1 /*
2  * Copyright 2018-2022 NXP
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <drivers/delay_timer.h>
8 #include <lib/mmio.h>
9 
10 #include <dram.h>
11 
ddr4_mr_write(uint32_t mr,uint32_t data,uint32_t mr_type,uint32_t rank)12 void ddr4_mr_write(uint32_t mr, uint32_t data, uint32_t mr_type, uint32_t rank)
13 {
14 	uint32_t val, mr_mirror, data_mirror;
15 
16 	/*
17 	 * 1. Poll MRSTAT.mr_wr_busy until it is 0 to make sure
18 	 * that there is no outstanding MR transAction.
19 	 */
20 	while (mmio_read_32(DDRC_MRSTAT(0)) & 0x1) {
21 		;
22 	}
23 
24 	/*
25 	 * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank
26 	 * and (for MRWs) MRCTRL1.mr_data to define the MR transaction.
27 	 */
28 	val = mmio_read_32(DDRC_DIMMCTL(0));
29 	if ((val & 0x2) && (rank == 0x2)) {
30 		mr_mirror = (mr & 0x4) | ((mr & 0x1) << 1) | ((mr & 0x2) >> 1); /* BA0, BA1 swap */
31 		data_mirror = (data & 0x1607) | ((data & 0x8) << 1) | ((data & 0x10) >> 1) |
32 				((data & 0x20) << 1) | ((data & 0x40) >> 1) | ((data & 0x80) << 1) |
33 				 ((data & 0x100) >> 1) | ((data & 0x800) << 2) | ((data & 0x2000) >> 2) ;
34 	} else {
35 		mr_mirror = mr;
36 		data_mirror = data;
37 	}
38 
39 	mmio_write_32(DDRC_MRCTRL0(0), mr_type | (mr_mirror << 12) | (rank << 4));
40 	mmio_write_32(DDRC_MRCTRL1(0), data_mirror);
41 
42 	/*
43 	 * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1.
44 	 * This bit is self-clearing, and triggers the MR transaction.
45 	 * The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs
46 	 * the MR transaction to SDRAM, and no further accesses can be
47 	 * initiated until it is deasserted.
48 	 */
49 	mmio_setbits_32(DDRC_MRCTRL0(0), BIT(31));
50 
51 	while (mmio_read_32(DDRC_MRSTAT(0))) {
52 		;
53 	}
54 }
55 
dram_cfg_all_mr(struct dram_info * info,uint32_t pstate)56 void dram_cfg_all_mr(struct dram_info *info, uint32_t pstate)
57 {
58 	uint32_t num_rank = info->num_rank;
59 	/*
60 	 * 15. Perform MRS commands as required to re-program
61 	 * timing registers in the SDRAM for the new frequency
62 	 * (in particular, CL, CWL and WR may need to be changed).
63 	 */
64 
65 	for (int i = 1; i <= num_rank; i++) {
66 		for (int j = 0; j < 6; j++) {
67 			ddr4_mr_write(j, info->mr_table[pstate][j], 0, i);
68 		}
69 		ddr4_mr_write(6, info->mr_table[pstate][7], 0, i);
70 	}
71 }
72 
sw_pstate(uint32_t pstate,uint32_t drate)73 void sw_pstate(uint32_t pstate, uint32_t drate)
74 {
75 	uint32_t val;
76 
77 	mmio_write_32(DDRC_SWCTL(0), 0x0);
78 
79 	/*
80 	 * Update any registers which may be required to
81 	 * change for the new frequency.
82 	 */
83 	mmio_write_32(DDRC_MSTR2(0), pstate);
84 	mmio_setbits_32(DDRC_MSTR(0), (0x1 << 29));
85 
86 	/*
87 	 * Toggle RFSHCTL3.refresh_update_level to allow the
88 	 * new refresh-related register values to propagate
89 	 * to the refresh logic.
90 	 */
91 	val = mmio_read_32(DDRC_RFSHCTL3(0));
92 	if (val & 0x2) {
93 		mmio_write_32(DDRC_RFSHCTL3(0), val & 0xFFFFFFFD);
94 	} else {
95 		mmio_write_32(DDRC_RFSHCTL3(0), val | 0x2);
96 	}
97 
98 	/*
99 	 * 19. If required, trigger the initialization in the PHY.
100 	 * If using the gen2 multiPHY, PLL initialization should
101 	 * be triggered at this point. See the PHY databook for
102 	 * details about the frequency change procedure.
103 	 */
104 	mmio_write_32(DDRC_DFIMISC(0), 0x00000000 | (pstate << 8));
105 	mmio_write_32(DDRC_DFIMISC(0), 0x00000020 | (pstate << 8));
106 
107 	/* wait DFISTAT.dfi_init_complete to 0 */
108 	while (mmio_read_32(DDRC_DFISTAT(0)) & 0x1) {
109 		;
110 	}
111 
112 	/* change the clock to the target frequency */
113 	dram_clock_switch(drate, false);
114 
115 	mmio_write_32(DDRC_DFIMISC(0), 0x00000000 | (pstate << 8));
116 
117 	/* wait DFISTAT.dfi_init_complete to 1 */
118 	while (!(mmio_read_32(DDRC_DFISTAT(0)) & 0x1)) {
119 		;
120 	}
121 
122 	/*
123 	 * When changing frequencies the controller may violate the JEDEC
124 	 * requirement that no more than 16 refreshes should be issued within
125 	 * 2*tREFI. These extra refreshes are not expected to cause a problem
126 	 * in the SDRAM. This issue can be avoided by waiting for at least 2*tREFI
127 	 * before exiting self-refresh in step 19.
128 	 */
129 	udelay(14);
130 
131 	/* 14. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */
132 	mmio_clrbits_32(DDRC_PWRCTL(0), (1 << 5));
133 
134 	while ((mmio_read_32(DDRC_STAT(0)) & 0x3f) == 0x23) {
135 		;
136 	}
137 }
138 
ddr4_swffc(struct dram_info * info,unsigned int pstate)139 void ddr4_swffc(struct dram_info *info, unsigned int pstate)
140 {
141 	uint32_t drate = info->timing_info->fsp_table[pstate];
142 
143 	/*
144 	 * 1. set SWCTL.sw_done to disable quasi-dynamic register
145 	 * programming outside reset.
146 	 */
147 	mmio_write_32(DDRC_SWCTL(0), 0x0);
148 
149 	/*
150 	 * 2. Write 0 to PCTRL_n.port_en. This blocks AXI port(s)
151 	 * from taking any transaction (blocks traffic on AXI ports).
152 	 */
153 	mmio_write_32(DDRC_PCTRL_0(0), 0x0);
154 
155 	/*
156 	 * 3. Poll PSTAT.rd_port_busy_n=0 and PSTAT.wr_port_busy_n=0.
157 	 * Wait until all AXI ports are idle (the uMCTL2 core has to
158 	 * be idle).
159 	 */
160 	while (mmio_read_32(DDRC_PSTAT(0)) & 0x10001) {
161 		;
162 	}
163 
164 	/*
165 	 * 4. Write 0 to SBRCTL.scrub_en. Disable SBR, required only if
166 	 * SBR instantiated.
167 	 * 5. Poll SBRSTAT.scrub_busy=0.
168 	 * 6. Set DERATEEN.derate_enable = 0, if DERATEEN.derate_eanble = 1
169 	 * and the read latency (RL) value needs to change after the frequency
170 	 * change (LPDDR2/3/4 only).
171 	 * 7. Set DBG1.dis_hif=1 so that no new commands will be accepted by the uMCTL2.
172 	 */
173 	mmio_setbits_32(DDRC_DBG1(0), (0x1 << 1));
174 
175 	/*
176 	 * 8. Poll DBGCAM.dbg_wr_q_empty and DBGCAM.dbg_rd_q_empty to ensure
177 	 * that write and read data buffers are empty.
178 	 */
179 	while ((mmio_read_32(DDRC_DBGCAM(0)) & 0x06000000) != 0x06000000) {
180 		;
181 	}
182 
183 	/*
184 	 * 9. For DDR4, update MR6 with the new tDLLK value via the Mode
185 	 * Register Write signals
186 	 * 10. Set DFILPCFG0.dfi_lp_en_sr = 0, if DFILPCFG0.dfi_lp_en_sr = 1,
187 	 * and wait until DFISTAT.dfi_lp_ack
188 	 * 11. If DFI PHY Master interface is active in uMCTL2, then disable it
189 	 * 12. Wait until STAT.operating_mode[1:0]!=11 indicating that the
190 	 * controller is not in self-refresh mode.
191 	 */
192 	while ((mmio_read_32(DDRC_STAT(0)) & 0x3) == 0x3) {
193 		;
194 	}
195 
196 	/*
197 	 * 13. Assert PWRCTL.selfref_sw for the DWC_ddr_umctl2 core to enter
198 	 * the self-refresh mode.
199 	 */
200 	mmio_setbits_32(DDRC_PWRCTL(0), (1 << 5));
201 
202 	/*
203 	 * 14. Wait until STAT.operating_mode[1:0]==11 indicating that the
204 	 * controller core is in self-refresh mode.
205 	 */
206 	while ((mmio_read_32(DDRC_STAT(0)) & 0x3f) != 0x23) {
207 		;
208 	}
209 
210 	sw_pstate(pstate, drate);
211 	dram_cfg_all_mr(info, pstate);
212 
213 	/* 23. Enable HIF commands by setting DBG1.dis_hif=0. */
214 	mmio_clrbits_32(DDRC_DBG1(0), (0x1 << 1));
215 
216 	/*
217 	 * 24. Reset DERATEEN.derate_enable = 1 if DERATEEN.derate_enable
218 	 * has been set to 0 in step 6.
219 	 * 25. If DFI PHY Master interface was active before step 11 then
220 	 * enable it back by programming DFIPHYMSTR.phymstr_en = 1'b1.
221 	 * 26. Write 1 to PCTRL_n.port_en. AXI port(s) are no longer blocked
222 	 * from taking transactions (Re-enable traffic on AXI ports)
223 	 */
224 	mmio_write_32(DDRC_PCTRL_0(0), 0x1);
225 
226 	/*
227 	 * 27. Write 1 to SBRCTL.scrub_en. Enable SBR if desired, only
228 	 * required if SBR instantiated.
229 	 */
230 
231 	/*
232 	 * set SWCTL.sw_done to enable quasi-dynamic register programming
233 	 * outside reset.
234 	 */
235 	mmio_write_32(DDRC_SWCTL(0), 0x1);
236 
237 	/* wait SWSTAT.sw_done_ack to 1 */
238 	while (!(mmio_read_32(DDRC_SWSTAT(0)) & 0x1)) {
239 		;
240 	}
241 }
242