_t newsize)
475 {
476   mem_size_t size;
477   mem_size_t ptr, ptr2;
478   struct mem *mem, *mem2;
479   /* use the FREE_PROTECT here: it protects with sem OR SYS_ARCH_PROTECT */
480   LWIP_MEM_FREE_DECL_PROTECT();
481 
482   /* Expand the size of the allocated memory region so that we can
483      adjust for alignment. */
484   newsize = LWIP_MEM_ALIGN_SIZE(newsize);
485 
486   if (newsize < MIN_SIZE_ALIGNED) {
487     /* every data block must be at least MIN_SIZE_ALIGNED long */
488     newsize = MIN_SIZE_ALIGNED;
489   }
490 
491   if (newsize > MEM_SIZE_ALIGNED) {
492     return NULL;
493   }
494 
495   LWIP_ASSERT("mem_trim: legal memory", (u8_t *)rmem >= (u8_t *)ram &&
496    (u8_t *)rmem < (u8_t *)ram_end);
497 
498   if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) {
499     SYS_ARCH_DECL_PROTECT(lev);
500     LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_trim: illegal memory\n"));
501     /* protect mem stats from concurrent access */
502     SYS_ARCH_PROTECT(lev);
503     MEM_STATS_INC(illegal);
504     SYS_ARCH_UNPROTECT(lev);
505     return rmem;
506   }
507   /* Get the corresponding struct mem ... */
508   /* cast through void* to get rid of alignment warnings */
509   mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM);
510   /* ... and its offset pointer */
511   ptr = (mem_size_t)((u8_t *)mem - ram);
512 
513   size = mem->next - ptr - SIZEOF_STRUCT_MEM;
514   LWIP_ASSERT("mem_trim can only shrink memory", newsize <= size);
515   if (newsize > size) {
516     /* not supported */
517     return NULL;
518   }
519   if (newsize == size) {
520     /* No change in size, simply return */
521     return rmem;
522   }
523 
524   /* protect the heap from concurrent access */
525   LWIP_MEM_FREE_PROTECT();
526 
527   mem2 = (struct mem *)(void *)&ram[mem->next];
528   if (mem2->used == 0) {
529     /* The next struct is unused, we can simply move it at little */
530     mem_size_t next;
531     /* remember the old next pointer */
532     next = mem2->next;
533     /* create new struct mem which is moved directly after the shrinked mem */
534     ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
535     if (lfree == mem2) {
536       lfree = (struct mem *)(void *)&ram[ptr2];
537     }
538     mem2 = (struct mem *)(void *)&ram[ptr2];
539     mem2->used = 0;
540     /* restore the next pointer */
541     mem2->next = next;
542     /* link it back to mem */
543     mem2->prev = ptr;
544     /* link mem to it */
545     mem->next = ptr2;
546     /* last thing to restore linked list: as we have moved mem2,
547      * let 'mem2->next->prev' point to mem2 again. but only if mem2->next is not
548      * the end of the heap */
549     if (mem2->next != MEM_SIZE_ALIGNED) {
550       ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
551     }
552     MEM_STATS_DEC_USED(used, (size - newsize));
553     /* no need to plug holes, we've already done that */
554   } else if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED <= size) {
555     /* Next struct is used but there's room for another struct mem with
556      * at least MIN_SIZE_ALIGNED of data.
557      * Old size ('size') must be big enough to contain at least 'newsize' plus a struct mem
558      * ('SIZEOF_STRUCT_MEM') with some data ('MIN_SIZE_ALIGNED').
559      * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
560      *       region that couldn't hold data, but when mem->next gets freed,
561      *       the 2 regions would be combined, resulting in more free memory */
562     ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
563     mem2 = (struct mem *)(void *)&ram[ptr2];
564     if (mem2 < lfree) {
565       lfree = mem2;
566     }
567     mem2->used = 0;
568     mem2->next = mem->next;
569     mem2->prev = ptr;
570     mem->next = ptr2;
571     if (mem2->next != MEM_SIZE_ALIGNED) {
572       ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
573     }
574     MEM_STATS_DEC_USED(used, (size - newsize));
575     /* the original mem->next is used, so no need to plug holes! */
576   }
577   /* else {
578     next struct mem is used but size between mem and mem2 is not big enough
579     to create another struct mem
580     -> don't do anyhting.
581     -> the remaining space stays unused since it is too small
582   } */
583 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
584   mem_free_count = 1;
585 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
586   LWIP_MEM_FREE_UNPROTECT();
587   return rmem;
588 }
589 
590 /**
591  * Allocate a block of memory with a minimum of 'size' bytes.
592  *
593  * @param size is the minimum size of the requested block in bytes.
594  * @return pointer to allocated memory or NULL if no free memory was found.
595  *
596  * Note that the returned value will always be aligned (as defined by MEM_ALIGNMENT).
597  */
598 void *
mem_malloc(mem_size_t size)599 mem_malloc(mem_size_t size)
600 {
601   mem_size_t ptr, ptr2;
602   struct mem *mem, *mem2;
603 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
604   u8_t local_mem_free_count = 0;
605 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
606   LWIP_MEM_ALLOC_DECL_PROTECT();
607 
608   if (size == 0) {
609     return NULL;
610   }
611 
612   /* Expand the size of the allocated memory region so that we can
613      adjust for alignment. */
614   size = LWIP_MEM_ALIGN_SIZE(size);
615 
616   if (size < MIN_SIZE_ALIGNED) {
617     /* every data block must be at least MIN_SIZE_ALIGNED long */
618     size = MIN_SIZE_ALIGNED;
619   }
620 
621   if (size > MEM_SIZE_ALIGNED) {
622     return NULL;
623   }
624 
625   /* protect the heap from concurrent access */
626   sys_mutex_lock(&mem_mutex);
627   LWIP_MEM_ALLOC_PROTECT();
628 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
629   /* run as long as a mem_free disturbed mem_malloc or mem_trim */
630   do {
631     local_mem_free_count = 0;
632 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
633 
634     /* Scan through the heap searching for a free block that is big enough,
635      * beginning with the lowest free block.
636      */
637     for (ptr = (mem_size_t)((u8_t *)lfree - ram); ptr < MEM_SIZE_ALIGNED - size;
638          ptr = ((struct mem *)(void *)&ram[ptr])->next) {
639       mem = (struct mem *)(void *)&ram[ptr];
640 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
641       mem_free_count = 0;
642       LWIP_MEM_ALLOC_UNPROTECT();
643       /* allow mem_free or mem_trim to run */
644       LWIP_MEM_ALLOC_PROTECT();
645       if (mem_free_count != 0) {
646         /* If mem_free or mem_trim have run, we have to restart since they
647            could have altered our current struct mem. */
648         local_mem_free_count = 1;
649         break;
650       }
651 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
652 
653       if ((!mem->used) &&
654           (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) {
655         /* mem is not used and at least perfect fit is possible:
656          * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */
657 
658         if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) {
659           /* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing
660            * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
661            * -> split large block, create empty remainder,
662            * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
663            * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
664            * struct mem would fit in but no data between mem2 and mem2->next
665            * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
666            *       region that couldn't hold data, but when mem->next gets freed,
667            *       the 2 regions would be combined, resulting in more free memory
668            */
669           ptr2 = ptr + SIZEOF_STRUCT_MEM + size;
670           /* create mem2 struct */
671           mem2 = (struct mem *)(void *)&ram[ptr2];
672           mem2->used = 0;
673           mem2->next = mem->next;
674           mem2->prev = ptr;
675           /* and insert it between mem and mem->next */
676           mem->next = ptr2;
677           mem->used = 1;
678 
679           if (mem2->next != MEM_SIZE_ALIGNED) {
680             ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2;
681           }
682           MEM_STATS_INC_USED(used, (size + SIZEOF_STRUCT_MEM));
683         } else {
684           /* (a mem2 struct does no fit into the user data space of mem and mem->next will always
685            * be used at this point: if not we have 2 unused structs in a row, plug_holes should have
686            * take care of this).
687            * -> near fit or exact fit: do not split, no mem2 creation
688            * also can't move mem->next directly behind mem, since mem->next
689            * will always be used at this point!
690            */
691           mem->used = 1;
692           MEM_STATS_INC_USED(used, mem->next - (mem_size_t)((u8_t *)mem - ram));
693         }
694 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
695 mem_malloc_adjust_lfree:
696 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
697         if (mem == lfree) {
698           struct mem *cur = lfree;
699           /* Find next free block after mem and update lowest free pointer */
700           while (cur->used && cur != ram_end) {
701 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
702             mem_free_count = 0;
703             LWIP_MEM_ALLOC_UNPROTECT();
704             /* prevent high interrupt latency... */
705             LWIP_MEM_ALLOC_PROTECT();
706             if (mem_free_count != 0) {
707               /* If mem_free or mem_trim have run, we have to restart since they
708                  could have altered our current struct mem or lfree. */
709               goto mem_malloc_adjust_lfree;
710             }
711 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
712             cur = (struct mem *)(void *)&ram[cur->next];
713           }
714           lfree = cur;
715           LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used)));
716         }
717         LWIP_MEM_ALLOC_UNPROTECT();
718         sys_mutex_unlock(&mem_mutex);
719         LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.",
720          (mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end);
721         LWIP_ASSERT("mem_malloc: allocated memory properly aligned.",
722          ((mem_ptr_t)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0);
723         LWIP_ASSERT("mem_malloc: sanity check alignment",
724           (((mem_ptr_t)mem) & (MEM_ALIGNMENT-1)) == 0);
725 
726         return (u8_t *)mem + SIZEOF_STRUCT_MEM;
727       }
728     }
729 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
730     /* if we got interrupted by a mem_free, try again */
731   } while (local_mem_free_count != 0);
732 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
733   LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size));
734   MEM_STATS_INC(err);
735   LWIP_MEM_ALLOC_UNPROTECT();
736   sys_mutex_unlock(&mem_mutex);
737   return NULL;
738 }
739 
740 #endif /* MEM_USE_POOLS */
741 
742 #if MEM_LIBC_MALLOC && (!LWIP_STATS || !MEM_STATS)
743 void *
mem_calloc(mem_size_t count,mem_size_t size)744 mem_calloc(mem_size_t count, mem_size_t size)
745 {
746   return mem_clib_calloc(count, size);
747 }
748 
749 #else /* MEM_LIBC_MALLOC && (!LWIP_STATS || !MEM_STATS) */
750 /**
751  * Contiguously allocates enough space for count objects that are size bytes
752  * of memory each and returns a pointer to the allocated memory.
753  *
754  * The allocated memory is filled with bytes of value zero.
755  *
756  * @param count number of objects to allocate
757  * @param size size of the objects to allocate
758  * @return pointer to allocated memory / NULL pointer if there is an error
759  */
760 void *
mem_calloc(mem_size_t count,mem_size_t size)761 mem_calloc(mem_size_t count, mem_size_t size)
762 {
763   void *p;
764 
765   /* allocate 'count' objects of size 'size' */
766   p = mem_malloc(count * size);
767   if (p) {
768     /* zero the memory */
769     memset(p, 0, (size_t)count * (size_t)size);
770   }
771   return p;
772 }
773 #endif /* MEM_LIBC_MALLOC && (!LWIP_STATS || !MEM_STATS) */
774