1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Function to read values from the device tree node attached to a udevice.
4  *
5  * Copyright (c) 2017 Google, Inc
6  * Written by Simon Glass <sjg@chromium.org>
7  */
8 
9 #ifndef _DM_READ_H
10 #define _DM_READ_H
11 
12 #include <linux/errno.h>
13 
14 #include <dm/device.h>
15 #include <dm/fdtaddr.h>
16 #include <dm/ofnode.h>
17 #include <dm/uclass.h>
18 
19 struct resource;
20 
21 #if CONFIG_IS_ENABLED(OF_LIVE)
dev_np(const struct udevice * dev)22 static inline const struct device_node *dev_np(const struct udevice *dev)
23 {
24 	return ofnode_to_np(dev_ofnode(dev));
25 }
26 #else
dev_np(const struct udevice * dev)27 static inline const struct device_node *dev_np(const struct udevice *dev)
28 {
29 	return NULL;
30 }
31 #endif
32 
33 #if !defined(CONFIG_DM_DEV_READ_INLINE) || CONFIG_IS_ENABLED(OF_PLATDATA)
34 /**
35  * dev_read_u32() - read a 32-bit integer from a device's DT property
36  *
37  * @dev:	device to read DT property from
38  * @propname:	name of the property to read from
39  * @outp:	place to put value (if found)
40  * @return 0 if OK, -ve on error
41  */
42 int dev_read_u32(const struct udevice *dev, const char *propname, u32 *outp);
43 
44 /**
45  * dev_read_u32_default() - read a 32-bit integer from a device's DT property
46  *
47  * @dev:	device to read DT property from
48  * @propname:	name of the property to read from
49  * @def:	default value to return if the property has no value
50  * @return property value, or @def if not found
51  */
52 int dev_read_u32_default(const struct udevice *dev, const char *propname,
53 			 int def);
54 
55 /**
56  * dev_read_u32_index() - read an indexed 32-bit integer from a device's DT
57  *                        property
58  *
59  * @dev:	device to read DT property from
60  * @propname:	name of the property to read from
61  * @index:	index of the integer to return
62  * @outp:	place to put value (if found)
63  * @return 0 if OK, -ve on error
64  */
65 int dev_read_u32_index(struct udevice *dev, const char *propname, int index,
66 		       u32 *outp);
67 
68 /**
69  * dev_read_u32_index_default() - read an indexed 32-bit integer from a device's
70  *                                DT property
71  *
72  * @dev:	device to read DT property from
73  * @propname:	name of the property to read from
74  * @index:	index of the integer to return
75  * @def:	default value to return if the property has no value
76  * @return property value, or @def if not found
77  */
78 u32 dev_read_u32_index_default(struct udevice *dev, const char *propname,
79 			       int index, u32 def);
80 
81 /**
82  * dev_read_s32() - read a signed 32-bit integer from a device's DT property
83  *
84  * @dev:	device to read DT property from
85  * @propname:	name of the property to read from
86  * @outp:	place to put value (if found)
87  * @return 0 if OK, -ve on error
88  */
89 int dev_read_s32(const struct udevice *dev, const char *propname, s32 *outp);
90 
91 /**
92  * dev_read_s32_default() - read a signed 32-bit int from a device's DT property
93  *
94  * @dev:	device to read DT property from
95  * @propname:	name of the property to read from
96  * @def:	default value to return if the property has no value
97  * @return property value, or @def if not found
98  */
99 int dev_read_s32_default(const struct udevice *dev, const char *propname,
100 			 int def);
101 
102 /**
103  * dev_read_u32u() - read a 32-bit integer from a device's DT property
104  *
105  * This version uses a standard uint type.
106  *
107  * @dev:	device to read DT property from
108  * @propname:	name of the property to read from
109  * @outp:	place to put value (if found)
110  * @return 0 if OK, -ve on error
111  */
112 int dev_read_u32u(const struct udevice *dev, const char *propname, uint *outp);
113 
114 /**
115  * dev_read_u64() - read a 64-bit integer from a device's DT property
116  *
117  * @dev:        device to read DT property from
118  * @propname:   name of the property to read from
119  * @outp:       place to put value (if found)
120  * @return 0 if OK, -ve on error
121  */
122 int dev_read_u64(const struct udevice *dev, const char *propname, u64 *outp);
123 
124 /**
125  * dev_read_u64_default() - read a 64-bit integer from a device's DT property
126  *
127  * @dev:        device to read DT property from
128  * @propname:   name of the property to read from
129  * @def:        default value to return if the property has no value
130  * @return property value, or @def if not found
131  */
132 u64 dev_read_u64_default(const struct udevice *dev, const char *propname,
133 			 u64 def);
134 
135 /**
136  * dev_read_string() - Read a string from a device's DT property
137  *
138  * @dev:	device to read DT property from
139  * @propname:	name of the property to read
140  * @return string from property value, or NULL if there is no such property
141  */
142 const char *dev_read_string(const struct udevice *dev, const char *propname);
143 
144 /**
145  * dev_read_bool() - read a boolean value from a device's DT property
146  *
147  * @dev:	device to read DT property from
148  * @propname:	name of property to read
149  * @return true if property is present (meaning true), false if not present
150  */
151 bool dev_read_bool(const struct udevice *dev, const char *propname);
152 
153 /**
154  * dev_read_subnode() - find a named subnode of a device
155  *
156  * @dev:	device whose DT node contains the subnode
157  * @subnode_name: name of subnode to find
158  * @return reference to subnode (which can be invalid if there is no such
159  * subnode)
160  */
161 ofnode dev_read_subnode(const struct udevice *dev, const char *subbnode_name);
162 
163 /**
164  * dev_read_size() - read the size of a property
165  *
166  * @dev: device to check
167  * @propname: property to check
168  * @return size of property if present, or -EINVAL if not
169  */
170 int dev_read_size(const struct udevice *dev, const char *propname);
171 
172 /**
173  * dev_read_addr_index() - Get the indexed reg property of a device
174  *
175  * @dev: Device to read from
176  * @index: the 'reg' property can hold a list of <addr, size> pairs
177  *	   and @index is used to select which one is required
178  *
179  * @return address or FDT_ADDR_T_NONE if not found
180  */
181 fdt_addr_t dev_read_addr_index(const struct udevice *dev, int index);
182 
183 /**
184  * dev_read_addr_index_ptr() - Get the indexed reg property of a device
185  *                             as a pointer
186  *
187  * @dev: Device to read from
188  * @index: the 'reg' property can hold a list of <addr, size> pairs
189  *	   and @index is used to select which one is required
190  *
191  * @return pointer or NULL if not found
192  */
193 void *dev_read_addr_index_ptr(const struct udevice *dev, int index);
194 
195 /**
196  * dev_read_addr_size_index() - Get the indexed reg property of a device
197  *
198  * @dev: Device to read from
199  * @index: the 'reg' property can hold a list of <addr, size> pairs
200  *	   and @index is used to select which one is required
201  * @size: place to put size value (on success)
202  *
203  * @return address or FDT_ADDR_T_NONE if not found
204  */
205 fdt_addr_t dev_read_addr_size_index(const struct udevice *dev, int index,
206 				    fdt_size_t *size);
207 
208 /**
209  * dev_remap_addr_index() - Get the indexed reg property of a device
210  *                               as a memory-mapped I/O pointer
211  *
212  * @dev: Device to read from
213  * @index: the 'reg' property can hold a list of <addr, size> pairs
214  *	   and @index is used to select which one is required
215  *
216  * @return pointer or NULL if not found
217  */
218 void *dev_remap_addr_index(const struct udevice *dev, int index);
219 
220 /**
221  * dev_read_addr_name() - Get the reg property of a device, indexed by name
222  *
223  * @dev: Device to read from
224  * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
225  *	  'reg-names' property providing named-based identification. @index
226  *	  indicates the value to search for in 'reg-names'.
227  *
228  * @return address or FDT_ADDR_T_NONE if not found
229  */
230 fdt_addr_t dev_read_addr_name(const struct udevice *dev, const char *name);
231 
232 /**
233  * dev_read_addr_size_name() - Get the reg property of a device, indexed by name
234  *
235  * @dev: Device to read from
236  * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
237  *	  'reg-names' property providing named-based identification. @index
238  *	  indicates the value to search for in 'reg-names'.
239  *  @size: place to put size value (on success)
240  *
241  * @return address or FDT_ADDR_T_NONE if not found
242  */
243 fdt_addr_t dev_read_addr_size_name(const struct udevice *dev, const char *name,
244 				   fdt_size_t *size);
245 
246 /**
247  * dev_remap_addr_name() - Get the reg property of a device, indexed by name,
248  *                         as a memory-mapped I/O pointer
249  *
250  * @dev: Device to read from
251  * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
252  *	  'reg-names' property providing named-based identification. @index
253  *	  indicates the value to search for in 'reg-names'.
254  *
255  * @return pointer or NULL if not found
256  */
257 void *dev_remap_addr_name(const struct udevice *dev, const char *name);
258 
259 /**
260  * dev_read_addr() - Get the reg property of a device
261  *
262  * @dev: Device to read from
263  *
264  * @return address or FDT_ADDR_T_NONE if not found
265  */
266 fdt_addr_t dev_read_addr(const struct udevice *dev);
267 
268 /**
269  * dev_read_addr_ptr() - Get the reg property of a device
270  *                       as a pointer
271  *
272  * @dev: Device to read from
273  *
274  * @return pointer or NULL if not found
275  */
276 void *dev_read_addr_ptr(const struct udevice *dev);
277 
278 /**
279  * dev_read_addr_pci() - Read an address and handle PCI address translation
280  *
281  * At present U-Boot does not have address translation logic for PCI in the
282  * livetree implementation (of_addr.c). This special function supports this for
283  * the flat tree implementation.
284  *
285  * This function should be removed (and code should use dev_read() instead)
286  * once:
287  *
288  * 1. PCI address translation is added; and either
289  * 2. everything uses livetree where PCI translation is used (which is feasible
290  *    in SPL and U-Boot proper) or PCI address translation is added to
291  *    fdtdec_get_addr() and friends.
292  *
293  * @dev: Device to read from
294  * @return address or FDT_ADDR_T_NONE if not found
295  */
296 fdt_addr_t dev_read_addr_pci(const struct udevice *dev);
297 
298 /**
299  * dev_remap_addr() - Get the reg property of a device as a
300  *                         memory-mapped I/O pointer
301  *
302  * @dev: Device to read from
303  *
304  * @return pointer or NULL if not found
305  */
306 void *dev_remap_addr(const struct udevice *dev);
307 
308 /**
309  * dev_read_addr_size() - get address and size from a device property
310  *
311  * This does no address translation. It simply reads an property that contains
312  * an address and a size value, one after the other.
313  *
314  * @dev: Device to read from
315  * @propname: property to read
316  * @sizep: place to put size value (on success)
317  * @return address value, or FDT_ADDR_T_NONE on error
318  */
319 fdt_addr_t dev_read_addr_size(const struct udevice *dev, const char *propname,
320 			      fdt_size_t *sizep);
321 
322 /**
323  * dev_read_name() - get the name of a device's node
324  *
325  * @dev: Device to read from
326  * @return name of node
327  */
328 const char *dev_read_name(const struct udevice *dev);
329 
330 /**
331  * dev_read_stringlist_search() - find string in a string list and return index
332  *
333  * Note that it is possible for this function to succeed on property values
334  * that are not NUL-terminated. That's because the function will stop after
335  * finding the first occurrence of @string. This can for example happen with
336  * small-valued cell properties, such as #address-cells, when searching for
337  * the empty string.
338  *
339  * @dev: device to check
340  * @propname: name of the property containing the string list
341  * @string: string to look up in the string list
342  *
343  * @return:
344  *   the index of the string in the list of strings
345  *   -ENODATA if the property is not found
346  *   -EINVAL on some other error
347  */
348 int dev_read_stringlist_search(const struct udevice *dev, const char *property,
349 			       const char *string);
350 
351 /**
352  * dev_read_string_index() - obtain an indexed string from a string list
353  *
354  * @dev: device to examine
355  * @propname: name of the property containing the string list
356  * @index: index of the string to return
357  * @out: return location for the string
358  *
359  * @return:
360  *   length of string, if found or -ve error value if not found
361  */
362 int dev_read_string_index(const struct udevice *dev, const char *propname,
363 			  int index, const char **outp);
364 
365 /**
366  * dev_read_string_count() - find the number of strings in a string list
367  *
368  * @dev: device to examine
369  * @propname: name of the property containing the string list
370  * @return:
371  *   number of strings in the list, or -ve error value if not found
372  */
373 int dev_read_string_count(const struct udevice *dev, const char *propname);
374 /**
375  * dev_read_phandle_with_args() - Find a node pointed by phandle in a list
376  *
377  * This function is useful to parse lists of phandles and their arguments.
378  * Returns 0 on success and fills out_args, on error returns appropriate
379  * errno value.
380  *
381  * Caller is responsible to call of_node_put() on the returned out_args->np
382  * pointer.
383  *
384  * Example:
385  *
386  * phandle1: node1 {
387  *	#list-cells = <2>;
388  * }
389  *
390  * phandle2: node2 {
391  *	#list-cells = <1>;
392  * }
393  *
394  * node3 {
395  *	list = <&phandle1 1 2 &phandle2 3>;
396  * }
397  *
398  * To get a device_node of the `node2' node you may call this:
399  * dev_read_phandle_with_args(dev, "list", "#list-cells", 0, 1, &args);
400  *
401  * @dev:	device whose node containing a list
402  * @list_name:	property name that contains a list
403  * @cells_name:	property name that specifies phandles' arguments count
404  * @cells_count: Cell count to use if @cells_name is NULL
405  * @index:	index of a phandle to parse out
406  * @out_args:	optional pointer to output arguments structure (will be filled)
407  * @return 0 on success (with @out_args filled out if not NULL), -ENOENT if
408  *	@list_name does not exist, -EINVAL if a phandle was not found,
409  *	@cells_name could not be found, the arguments were truncated or there
410  *	were too many arguments.
411  */
412 int dev_read_phandle_with_args(const struct udevice *dev, const char *list_name,
413 			       const char *cells_name, int cell_count,
414 			       int index, struct ofnode_phandle_args *out_args);
415 
416 /**
417  * dev_count_phandle_with_args() - Return phandle number in a list
418  *
419  * This function is usefull to get phandle number contained in a property list.
420  * For example, this allows to allocate the right amount of memory to keep
421  * clock's reference contained into the "clocks" property.
422  *
423  *
424  * @dev:	device whose node containing a list
425  * @list_name:	property name that contains a list
426  * @cells_name:	property name that specifies phandles' arguments count
427  * @cells_count: Cell count to use if @cells_name is NULL
428  * @Returns number of phandle found on success, on error returns appropriate
429  * errno value.
430  */
431 
432 int dev_count_phandle_with_args(const struct udevice *dev,
433 				const char *list_name, const char *cells_name,
434 				int cell_count);
435 
436 /**
437  * dev_read_addr_cells() - Get the number of address cells for a device's node
438  *
439  * This walks back up the tree to find the closest #address-cells property
440  * which controls the given node.
441  *
442  * @dev: device to check
443  * @return number of address cells this node uses
444  */
445 int dev_read_addr_cells(const struct udevice *dev);
446 
447 /**
448  * dev_read_size_cells() - Get the number of size cells for a device's node
449  *
450  * This walks back up the tree to find the closest #size-cells property
451  * which controls the given node.
452  *
453  * @dev: device to check
454  * @return number of size cells this node uses
455  */
456 int dev_read_size_cells(const struct udevice *dev);
457 
458 /**
459  * dev_read_addr_cells() - Get the address cells property in a node
460  *
461  * This function matches fdt_address_cells().
462  *
463  * @dev: device to check
464  * @return number of address cells this node uses
465  */
466 int dev_read_simple_addr_cells(const struct udevice *dev);
467 
468 /**
469  * dev_read_size_cells() - Get the size cells property in a node
470  *
471  * This function matches fdt_size_cells().
472  *
473  * @dev: device to check
474  * @return number of size cells this node uses
475  */
476 int dev_read_simple_size_cells(const struct udevice *dev);
477 
478 /**
479  * dev_read_phandle() - Get the phandle from a device
480  *
481  * @dev: device to check
482  * @return phandle (1 or greater), or 0 if no phandle or other error
483  */
484 int dev_read_phandle(const struct udevice *dev);
485 
486 /**
487  * dev_read_prop()- - read a property from a device's node
488  *
489  * @dev: device to check
490  * @propname: property to read
491  * @lenp: place to put length on success
492  * @return pointer to property, or NULL if not found
493  */
494 const void *dev_read_prop(const struct udevice *dev, const char *propname,
495 			  int *lenp);
496 
497 /**
498  * dev_read_first_prop()- get the reference of the first property
499  *
500  * Get reference to the first property of the node, it is used to iterate
501  * and read all the property with dev_read_prop_by_prop().
502  *
503  * @dev: device to check
504  * @prop: place to put argument reference
505  * @return 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
506  */
507 int dev_read_first_prop(const struct udevice *dev, struct ofprop *prop);
508 
509 /**
510  * ofnode_get_next_property() - get the reference of the next property
511  *
512  * Get reference to the next property of the node, it is used to iterate
513  * and read all the property with dev_read_prop_by_prop().
514  *
515  * @prop: reference of current argument and place to put reference of next one
516  * @return 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
517  */
518 int dev_read_next_prop(struct ofprop *prop);
519 
520 /**
521  * dev_read_prop_by_prop() - get a pointer to the value of a property
522  *
523  * Get value for the property identified by the provided reference.
524  *
525  * @prop: reference on property
526  * @propname: If non-NULL, place to property name on success,
527  * @lenp: If non-NULL, place to put length on success
528  * @return 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
529  */
530 const void *dev_read_prop_by_prop(struct ofprop *prop,
531 				  const char **propname, int *lenp);
532 
533 /**
534  * dev_read_alias_seq() - Get the alias sequence number of a node
535  *
536  * This works out whether a node is pointed to by an alias, and if so, the
537  * sequence number of that alias. Aliases are of the form <base><num> where
538  * <num> is the sequence number. For example spi2 would be sequence number 2.
539  *
540  * @dev: device to look up
541  * @devnump: set to the sequence number if one is found
542  * @return 0 if a sequence was found, -ve if not
543  */
544 int dev_read_alias_seq(const struct udevice *dev, int *devnump);
545 
546 /**
547  * dev_read_u32_array() - Find and read an array of 32 bit integers
548  *
549  * Search for a property in a device node and read 32-bit value(s) from
550  * it.
551  *
552  * The out_values is modified only if a valid u32 value can be decoded.
553  *
554  * @dev: device to look up
555  * @propname:	name of the property to read
556  * @out_values:	pointer to return value, modified only if return value is 0
557  * @sz:		number of array elements to read
558  * @return 0 on success, -EINVAL if the property does not exist, -ENODATA if
559  * property does not have a value, and -EOVERFLOW if the property data isn't
560  * large enough.
561  */
562 int dev_read_u32_array(const struct udevice *dev, const char *propname,
563 		       u32 *out_values, size_t sz);
564 
565 /**
566  * dev_read_first_subnode() - find the first subnode of a device's node
567  *
568  * @dev: device to look up
569  * @return reference to the first subnode (which can be invalid if the device's
570  * node has no subnodes)
571  */
572 ofnode dev_read_first_subnode(const struct udevice *dev);
573 
574 /**
575  * ofnode_next_subnode() - find the next sibling of a subnode
576  *
577  * @node:	valid reference to previous node (sibling)
578  * @return reference to the next subnode (which can be invalid if the node
579  * has no more siblings)
580  */
581 ofnode dev_read_next_subnode(ofnode node);
582 
583 /**
584  * dev_read_u8_array_ptr() - find an 8-bit array
585  *
586  * Look up a device's node property and return a pointer to its contents as a
587  * byte array of given length. The property must have at least enough data
588  * for the array (count bytes). It may have more, but this will be ignored.
589  * The data is not copied.
590  *
591  * @dev: device to look up
592  * @propname: name of property to find
593  * @sz: number of array elements
594  * @return pointer to byte array if found, or NULL if the property is not
595  *		found or there is not enough data
596  */
597 const uint8_t *dev_read_u8_array_ptr(const struct udevice *dev,
598 				     const char *propname, size_t sz);
599 
600 /**
601  * dev_read_enabled() - check whether a node is enabled
602  *
603  * This looks for a 'status' property. If this exists, then returns 1 if
604  * the status is 'ok' and 0 otherwise. If there is no status property,
605  * it returns 1 on the assumption that anything mentioned should be enabled
606  * by default.
607  *
608  * @dev: device to examine
609  * @return integer value 0 (not enabled) or 1 (enabled)
610  */
611 int dev_read_enabled(const struct udevice *dev);
612 
613 /**
614  * dev_read_resource() - obtain an indexed resource from a device.
615  *
616  * @dev: device to examine
617  * @index index of the resource to retrieve (0 = first)
618  * @res returns the resource
619  * @return 0 if ok, negative on error
620  */
621 int dev_read_resource(const struct udevice *dev, uint index,
622 		      struct resource *res);
623 
624 /**
625  * dev_read_resource_byname() - obtain a named resource from a device.
626  *
627  * @dev: device to examine
628  * @name: name of the resource to retrieve
629  * @res: returns the resource
630  * @return 0 if ok, negative on error
631  */
632 int dev_read_resource_byname(const struct udevice *dev, const char *name,
633 			     struct resource *res);
634 
635 /**
636  * dev_translate_address() - Translate a device-tree address
637  *
638  * Translate an address from the device-tree into a CPU physical address.  This
639  * function walks up the tree and applies the various bus mappings along the
640  * way.
641  *
642  * @dev: device giving the context in which to translate the address
643  * @in_addr: pointer to the address to translate
644  * @return the translated address; OF_BAD_ADDR on error
645  */
646 u64 dev_translate_address(const struct udevice *dev, const fdt32_t *in_addr);
647 
648 /**
649  * dev_translate_dma_address() - Translate a device-tree DMA address
650  *
651  * Translate a DMA address from the device-tree into a CPU physical address.
652  * This function walks up the tree and applies the various bus mappings along
653  * the way.
654  *
655  * @dev: device giving the context in which to translate the DMA address
656  * @in_addr: pointer to the DMA address to translate
657  * @return the translated DMA address; OF_BAD_ADDR on error
658  */
659 u64 dev_translate_dma_address(const struct udevice *dev,
660 			      const fdt32_t *in_addr);
661 
662 /**
663  * dev_get_dma_range() - Get a device's DMA constraints
664  *
665  * Provide the address bases and size of the linear mapping between the CPU and
666  * a device's BUS address space.
667  *
668  * @dev: device giving the context in which to translate the DMA address
669  * @cpu: base address for CPU's view of memory
670  * @bus: base address for BUS's view of memory
671  * @size: size of the address space
672  * @return 0 if ok, negative on error
673  */
674 int dev_get_dma_range(const struct udevice *dev, phys_addr_t *cpu,
675 		      dma_addr_t *bus, u64 *size);
676 
677 /**
678  * dev_read_alias_highest_id - Get highest alias id for the given stem
679  * @stem:	Alias stem to be examined
680  *
681  * The function travels the lookup table to get the highest alias id for the
682  * given alias stem.
683  * @return alias ID, if found, else -1
684  */
685 int dev_read_alias_highest_id(const char *stem);
686 
687 /**
688  * dev_get_child_count() - get the child count of a device
689  *
690  * @dev: device to use for interation (struct udevice *)
691  * @return the count of child subnode
692  */
693 int dev_get_child_count(const struct udevice *dev);
694 
695 /**
696  * dev_read_pci_bus_range - Read PCI bus-range resource
697  *
698  * Look at the bus range property of a device node and return the pci bus
699  * range for this node.
700  *
701  * @dev: device to examine
702  * @res returns the resource
703  * @return 0 if ok, negative on error
704  */
705 int dev_read_pci_bus_range(const struct udevice *dev, struct resource *res);
706 
707 /**
708  * dev_decode_display_timing() - decode display timings
709  *
710  * Decode display timings from the supplied 'display-timings' node.
711  * See doc/device-tree-bindings/video/display-timing.txt for binding
712  * information.
713  *
714  * @dev: device to read DT display timings from. The node linked to the device
715  *       contains a child node called 'display-timings' which in turn contains
716  *       one or more display timing nodes.
717  * @index: index number to read (0=first timing subnode)
718  * @config: place to put timings
719  * @return 0 if OK, -FDT_ERR_NOTFOUND if not found
720  */
721 int dev_decode_display_timing(const struct udevice *dev, int index,
722 			      struct display_timing *config);
723 
724 #else /* CONFIG_DM_DEV_READ_INLINE is enabled */
725 #include <asm/global_data.h>
726 
dev_read_u32(const struct udevice * dev,const char * propname,u32 * outp)727 static inline int dev_read_u32(const struct udevice *dev,
728 			       const char *propname, u32 *outp)
729 {
730 	return ofnode_read_u32(dev_ofnode(dev), propname, outp);
731 }
732 
dev_read_u32_default(const struct udevice * dev,const char * propname,int def)733 static inline int dev_read_u32_default(const struct udevice *dev,
734 				       const char *propname, int def)
735 {
736 	return ofnode_read_u32_default(dev_ofnode(dev), propname, def);
737 }
738 
dev_read_u32_index(struct udevice * dev,const char * propname,int index,u32 * outp)739 static inline int dev_read_u32_index(struct udevice *dev,
740 				     const char *propname, int index, u32 *outp)
741 {
742 	return ofnode_read_u32_index(dev_ofnode(dev), propname, index, outp);
743 }
744 
dev_read_u32_index_default(struct udevice * dev,const char * propname,int index,u32 def)745 static inline u32 dev_read_u32_index_default(struct udevice *dev,
746 					     const char *propname, int index,
747 					     u32 def)
748 {
749 	return ofnode_read_u32_index_default(dev_ofnode(dev), propname, index,
750 					     def);
751 }
752 
dev_read_s32(const struct udevice * dev,const char * propname,s32 * outp)753 static inline int dev_read_s32(const struct udevice *dev,
754 			       const char *propname, s32 *outp)
755 {
756 	return ofnode_read_s32(dev_ofnode(dev), propname, outp);
757 }
758 
dev_read_s32_default(const struct udevice * dev,const char * propname,int def)759 static inline int dev_read_s32_default(const struct udevice *dev,
760 				       const char *propname, int def)
761 {
762 	return ofnode_read_s32_default(dev_ofnode(dev), propname, def);
763 }
764 
dev_read_u32u(const struct udevice * dev,const char * propname,uint * outp)765 static inline int dev_read_u32u(const struct udevice *dev,
766 				const char *propname, uint *outp)
767 {
768 	u32 val;
769 	int ret;
770 
771 	ret = ofnode_read_u32(dev_ofnode(dev), propname, &val);
772 	if (ret)
773 		return ret;
774 	*outp = val;
775 
776 	return 0;
777 }
778 
dev_read_u64(const struct udevice * dev,const char * propname,u64 * outp)779 static inline int dev_read_u64(const struct udevice *dev,
780 			       const char *propname, u64 *outp)
781 {
782 	return ofnode_read_u64(dev_ofnode(dev), propname, outp);
783 }
784 
dev_read_u64_default(const struct udevice * dev,const char * propname,u64 def)785 static inline u64 dev_read_u64_default(const struct udevice *dev,
786 				       const char *propname, u64 def)
787 {
788 	return ofnode_read_u64_default(dev_ofnode(dev), propname, def);
789 }
790 
dev_read_string(const struct udevice * dev,const char * propname)791 static inline const char *dev_read_string(const struct udevice *dev,
792 					  const char *propname)
793 {
794 	return ofnode_read_string(dev_ofnode(dev), propname);
795 }
796 
dev_read_bool(const struct udevice * dev,const char * propname)797 static inline bool dev_read_bool(const struct udevice *dev,
798 				 const char *propname)
799 {
800 	return ofnode_read_bool(dev_ofnode(dev), propname);
801 }
802 
dev_read_subnode(const struct udevice * dev,const char * subbnode_name)803 static inline ofnode dev_read_subnode(const struct udevice *dev,
804 				      const char *subbnode_name)
805 {
806 	return ofnode_find_subnode(dev_ofnode(dev), subbnode_name);
807 }
808 
dev_read_size(const struct udevice * dev,const char * propname)809 static inline int dev_read_size(const struct udevice *dev, const char *propname)
810 {
811 	return ofnode_read_size(dev_ofnode(dev), propname);
812 }
813 
dev_read_addr_index(const struct udevice * dev,int index)814 static inline fdt_addr_t dev_read_addr_index(const struct udevice *dev,
815 					     int index)
816 {
817 	return devfdt_get_addr_index(dev, index);
818 }
819 
dev_read_addr_index_ptr(const struct udevice * dev,int index)820 static inline void *dev_read_addr_index_ptr(const struct udevice *dev,
821 					    int index)
822 {
823 	return devfdt_get_addr_index_ptr(dev, index);
824 }
825 
dev_read_addr_size_index(const struct udevice * dev,int index,fdt_size_t * size)826 static inline fdt_addr_t dev_read_addr_size_index(const struct udevice *dev,
827 						  int index,
828 						  fdt_size_t *size)
829 {
830 	return devfdt_get_addr_size_index(dev, index, size);
831 }
832 
dev_read_addr_name(const struct udevice * dev,const char * name)833 static inline fdt_addr_t dev_read_addr_name(const struct udevice *dev,
834 					    const char *name)
835 {
836 	return devfdt_get_addr_name(dev, name);
837 }
838 
dev_read_addr_size_name(const struct udevice * dev,const char * name,fdt_size_t * size)839 static inline fdt_addr_t dev_read_addr_size_name(const struct udevice *dev,
840 						 const char *name,
841 						 fdt_size_t *size)
842 {
843 	return devfdt_get_addr_size_name(dev, name, size);
844 }
845 
dev_read_addr(const struct udevice * dev)846 static inline fdt_addr_t dev_read_addr(const struct udevice *dev)
847 {
848 	return devfdt_get_addr(dev);
849 }
850 
dev_read_addr_ptr(const struct udevice * dev)851 static inline void *dev_read_addr_ptr(const struct udevice *dev)
852 {
853 	return devfdt_get_addr_ptr(dev);
854 }
855 
dev_read_addr_pci(const struct udevice * dev)856 static inline fdt_addr_t dev_read_addr_pci(const struct udevice *dev)
857 {
858 	return devfdt_get_addr_pci(dev);
859 }
860 
dev_remap_addr(const struct udevice * dev)861 static inline void *dev_remap_addr(const struct udevice *dev)
862 {
863 	return devfdt_remap_addr(dev);
864 }
865 
dev_remap_addr_index(const struct udevice * dev,int index)866 static inline void *dev_remap_addr_index(const struct udevice *dev, int index)
867 {
868 	return devfdt_remap_addr_index(dev, index);
869 }
870 
dev_remap_addr_name(const struct udevice * dev,const char * name)871 static inline void *dev_remap_addr_name(const struct udevice *dev,
872 					const char *name)
873 {
874 	return devfdt_remap_addr_name(dev, name);
875 }
876 
dev_read_addr_size(const struct udevice * dev,const char * propname,fdt_size_t * sizep)877 static inline fdt_addr_t dev_read_addr_size(const struct udevice *dev,
878 					    const char *propname,
879 					    fdt_size_t *sizep)
880 {
881 	return ofnode_get_addr_size(dev_ofnode(dev), propname, sizep);
882 }
883 
dev_read_name(const struct udevice * dev)884 static inline const char *dev_read_name(const struct udevice *dev)
885 {
886 	return ofnode_get_name(dev_ofnode(dev));
887 }
888 
dev_read_stringlist_search(const struct udevice * dev,const char * propname,const char * string)889 static inline int dev_read_stringlist_search(const struct udevice *dev,
890 					     const char *propname,
891 					     const char *string)
892 {
893 	return ofnode_stringlist_search(dev_ofnode(dev), propname, string);
894 }
895 
dev_read_string_index(const struct udevice * dev,const char * propname,int index,const char ** outp)896 static inline int dev_read_string_index(const struct udevice *dev,
897 					const char *propname, int index,
898 					const char **outp)
899 {
900 	return ofnode_read_string_index(dev_ofnode(dev), propname, index, outp);
901 }
902 
dev_read_string_count(const struct udevice * dev,const char * propname)903 static inline int dev_read_string_count(const struct udevice *dev,
904 					const char *propname)
905 {
906 	return ofnode_read_string_count(dev_ofnode(dev), propname);
907 }
908 
dev_read_phandle_with_args(const struct udevice * dev,const char * list_name,const char * cells_name,int cell_count,int index,struct ofnode_phandle_args * out_args)909 static inline int dev_read_phandle_with_args(const struct udevice *dev,
910 		const char *list_name, const char *cells_name, int cell_count,
911 		int index, struct ofnode_phandle_args *out_args)
912 {
913 	return ofnode_parse_phandle_with_args(dev_ofnode(dev), list_name,
914 					      cells_name, cell_count, index,
915 					      out_args);
916 }
917 
dev_count_phandle_with_args(const struct udevice * dev,const char * list_name,const char * cells_name,int cell_count)918 static inline int dev_count_phandle_with_args(const struct udevice *dev,
919 		const char *list_name, const char *cells_name, int cell_count)
920 {
921 	return ofnode_count_phandle_with_args(dev_ofnode(dev), list_name,
922 					      cells_name, cell_count);
923 }
924 
dev_read_addr_cells(const struct udevice * dev)925 static inline int dev_read_addr_cells(const struct udevice *dev)
926 {
927 	int parent = fdt_parent_offset(gd->fdt_blob, dev_of_offset(dev));
928 
929 	return fdt_address_cells(gd->fdt_blob, parent);
930 }
931 
dev_read_size_cells(const struct udevice * dev)932 static inline int dev_read_size_cells(const struct udevice *dev)
933 {
934 	int parent = fdt_parent_offset(gd->fdt_blob, dev_of_offset(dev));
935 
936 	return fdt_size_cells(gd->fdt_blob, parent);
937 }
938 
dev_read_simple_addr_cells(const struct udevice * dev)939 static inline int dev_read_simple_addr_cells(const struct udevice *dev)
940 {
941 	return fdt_address_cells(gd->fdt_blob, dev_of_offset(dev));
942 }
943 
dev_read_simple_size_cells(const struct udevice * dev)944 static inline int dev_read_simple_size_cells(const struct udevice *dev)
945 {
946 	return fdt_size_cells(gd->fdt_blob, dev_of_offset(dev));
947 }
948 
dev_read_phandle(const struct udevice * dev)949 static inline int dev_read_phandle(const struct udevice *dev)
950 {
951 	return fdt_get_phandle(gd->fdt_blob, dev_of_offset(dev));
952 }
953 
dev_read_prop(const struct udevice * dev,const char * propname,int * lenp)954 static inline const void *dev_read_prop(const struct udevice *dev,
955 					const char *propname, int *lenp)
956 {
957 	return ofnode_get_property(dev_ofnode(dev), propname, lenp);
958 }
959 
dev_read_first_prop(const struct udevice * dev,struct ofprop * prop)960 static inline int dev_read_first_prop(const struct udevice *dev, struct ofprop *prop)
961 {
962 	return ofnode_get_first_property(dev_ofnode(dev), prop);
963 }
964 
dev_read_next_prop(struct ofprop * prop)965 static inline int dev_read_next_prop(struct ofprop *prop)
966 {
967 	return ofnode_get_next_property(prop);
968 }
969 
dev_read_prop_by_prop(struct ofprop * prop,const char ** propname,int * lenp)970 static inline const void *dev_read_prop_by_prop(struct ofprop *prop,
971 						const char **propname,
972 						int *lenp)
973 {
974 	return ofnode_get_property_by_prop(prop, propname, lenp);
975 }
976 
dev_read_alias_seq(const struct udevice * dev,int * devnump)977 static inline int dev_read_alias_seq(const struct udevice *dev, int *devnump)
978 {
979 #if CONFIG_IS_ENABLED(OF_CONTROL)
980 	return fdtdec_get_alias_seq(gd->fdt_blob, dev->uclass->uc_drv->name,
981 				    dev_of_offset(dev), devnump);
982 #else
983 	return -ENOTSUPP;
984 #endif
985 }
986 
dev_read_u32_array(const struct udevice * dev,const char * propname,u32 * out_values,size_t sz)987 static inline int dev_read_u32_array(const struct udevice *dev,
988 				     const char *propname, u32 *out_values,
989 				     size_t sz)
990 {
991 	return ofnode_read_u32_array(dev_ofnode(dev), propname, out_values, sz);
992 }
993 
dev_read_first_subnode(const struct udevice * dev)994 static inline ofnode dev_read_first_subnode(const struct udevice *dev)
995 {
996 	return ofnode_first_subnode(dev_ofnode(dev));
997 }
998 
dev_read_next_subnode(ofnode node)999 static inline ofnode dev_read_next_subnode(ofnode node)
1000 {
1001 	return ofnode_next_subnode(node);
1002 }
1003 
dev_read_u8_array_ptr(const struct udevice * dev,const char * propname,size_t sz)1004 static inline const uint8_t *dev_read_u8_array_ptr(const struct udevice *dev,
1005 						   const char *propname,
1006 						   size_t sz)
1007 {
1008 	return ofnode_read_u8_array_ptr(dev_ofnode(dev), propname, sz);
1009 }
1010 
dev_read_enabled(const struct udevice * dev)1011 static inline int dev_read_enabled(const struct udevice *dev)
1012 {
1013 	return fdtdec_get_is_enabled(gd->fdt_blob, dev_of_offset(dev));
1014 }
1015 
dev_read_resource(const struct udevice * dev,uint index,struct resource * res)1016 static inline int dev_read_resource(const struct udevice *dev, uint index,
1017 				    struct resource *res)
1018 {
1019 	return ofnode_read_resource(dev_ofnode(dev), index, res);
1020 }
1021 
dev_read_resource_byname(const struct udevice * dev,const char * name,struct resource * res)1022 static inline int dev_read_resource_byname(const struct udevice *dev,
1023 					   const char *name,
1024 					   struct resource *res)
1025 {
1026 	return ofnode_read_resource_byname(dev_ofnode(dev), name, res);
1027 }
1028 
dev_translate_address(const struct udevice * dev,const fdt32_t * in_addr)1029 static inline u64 dev_translate_address(const struct udevice *dev,
1030 					const fdt32_t *in_addr)
1031 {
1032 	return ofnode_translate_address(dev_ofnode(dev), in_addr);
1033 }
1034 
dev_translate_dma_address(const struct udevice * dev,const fdt32_t * in_addr)1035 static inline u64 dev_translate_dma_address(const struct udevice *dev,
1036 					    const fdt32_t *in_addr)
1037 {
1038 	return ofnode_translate_dma_address(dev_ofnode(dev), in_addr);
1039 }
1040 
dev_get_dma_range(const struct udevice * dev,phys_addr_t * cpu,dma_addr_t * bus,u64 * size)1041 static inline int dev_get_dma_range(const struct udevice *dev, phys_addr_t *cpu,
1042 				    dma_addr_t *bus, u64 *size)
1043 {
1044 	return ofnode_get_dma_range(dev_ofnode(dev), cpu, bus, size);
1045 }
1046 
dev_read_alias_highest_id(const char * stem)1047 static inline int dev_read_alias_highest_id(const char *stem)
1048 {
1049 	if (!CONFIG_IS_ENABLED(OF_LIBFDT) || !gd->fdt_blob)
1050 		return -1;
1051 	return fdtdec_get_alias_highest_id(gd->fdt_blob, stem);
1052 }
1053 
dev_get_child_count(const struct udevice * dev)1054 static inline int dev_get_child_count(const struct udevice *dev)
1055 {
1056 	return ofnode_get_child_count(dev_ofnode(dev));
1057 }
1058 
dev_decode_display_timing(const struct udevice * dev,int index,struct display_timing * config)1059 static inline int dev_decode_display_timing(const struct udevice *dev,
1060 					    int index,
1061 					    struct display_timing *config)
1062 {
1063 	return ofnode_decode_display_timing(dev_ofnode(dev), index, config);
1064 }
1065 
1066 #endif /* CONFIG_DM_DEV_READ_INLINE */
1067 
1068 /**
1069  * dev_for_each_subnode() - Helper function to iterate through subnodes
1070  *
1071  * This creates a for() loop which works through the subnodes in a device's
1072  * device-tree node.
1073  *
1074  * @subnode: ofnode holding the current subnode
1075  * @dev: device to use for interation (struct udevice *)
1076  */
1077 #define dev_for_each_subnode(subnode, dev) \
1078 	for (subnode = dev_read_first_subnode(dev); \
1079 	     ofnode_valid(subnode); \
1080 	     subnode = ofnode_next_subnode(subnode))
1081 
1082 /**
1083  * dev_for_each_property() - Helper function to iterate through property
1084  *
1085  * This creates a for() loop which works through the property in a device's
1086  * device-tree node.
1087  *
1088  * @prop: struct ofprop holding the current property
1089  * @dev: device to use for interation (struct udevice *)
1090  */
1091 #define dev_for_each_property(prop, dev) \
1092 	for (int ret_prop = dev_read_first_prop(dev, &prop); \
1093 	     !ret_prop; \
1094 	     ret_prop = dev_read_next_prop(&prop))
1095 
1096 #endif
1097