1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Function to read values from the device tree node attached to a udevice.
4 *
5 * Copyright (c) 2017 Google, Inc
6 * Written by Simon Glass <sjg@chromium.org>
7 */
8
9 #ifndef _DM_READ_H
10 #define _DM_READ_H
11
12 #include <linux/errno.h>
13
14 #include <dm/device.h>
15 #include <dm/fdtaddr.h>
16 #include <dm/ofnode.h>
17 #include <dm/uclass.h>
18
19 struct resource;
20
21 #if CONFIG_IS_ENABLED(OF_LIVE)
dev_np(const struct udevice * dev)22 static inline const struct device_node *dev_np(const struct udevice *dev)
23 {
24 return ofnode_to_np(dev_ofnode(dev));
25 }
26 #else
dev_np(const struct udevice * dev)27 static inline const struct device_node *dev_np(const struct udevice *dev)
28 {
29 return NULL;
30 }
31 #endif
32
33 #if !defined(CONFIG_DM_DEV_READ_INLINE) || CONFIG_IS_ENABLED(OF_PLATDATA)
34 /**
35 * dev_read_u32() - read a 32-bit integer from a device's DT property
36 *
37 * @dev: device to read DT property from
38 * @propname: name of the property to read from
39 * @outp: place to put value (if found)
40 * @return 0 if OK, -ve on error
41 */
42 int dev_read_u32(const struct udevice *dev, const char *propname, u32 *outp);
43
44 /**
45 * dev_read_u32_default() - read a 32-bit integer from a device's DT property
46 *
47 * @dev: device to read DT property from
48 * @propname: name of the property to read from
49 * @def: default value to return if the property has no value
50 * @return property value, or @def if not found
51 */
52 int dev_read_u32_default(const struct udevice *dev, const char *propname,
53 int def);
54
55 /**
56 * dev_read_u32_index() - read an indexed 32-bit integer from a device's DT
57 * property
58 *
59 * @dev: device to read DT property from
60 * @propname: name of the property to read from
61 * @index: index of the integer to return
62 * @outp: place to put value (if found)
63 * @return 0 if OK, -ve on error
64 */
65 int dev_read_u32_index(struct udevice *dev, const char *propname, int index,
66 u32 *outp);
67
68 /**
69 * dev_read_u32_index_default() - read an indexed 32-bit integer from a device's
70 * DT property
71 *
72 * @dev: device to read DT property from
73 * @propname: name of the property to read from
74 * @index: index of the integer to return
75 * @def: default value to return if the property has no value
76 * @return property value, or @def if not found
77 */
78 u32 dev_read_u32_index_default(struct udevice *dev, const char *propname,
79 int index, u32 def);
80
81 /**
82 * dev_read_s32() - read a signed 32-bit integer from a device's DT property
83 *
84 * @dev: device to read DT property from
85 * @propname: name of the property to read from
86 * @outp: place to put value (if found)
87 * @return 0 if OK, -ve on error
88 */
89 int dev_read_s32(const struct udevice *dev, const char *propname, s32 *outp);
90
91 /**
92 * dev_read_s32_default() - read a signed 32-bit int from a device's DT property
93 *
94 * @dev: device to read DT property from
95 * @propname: name of the property to read from
96 * @def: default value to return if the property has no value
97 * @return property value, or @def if not found
98 */
99 int dev_read_s32_default(const struct udevice *dev, const char *propname,
100 int def);
101
102 /**
103 * dev_read_u32u() - read a 32-bit integer from a device's DT property
104 *
105 * This version uses a standard uint type.
106 *
107 * @dev: device to read DT property from
108 * @propname: name of the property to read from
109 * @outp: place to put value (if found)
110 * @return 0 if OK, -ve on error
111 */
112 int dev_read_u32u(const struct udevice *dev, const char *propname, uint *outp);
113
114 /**
115 * dev_read_u64() - read a 64-bit integer from a device's DT property
116 *
117 * @dev: device to read DT property from
118 * @propname: name of the property to read from
119 * @outp: place to put value (if found)
120 * @return 0 if OK, -ve on error
121 */
122 int dev_read_u64(const struct udevice *dev, const char *propname, u64 *outp);
123
124 /**
125 * dev_read_u64_default() - read a 64-bit integer from a device's DT property
126 *
127 * @dev: device to read DT property from
128 * @propname: name of the property to read from
129 * @def: default value to return if the property has no value
130 * @return property value, or @def if not found
131 */
132 u64 dev_read_u64_default(const struct udevice *dev, const char *propname,
133 u64 def);
134
135 /**
136 * dev_read_string() - Read a string from a device's DT property
137 *
138 * @dev: device to read DT property from
139 * @propname: name of the property to read
140 * @return string from property value, or NULL if there is no such property
141 */
142 const char *dev_read_string(const struct udevice *dev, const char *propname);
143
144 /**
145 * dev_read_bool() - read a boolean value from a device's DT property
146 *
147 * @dev: device to read DT property from
148 * @propname: name of property to read
149 * @return true if property is present (meaning true), false if not present
150 */
151 bool dev_read_bool(const struct udevice *dev, const char *propname);
152
153 /**
154 * dev_read_subnode() - find a named subnode of a device
155 *
156 * @dev: device whose DT node contains the subnode
157 * @subnode_name: name of subnode to find
158 * @return reference to subnode (which can be invalid if there is no such
159 * subnode)
160 */
161 ofnode dev_read_subnode(const struct udevice *dev, const char *subbnode_name);
162
163 /**
164 * dev_read_size() - read the size of a property
165 *
166 * @dev: device to check
167 * @propname: property to check
168 * @return size of property if present, or -EINVAL if not
169 */
170 int dev_read_size(const struct udevice *dev, const char *propname);
171
172 /**
173 * dev_read_addr_index() - Get the indexed reg property of a device
174 *
175 * @dev: Device to read from
176 * @index: the 'reg' property can hold a list of <addr, size> pairs
177 * and @index is used to select which one is required
178 *
179 * @return address or FDT_ADDR_T_NONE if not found
180 */
181 fdt_addr_t dev_read_addr_index(const struct udevice *dev, int index);
182
183 /**
184 * dev_read_addr_index_ptr() - Get the indexed reg property of a device
185 * as a pointer
186 *
187 * @dev: Device to read from
188 * @index: the 'reg' property can hold a list of <addr, size> pairs
189 * and @index is used to select which one is required
190 *
191 * @return pointer or NULL if not found
192 */
193 void *dev_read_addr_index_ptr(const struct udevice *dev, int index);
194
195 /**
196 * dev_read_addr_size_index() - Get the indexed reg property of a device
197 *
198 * @dev: Device to read from
199 * @index: the 'reg' property can hold a list of <addr, size> pairs
200 * and @index is used to select which one is required
201 * @size: place to put size value (on success)
202 *
203 * @return address or FDT_ADDR_T_NONE if not found
204 */
205 fdt_addr_t dev_read_addr_size_index(const struct udevice *dev, int index,
206 fdt_size_t *size);
207
208 /**
209 * dev_remap_addr_index() - Get the indexed reg property of a device
210 * as a memory-mapped I/O pointer
211 *
212 * @dev: Device to read from
213 * @index: the 'reg' property can hold a list of <addr, size> pairs
214 * and @index is used to select which one is required
215 *
216 * @return pointer or NULL if not found
217 */
218 void *dev_remap_addr_index(const struct udevice *dev, int index);
219
220 /**
221 * dev_read_addr_name() - Get the reg property of a device, indexed by name
222 *
223 * @dev: Device to read from
224 * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
225 * 'reg-names' property providing named-based identification. @index
226 * indicates the value to search for in 'reg-names'.
227 *
228 * @return address or FDT_ADDR_T_NONE if not found
229 */
230 fdt_addr_t dev_read_addr_name(const struct udevice *dev, const char *name);
231
232 /**
233 * dev_read_addr_size_name() - Get the reg property of a device, indexed by name
234 *
235 * @dev: Device to read from
236 * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
237 * 'reg-names' property providing named-based identification. @index
238 * indicates the value to search for in 'reg-names'.
239 * @size: place to put size value (on success)
240 *
241 * @return address or FDT_ADDR_T_NONE if not found
242 */
243 fdt_addr_t dev_read_addr_size_name(const struct udevice *dev, const char *name,
244 fdt_size_t *size);
245
246 /**
247 * dev_remap_addr_name() - Get the reg property of a device, indexed by name,
248 * as a memory-mapped I/O pointer
249 *
250 * @dev: Device to read from
251 * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
252 * 'reg-names' property providing named-based identification. @index
253 * indicates the value to search for in 'reg-names'.
254 *
255 * @return pointer or NULL if not found
256 */
257 void *dev_remap_addr_name(const struct udevice *dev, const char *name);
258
259 /**
260 * dev_read_addr() - Get the reg property of a device
261 *
262 * @dev: Device to read from
263 *
264 * @return address or FDT_ADDR_T_NONE if not found
265 */
266 fdt_addr_t dev_read_addr(const struct udevice *dev);
267
268 /**
269 * dev_read_addr_ptr() - Get the reg property of a device
270 * as a pointer
271 *
272 * @dev: Device to read from
273 *
274 * @return pointer or NULL if not found
275 */
276 void *dev_read_addr_ptr(const struct udevice *dev);
277
278 /**
279 * dev_read_addr_pci() - Read an address and handle PCI address translation
280 *
281 * At present U-Boot does not have address translation logic for PCI in the
282 * livetree implementation (of_addr.c). This special function supports this for
283 * the flat tree implementation.
284 *
285 * This function should be removed (and code should use dev_read() instead)
286 * once:
287 *
288 * 1. PCI address translation is added; and either
289 * 2. everything uses livetree where PCI translation is used (which is feasible
290 * in SPL and U-Boot proper) or PCI address translation is added to
291 * fdtdec_get_addr() and friends.
292 *
293 * @dev: Device to read from
294 * @return address or FDT_ADDR_T_NONE if not found
295 */
296 fdt_addr_t dev_read_addr_pci(const struct udevice *dev);
297
298 /**
299 * dev_remap_addr() - Get the reg property of a device as a
300 * memory-mapped I/O pointer
301 *
302 * @dev: Device to read from
303 *
304 * @return pointer or NULL if not found
305 */
306 void *dev_remap_addr(const struct udevice *dev);
307
308 /**
309 * dev_read_addr_size() - get address and size from a device property
310 *
311 * This does no address translation. It simply reads an property that contains
312 * an address and a size value, one after the other.
313 *
314 * @dev: Device to read from
315 * @propname: property to read
316 * @sizep: place to put size value (on success)
317 * @return address value, or FDT_ADDR_T_NONE on error
318 */
319 fdt_addr_t dev_read_addr_size(const struct udevice *dev, const char *propname,
320 fdt_size_t *sizep);
321
322 /**
323 * dev_read_name() - get the name of a device's node
324 *
325 * @dev: Device to read from
326 * @return name of node
327 */
328 const char *dev_read_name(const struct udevice *dev);
329
330 /**
331 * dev_read_stringlist_search() - find string in a string list and return index
332 *
333 * Note that it is possible for this function to succeed on property values
334 * that are not NUL-terminated. That's because the function will stop after
335 * finding the first occurrence of @string. This can for example happen with
336 * small-valued cell properties, such as #address-cells, when searching for
337 * the empty string.
338 *
339 * @dev: device to check
340 * @propname: name of the property containing the string list
341 * @string: string to look up in the string list
342 *
343 * @return:
344 * the index of the string in the list of strings
345 * -ENODATA if the property is not found
346 * -EINVAL on some other error
347 */
348 int dev_read_stringlist_search(const struct udevice *dev, const char *property,
349 const char *string);
350
351 /**
352 * dev_read_string_index() - obtain an indexed string from a string list
353 *
354 * @dev: device to examine
355 * @propname: name of the property containing the string list
356 * @index: index of the string to return
357 * @out: return location for the string
358 *
359 * @return:
360 * length of string, if found or -ve error value if not found
361 */
362 int dev_read_string_index(const struct udevice *dev, const char *propname,
363 int index, const char **outp);
364
365 /**
366 * dev_read_string_count() - find the number of strings in a string list
367 *
368 * @dev: device to examine
369 * @propname: name of the property containing the string list
370 * @return:
371 * number of strings in the list, or -ve error value if not found
372 */
373 int dev_read_string_count(const struct udevice *dev, const char *propname);
374 /**
375 * dev_read_phandle_with_args() - Find a node pointed by phandle in a list
376 *
377 * This function is useful to parse lists of phandles and their arguments.
378 * Returns 0 on success and fills out_args, on error returns appropriate
379 * errno value.
380 *
381 * Caller is responsible to call of_node_put() on the returned out_args->np
382 * pointer.
383 *
384 * Example:
385 *
386 * phandle1: node1 {
387 * #list-cells = <2>;
388 * }
389 *
390 * phandle2: node2 {
391 * #list-cells = <1>;
392 * }
393 *
394 * node3 {
395 * list = <&phandle1 1 2 &phandle2 3>;
396 * }
397 *
398 * To get a device_node of the `node2' node you may call this:
399 * dev_read_phandle_with_args(dev, "list", "#list-cells", 0, 1, &args);
400 *
401 * @dev: device whose node containing a list
402 * @list_name: property name that contains a list
403 * @cells_name: property name that specifies phandles' arguments count
404 * @cells_count: Cell count to use if @cells_name is NULL
405 * @index: index of a phandle to parse out
406 * @out_args: optional pointer to output arguments structure (will be filled)
407 * @return 0 on success (with @out_args filled out if not NULL), -ENOENT if
408 * @list_name does not exist, -EINVAL if a phandle was not found,
409 * @cells_name could not be found, the arguments were truncated or there
410 * were too many arguments.
411 */
412 int dev_read_phandle_with_args(const struct udevice *dev, const char *list_name,
413 const char *cells_name, int cell_count,
414 int index, struct ofnode_phandle_args *out_args);
415
416 /**
417 * dev_count_phandle_with_args() - Return phandle number in a list
418 *
419 * This function is usefull to get phandle number contained in a property list.
420 * For example, this allows to allocate the right amount of memory to keep
421 * clock's reference contained into the "clocks" property.
422 *
423 *
424 * @dev: device whose node containing a list
425 * @list_name: property name that contains a list
426 * @cells_name: property name that specifies phandles' arguments count
427 * @cells_count: Cell count to use if @cells_name is NULL
428 * @Returns number of phandle found on success, on error returns appropriate
429 * errno value.
430 */
431
432 int dev_count_phandle_with_args(const struct udevice *dev,
433 const char *list_name, const char *cells_name,
434 int cell_count);
435
436 /**
437 * dev_read_addr_cells() - Get the number of address cells for a device's node
438 *
439 * This walks back up the tree to find the closest #address-cells property
440 * which controls the given node.
441 *
442 * @dev: device to check
443 * @return number of address cells this node uses
444 */
445 int dev_read_addr_cells(const struct udevice *dev);
446
447 /**
448 * dev_read_size_cells() - Get the number of size cells for a device's node
449 *
450 * This walks back up the tree to find the closest #size-cells property
451 * which controls the given node.
452 *
453 * @dev: device to check
454 * @return number of size cells this node uses
455 */
456 int dev_read_size_cells(const struct udevice *dev);
457
458 /**
459 * dev_read_addr_cells() - Get the address cells property in a node
460 *
461 * This function matches fdt_address_cells().
462 *
463 * @dev: device to check
464 * @return number of address cells this node uses
465 */
466 int dev_read_simple_addr_cells(const struct udevice *dev);
467
468 /**
469 * dev_read_size_cells() - Get the size cells property in a node
470 *
471 * This function matches fdt_size_cells().
472 *
473 * @dev: device to check
474 * @return number of size cells this node uses
475 */
476 int dev_read_simple_size_cells(const struct udevice *dev);
477
478 /**
479 * dev_read_phandle() - Get the phandle from a device
480 *
481 * @dev: device to check
482 * @return phandle (1 or greater), or 0 if no phandle or other error
483 */
484 int dev_read_phandle(const struct udevice *dev);
485
486 /**
487 * dev_read_prop()- - read a property from a device's node
488 *
489 * @dev: device to check
490 * @propname: property to read
491 * @lenp: place to put length on success
492 * @return pointer to property, or NULL if not found
493 */
494 const void *dev_read_prop(const struct udevice *dev, const char *propname,
495 int *lenp);
496
497 /**
498 * dev_read_first_prop()- get the reference of the first property
499 *
500 * Get reference to the first property of the node, it is used to iterate
501 * and read all the property with dev_read_prop_by_prop().
502 *
503 * @dev: device to check
504 * @prop: place to put argument reference
505 * @return 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
506 */
507 int dev_read_first_prop(const struct udevice *dev, struct ofprop *prop);
508
509 /**
510 * ofnode_get_next_property() - get the reference of the next property
511 *
512 * Get reference to the next property of the node, it is used to iterate
513 * and read all the property with dev_read_prop_by_prop().
514 *
515 * @prop: reference of current argument and place to put reference of next one
516 * @return 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
517 */
518 int dev_read_next_prop(struct ofprop *prop);
519
520 /**
521 * dev_read_prop_by_prop() - get a pointer to the value of a property
522 *
523 * Get value for the property identified by the provided reference.
524 *
525 * @prop: reference on property
526 * @propname: If non-NULL, place to property name on success,
527 * @lenp: If non-NULL, place to put length on success
528 * @return 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
529 */
530 const void *dev_read_prop_by_prop(struct ofprop *prop,
531 const char **propname, int *lenp);
532
533 /**
534 * dev_read_alias_seq() - Get the alias sequence number of a node
535 *
536 * This works out whether a node is pointed to by an alias, and if so, the
537 * sequence number of that alias. Aliases are of the form <base><num> where
538 * <num> is the sequence number. For example spi2 would be sequence number 2.
539 *
540 * @dev: device to look up
541 * @devnump: set to the sequence number if one is found
542 * @return 0 if a sequence was found, -ve if not
543 */
544 int dev_read_alias_seq(const struct udevice *dev, int *devnump);
545
546 /**
547 * dev_read_u32_array() - Find and read an array of 32 bit integers
548 *
549 * Search for a property in a device node and read 32-bit value(s) from
550 * it.
551 *
552 * The out_values is modified only if a valid u32 value can be decoded.
553 *
554 * @dev: device to look up
555 * @propname: name of the property to read
556 * @out_values: pointer to return value, modified only if return value is 0
557 * @sz: number of array elements to read
558 * @return 0 on success, -EINVAL if the property does not exist, -ENODATA if
559 * property does not have a value, and -EOVERFLOW if the property data isn't
560 * large enough.
561 */
562 int dev_read_u32_array(const struct udevice *dev, const char *propname,
563 u32 *out_values, size_t sz);
564
565 /**
566 * dev_read_first_subnode() - find the first subnode of a device's node
567 *
568 * @dev: device to look up
569 * @return reference to the first subnode (which can be invalid if the device's
570 * node has no subnodes)
571 */
572 ofnode dev_read_first_subnode(const struct udevice *dev);
573
574 /**
575 * ofnode_next_subnode() - find the next sibling of a subnode
576 *
577 * @node: valid reference to previous node (sibling)
578 * @return reference to the next subnode (which can be invalid if the node
579 * has no more siblings)
580 */
581 ofnode dev_read_next_subnode(ofnode node);
582
583 /**
584 * dev_read_u8_array_ptr() - find an 8-bit array
585 *
586 * Look up a device's node property and return a pointer to its contents as a
587 * byte array of given length. The property must have at least enough data
588 * for the array (count bytes). It may have more, but this will be ignored.
589 * The data is not copied.
590 *
591 * @dev: device to look up
592 * @propname: name of property to find
593 * @sz: number of array elements
594 * @return pointer to byte array if found, or NULL if the property is not
595 * found or there is not enough data
596 */
597 const uint8_t *dev_read_u8_array_ptr(const struct udevice *dev,
598 const char *propname, size_t sz);
599
600 /**
601 * dev_read_enabled() - check whether a node is enabled
602 *
603 * This looks for a 'status' property. If this exists, then returns 1 if
604 * the status is 'ok' and 0 otherwise. If there is no status property,
605 * it returns 1 on the assumption that anything mentioned should be enabled
606 * by default.
607 *
608 * @dev: device to examine
609 * @return integer value 0 (not enabled) or 1 (enabled)
610 */
611 int dev_read_enabled(const struct udevice *dev);
612
613 /**
614 * dev_read_resource() - obtain an indexed resource from a device.
615 *
616 * @dev: device to examine
617 * @index index of the resource to retrieve (0 = first)
618 * @res returns the resource
619 * @return 0 if ok, negative on error
620 */
621 int dev_read_resource(const struct udevice *dev, uint index,
622 struct resource *res);
623
624 /**
625 * dev_read_resource_byname() - obtain a named resource from a device.
626 *
627 * @dev: device to examine
628 * @name: name of the resource to retrieve
629 * @res: returns the resource
630 * @return 0 if ok, negative on error
631 */
632 int dev_read_resource_byname(const struct udevice *dev, const char *name,
633 struct resource *res);
634
635 /**
636 * dev_translate_address() - Translate a device-tree address
637 *
638 * Translate an address from the device-tree into a CPU physical address. This
639 * function walks up the tree and applies the various bus mappings along the
640 * way.
641 *
642 * @dev: device giving the context in which to translate the address
643 * @in_addr: pointer to the address to translate
644 * @return the translated address; OF_BAD_ADDR on error
645 */
646 u64 dev_translate_address(const struct udevice *dev, const fdt32_t *in_addr);
647
648 /**
649 * dev_translate_dma_address() - Translate a device-tree DMA address
650 *
651 * Translate a DMA address from the device-tree into a CPU physical address.
652 * This function walks up the tree and applies the various bus mappings along
653 * the way.
654 *
655 * @dev: device giving the context in which to translate the DMA address
656 * @in_addr: pointer to the DMA address to translate
657 * @return the translated DMA address; OF_BAD_ADDR on error
658 */
659 u64 dev_translate_dma_address(const struct udevice *dev,
660 const fdt32_t *in_addr);
661
662 /**
663 * dev_get_dma_range() - Get a device's DMA constraints
664 *
665 * Provide the address bases and size of the linear mapping between the CPU and
666 * a device's BUS address space.
667 *
668 * @dev: device giving the context in which to translate the DMA address
669 * @cpu: base address for CPU's view of memory
670 * @bus: base address for BUS's view of memory
671 * @size: size of the address space
672 * @return 0 if ok, negative on error
673 */
674 int dev_get_dma_range(const struct udevice *dev, phys_addr_t *cpu,
675 dma_addr_t *bus, u64 *size);
676
677 /**
678 * dev_read_alias_highest_id - Get highest alias id for the given stem
679 * @stem: Alias stem to be examined
680 *
681 * The function travels the lookup table to get the highest alias id for the
682 * given alias stem.
683 * @return alias ID, if found, else -1
684 */
685 int dev_read_alias_highest_id(const char *stem);
686
687 /**
688 * dev_get_child_count() - get the child count of a device
689 *
690 * @dev: device to use for interation (struct udevice *)
691 * @return the count of child subnode
692 */
693 int dev_get_child_count(const struct udevice *dev);
694
695 /**
696 * dev_read_pci_bus_range - Read PCI bus-range resource
697 *
698 * Look at the bus range property of a device node and return the pci bus
699 * range for this node.
700 *
701 * @dev: device to examine
702 * @res returns the resource
703 * @return 0 if ok, negative on error
704 */
705 int dev_read_pci_bus_range(const struct udevice *dev, struct resource *res);
706
707 /**
708 * dev_decode_display_timing() - decode display timings
709 *
710 * Decode display timings from the supplied 'display-timings' node.
711 * See doc/device-tree-bindings/video/display-timing.txt for binding
712 * information.
713 *
714 * @dev: device to read DT display timings from. The node linked to the device
715 * contains a child node called 'display-timings' which in turn contains
716 * one or more display timing nodes.
717 * @index: index number to read (0=first timing subnode)
718 * @config: place to put timings
719 * @return 0 if OK, -FDT_ERR_NOTFOUND if not found
720 */
721 int dev_decode_display_timing(const struct udevice *dev, int index,
722 struct display_timing *config);
723
724 #else /* CONFIG_DM_DEV_READ_INLINE is enabled */
725 #include <asm/global_data.h>
726
dev_read_u32(const struct udevice * dev,const char * propname,u32 * outp)727 static inline int dev_read_u32(const struct udevice *dev,
728 const char *propname, u32 *outp)
729 {
730 return ofnode_read_u32(dev_ofnode(dev), propname, outp);
731 }
732
dev_read_u32_default(const struct udevice * dev,const char * propname,int def)733 static inline int dev_read_u32_default(const struct udevice *dev,
734 const char *propname, int def)
735 {
736 return ofnode_read_u32_default(dev_ofnode(dev), propname, def);
737 }
738
dev_read_u32_index(struct udevice * dev,const char * propname,int index,u32 * outp)739 static inline int dev_read_u32_index(struct udevice *dev,
740 const char *propname, int index, u32 *outp)
741 {
742 return ofnode_read_u32_index(dev_ofnode(dev), propname, index, outp);
743 }
744
dev_read_u32_index_default(struct udevice * dev,const char * propname,int index,u32 def)745 static inline u32 dev_read_u32_index_default(struct udevice *dev,
746 const char *propname, int index,
747 u32 def)
748 {
749 return ofnode_read_u32_index_default(dev_ofnode(dev), propname, index,
750 def);
751 }
752
dev_read_s32(const struct udevice * dev,const char * propname,s32 * outp)753 static inline int dev_read_s32(const struct udevice *dev,
754 const char *propname, s32 *outp)
755 {
756 return ofnode_read_s32(dev_ofnode(dev), propname, outp);
757 }
758
dev_read_s32_default(const struct udevice * dev,const char * propname,int def)759 static inline int dev_read_s32_default(const struct udevice *dev,
760 const char *propname, int def)
761 {
762 return ofnode_read_s32_default(dev_ofnode(dev), propname, def);
763 }
764
dev_read_u32u(const struct udevice * dev,const char * propname,uint * outp)765 static inline int dev_read_u32u(const struct udevice *dev,
766 const char *propname, uint *outp)
767 {
768 u32 val;
769 int ret;
770
771 ret = ofnode_read_u32(dev_ofnode(dev), propname, &val);
772 if (ret)
773 return ret;
774 *outp = val;
775
776 return 0;
777 }
778
dev_read_u64(const struct udevice * dev,const char * propname,u64 * outp)779 static inline int dev_read_u64(const struct udevice *dev,
780 const char *propname, u64 *outp)
781 {
782 return ofnode_read_u64(dev_ofnode(dev), propname, outp);
783 }
784
dev_read_u64_default(const struct udevice * dev,const char * propname,u64 def)785 static inline u64 dev_read_u64_default(const struct udevice *dev,
786 const char *propname, u64 def)
787 {
788 return ofnode_read_u64_default(dev_ofnode(dev), propname, def);
789 }
790
dev_read_string(const struct udevice * dev,const char * propname)791 static inline const char *dev_read_string(const struct udevice *dev,
792 const char *propname)
793 {
794 return ofnode_read_string(dev_ofnode(dev), propname);
795 }
796
dev_read_bool(const struct udevice * dev,const char * propname)797 static inline bool dev_read_bool(const struct udevice *dev,
798 const char *propname)
799 {
800 return ofnode_read_bool(dev_ofnode(dev), propname);
801 }
802
dev_read_subnode(const struct udevice * dev,const char * subbnode_name)803 static inline ofnode dev_read_subnode(const struct udevice *dev,
804 const char *subbnode_name)
805 {
806 return ofnode_find_subnode(dev_ofnode(dev), subbnode_name);
807 }
808
dev_read_size(const struct udevice * dev,const char * propname)809 static inline int dev_read_size(const struct udevice *dev, const char *propname)
810 {
811 return ofnode_read_size(dev_ofnode(dev), propname);
812 }
813
dev_read_addr_index(const struct udevice * dev,int index)814 static inline fdt_addr_t dev_read_addr_index(const struct udevice *dev,
815 int index)
816 {
817 return devfdt_get_addr_index(dev, index);
818 }
819
dev_read_addr_index_ptr(const struct udevice * dev,int index)820 static inline void *dev_read_addr_index_ptr(const struct udevice *dev,
821 int index)
822 {
823 return devfdt_get_addr_index_ptr(dev, index);
824 }
825
dev_read_addr_size_index(const struct udevice * dev,int index,fdt_size_t * size)826 static inline fdt_addr_t dev_read_addr_size_index(const struct udevice *dev,
827 int index,
828 fdt_size_t *size)
829 {
830 return devfdt_get_addr_size_index(dev, index, size);
831 }
832
dev_read_addr_name(const struct udevice * dev,const char * name)833 static inline fdt_addr_t dev_read_addr_name(const struct udevice *dev,
834 const char *name)
835 {
836 return devfdt_get_addr_name(dev, name);
837 }
838
dev_read_addr_size_name(const struct udevice * dev,const char * name,fdt_size_t * size)839 static inline fdt_addr_t dev_read_addr_size_name(const struct udevice *dev,
840 const char *name,
841 fdt_size_t *size)
842 {
843 return devfdt_get_addr_size_name(dev, name, size);
844 }
845
dev_read_addr(const struct udevice * dev)846 static inline fdt_addr_t dev_read_addr(const struct udevice *dev)
847 {
848 return devfdt_get_addr(dev);
849 }
850
dev_read_addr_ptr(const struct udevice * dev)851 static inline void *dev_read_addr_ptr(const struct udevice *dev)
852 {
853 return devfdt_get_addr_ptr(dev);
854 }
855
dev_read_addr_pci(const struct udevice * dev)856 static inline fdt_addr_t dev_read_addr_pci(const struct udevice *dev)
857 {
858 return devfdt_get_addr_pci(dev);
859 }
860
dev_remap_addr(const struct udevice * dev)861 static inline void *dev_remap_addr(const struct udevice *dev)
862 {
863 return devfdt_remap_addr(dev);
864 }
865
dev_remap_addr_index(const struct udevice * dev,int index)866 static inline void *dev_remap_addr_index(const struct udevice *dev, int index)
867 {
868 return devfdt_remap_addr_index(dev, index);
869 }
870
dev_remap_addr_name(const struct udevice * dev,const char * name)871 static inline void *dev_remap_addr_name(const struct udevice *dev,
872 const char *name)
873 {
874 return devfdt_remap_addr_name(dev, name);
875 }
876
dev_read_addr_size(const struct udevice * dev,const char * propname,fdt_size_t * sizep)877 static inline fdt_addr_t dev_read_addr_size(const struct udevice *dev,
878 const char *propname,
879 fdt_size_t *sizep)
880 {
881 return ofnode_get_addr_size(dev_ofnode(dev), propname, sizep);
882 }
883
dev_read_name(const struct udevice * dev)884 static inline const char *dev_read_name(const struct udevice *dev)
885 {
886 return ofnode_get_name(dev_ofnode(dev));
887 }
888
dev_read_stringlist_search(const struct udevice * dev,const char * propname,const char * string)889 static inline int dev_read_stringlist_search(const struct udevice *dev,
890 const char *propname,
891 const char *string)
892 {
893 return ofnode_stringlist_search(dev_ofnode(dev), propname, string);
894 }
895
dev_read_string_index(const struct udevice * dev,const char * propname,int index,const char ** outp)896 static inline int dev_read_string_index(const struct udevice *dev,
897 const char *propname, int index,
898 const char **outp)
899 {
900 return ofnode_read_string_index(dev_ofnode(dev), propname, index, outp);
901 }
902
dev_read_string_count(const struct udevice * dev,const char * propname)903 static inline int dev_read_string_count(const struct udevice *dev,
904 const char *propname)
905 {
906 return ofnode_read_string_count(dev_ofnode(dev), propname);
907 }
908
dev_read_phandle_with_args(const struct udevice * dev,const char * list_name,const char * cells_name,int cell_count,int index,struct ofnode_phandle_args * out_args)909 static inline int dev_read_phandle_with_args(const struct udevice *dev,
910 const char *list_name, const char *cells_name, int cell_count,
911 int index, struct ofnode_phandle_args *out_args)
912 {
913 return ofnode_parse_phandle_with_args(dev_ofnode(dev), list_name,
914 cells_name, cell_count, index,
915 out_args);
916 }
917
dev_count_phandle_with_args(const struct udevice * dev,const char * list_name,const char * cells_name,int cell_count)918 static inline int dev_count_phandle_with_args(const struct udevice *dev,
919 const char *list_name, const char *cells_name, int cell_count)
920 {
921 return ofnode_count_phandle_with_args(dev_ofnode(dev), list_name,
922 cells_name, cell_count);
923 }
924
dev_read_addr_cells(const struct udevice * dev)925 static inline int dev_read_addr_cells(const struct udevice *dev)
926 {
927 int parent = fdt_parent_offset(gd->fdt_blob, dev_of_offset(dev));
928
929 return fdt_address_cells(gd->fdt_blob, parent);
930 }
931
dev_read_size_cells(const struct udevice * dev)932 static inline int dev_read_size_cells(const struct udevice *dev)
933 {
934 int parent = fdt_parent_offset(gd->fdt_blob, dev_of_offset(dev));
935
936 return fdt_size_cells(gd->fdt_blob, parent);
937 }
938
dev_read_simple_addr_cells(const struct udevice * dev)939 static inline int dev_read_simple_addr_cells(const struct udevice *dev)
940 {
941 return fdt_address_cells(gd->fdt_blob, dev_of_offset(dev));
942 }
943
dev_read_simple_size_cells(const struct udevice * dev)944 static inline int dev_read_simple_size_cells(const struct udevice *dev)
945 {
946 return fdt_size_cells(gd->fdt_blob, dev_of_offset(dev));
947 }
948
dev_read_phandle(const struct udevice * dev)949 static inline int dev_read_phandle(const struct udevice *dev)
950 {
951 return fdt_get_phandle(gd->fdt_blob, dev_of_offset(dev));
952 }
953
dev_read_prop(const struct udevice * dev,const char * propname,int * lenp)954 static inline const void *dev_read_prop(const struct udevice *dev,
955 const char *propname, int *lenp)
956 {
957 return ofnode_get_property(dev_ofnode(dev), propname, lenp);
958 }
959
dev_read_first_prop(const struct udevice * dev,struct ofprop * prop)960 static inline int dev_read_first_prop(const struct udevice *dev, struct ofprop *prop)
961 {
962 return ofnode_get_first_property(dev_ofnode(dev), prop);
963 }
964
dev_read_next_prop(struct ofprop * prop)965 static inline int dev_read_next_prop(struct ofprop *prop)
966 {
967 return ofnode_get_next_property(prop);
968 }
969
dev_read_prop_by_prop(struct ofprop * prop,const char ** propname,int * lenp)970 static inline const void *dev_read_prop_by_prop(struct ofprop *prop,
971 const char **propname,
972 int *lenp)
973 {
974 return ofnode_get_property_by_prop(prop, propname, lenp);
975 }
976
dev_read_alias_seq(const struct udevice * dev,int * devnump)977 static inline int dev_read_alias_seq(const struct udevice *dev, int *devnump)
978 {
979 #if CONFIG_IS_ENABLED(OF_CONTROL)
980 return fdtdec_get_alias_seq(gd->fdt_blob, dev->uclass->uc_drv->name,
981 dev_of_offset(dev), devnump);
982 #else
983 return -ENOTSUPP;
984 #endif
985 }
986
dev_read_u32_array(const struct udevice * dev,const char * propname,u32 * out_values,size_t sz)987 static inline int dev_read_u32_array(const struct udevice *dev,
988 const char *propname, u32 *out_values,
989 size_t sz)
990 {
991 return ofnode_read_u32_array(dev_ofnode(dev), propname, out_values, sz);
992 }
993
dev_read_first_subnode(const struct udevice * dev)994 static inline ofnode dev_read_first_subnode(const struct udevice *dev)
995 {
996 return ofnode_first_subnode(dev_ofnode(dev));
997 }
998
dev_read_next_subnode(ofnode node)999 static inline ofnode dev_read_next_subnode(ofnode node)
1000 {
1001 return ofnode_next_subnode(node);
1002 }
1003
dev_read_u8_array_ptr(const struct udevice * dev,const char * propname,size_t sz)1004 static inline const uint8_t *dev_read_u8_array_ptr(const struct udevice *dev,
1005 const char *propname,
1006 size_t sz)
1007 {
1008 return ofnode_read_u8_array_ptr(dev_ofnode(dev), propname, sz);
1009 }
1010
dev_read_enabled(const struct udevice * dev)1011 static inline int dev_read_enabled(const struct udevice *dev)
1012 {
1013 return fdtdec_get_is_enabled(gd->fdt_blob, dev_of_offset(dev));
1014 }
1015
dev_read_resource(const struct udevice * dev,uint index,struct resource * res)1016 static inline int dev_read_resource(const struct udevice *dev, uint index,
1017 struct resource *res)
1018 {
1019 return ofnode_read_resource(dev_ofnode(dev), index, res);
1020 }
1021
dev_read_resource_byname(const struct udevice * dev,const char * name,struct resource * res)1022 static inline int dev_read_resource_byname(const struct udevice *dev,
1023 const char *name,
1024 struct resource *res)
1025 {
1026 return ofnode_read_resource_byname(dev_ofnode(dev), name, res);
1027 }
1028
dev_translate_address(const struct udevice * dev,const fdt32_t * in_addr)1029 static inline u64 dev_translate_address(const struct udevice *dev,
1030 const fdt32_t *in_addr)
1031 {
1032 return ofnode_translate_address(dev_ofnode(dev), in_addr);
1033 }
1034
dev_translate_dma_address(const struct udevice * dev,const fdt32_t * in_addr)1035 static inline u64 dev_translate_dma_address(const struct udevice *dev,
1036 const fdt32_t *in_addr)
1037 {
1038 return ofnode_translate_dma_address(dev_ofnode(dev), in_addr);
1039 }
1040
dev_get_dma_range(const struct udevice * dev,phys_addr_t * cpu,dma_addr_t * bus,u64 * size)1041 static inline int dev_get_dma_range(const struct udevice *dev, phys_addr_t *cpu,
1042 dma_addr_t *bus, u64 *size)
1043 {
1044 return ofnode_get_dma_range(dev_ofnode(dev), cpu, bus, size);
1045 }
1046
dev_read_alias_highest_id(const char * stem)1047 static inline int dev_read_alias_highest_id(const char *stem)
1048 {
1049 if (!CONFIG_IS_ENABLED(OF_LIBFDT) || !gd->fdt_blob)
1050 return -1;
1051 return fdtdec_get_alias_highest_id(gd->fdt_blob, stem);
1052 }
1053
dev_get_child_count(const struct udevice * dev)1054 static inline int dev_get_child_count(const struct udevice *dev)
1055 {
1056 return ofnode_get_child_count(dev_ofnode(dev));
1057 }
1058
dev_decode_display_timing(const struct udevice * dev,int index,struct display_timing * config)1059 static inline int dev_decode_display_timing(const struct udevice *dev,
1060 int index,
1061 struct display_timing *config)
1062 {
1063 return ofnode_decode_display_timing(dev_ofnode(dev), index, config);
1064 }
1065
1066 #endif /* CONFIG_DM_DEV_READ_INLINE */
1067
1068 /**
1069 * dev_for_each_subnode() - Helper function to iterate through subnodes
1070 *
1071 * This creates a for() loop which works through the subnodes in a device's
1072 * device-tree node.
1073 *
1074 * @subnode: ofnode holding the current subnode
1075 * @dev: device to use for interation (struct udevice *)
1076 */
1077 #define dev_for_each_subnode(subnode, dev) \
1078 for (subnode = dev_read_first_subnode(dev); \
1079 ofnode_valid(subnode); \
1080 subnode = ofnode_next_subnode(subnode))
1081
1082 /**
1083 * dev_for_each_property() - Helper function to iterate through property
1084 *
1085 * This creates a for() loop which works through the property in a device's
1086 * device-tree node.
1087 *
1088 * @prop: struct ofprop holding the current property
1089 * @dev: device to use for interation (struct udevice *)
1090 */
1091 #define dev_for_each_property(prop, dev) \
1092 for (int ret_prop = dev_read_first_prop(dev, &prop); \
1093 !ret_prop; \
1094 ret_prop = dev_read_next_prop(&prop))
1095
1096 #endif
1097