1 /*
2  * Copyright 2006-2021 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 /*
11  * Implementation of RFC 3779 section 2.2.
12  */
13 
14 #include <stdio.h>
15 #include <stdlib.h>
16 
17 #include "internal/cryptlib.h"
18 #include <openssl/conf.h>
19 #include <openssl/asn1.h>
20 #include <openssl/asn1t.h>
21 #include <openssl/buffer.h>
22 #include <openssl/x509v3.h>
23 #include "crypto/x509.h"
24 #include "ext_dat.h"
25 #include "x509_local.h"
26 
27 #ifndef OPENSSL_NO_RFC3779
28 
29 /*
30  * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
31  */
32 
33 ASN1_SEQUENCE(IPAddressRange) = {
34   ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
35   ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
36 } ASN1_SEQUENCE_END(IPAddressRange)
37 
38 ASN1_CHOICE(IPAddressOrRange) = {
39   ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
40   ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
41 } ASN1_CHOICE_END(IPAddressOrRange)
42 
43 ASN1_CHOICE(IPAddressChoice) = {
44   ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
45   ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
46 } ASN1_CHOICE_END(IPAddressChoice)
47 
48 ASN1_SEQUENCE(IPAddressFamily) = {
49   ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
50   ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
51 } ASN1_SEQUENCE_END(IPAddressFamily)
52 
53 ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
54   ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
55                         IPAddrBlocks, IPAddressFamily)
56 static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
57 
58 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
59 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
60 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
61 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
62 
63 /*
64  * How much buffer space do we need for a raw address?
65  */
66 #define ADDR_RAW_BUF_LEN        16
67 
68 /*
69  * What's the address length associated with this AFI?
70  */
71 static int length_from_afi(const unsigned afi)
72 {
73     switch (afi) {
74     case IANA_AFI_IPV4:
75         return 4;
76     case IANA_AFI_IPV6:
77         return 16;
78     default:
79         return 0;
80     }
81 }
82 
83 /*
84  * Extract the AFI from an IPAddressFamily.
85  */
X509v3_addr_get_afi(const IPAddressFamily * f)86 unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
87 {
88     if (f == NULL
89             || f->addressFamily == NULL
90             || f->addressFamily->data == NULL
91             || f->addressFamily->length < 2)
92         return 0;
93     return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
94 }
95 
96 /*
97  * Expand the bitstring form of an address into a raw byte array.
98  * At the moment this is coded for simplicity, not speed.
99  */
addr_expand(unsigned char * addr,const ASN1_BIT_STRING * bs,const int length,const unsigned char fill)100 static int addr_expand(unsigned char *addr,
101                        const ASN1_BIT_STRING *bs,
102                        const int length, const unsigned char fill)
103 {
104     if (bs->length < 0 || bs->length > length)
105         return 0;
106     if (bs->length > 0) {
107         memcpy(addr, bs->data, bs->length);
108         if ((bs->flags & 7) != 0) {
109             unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
110             if (fill == 0)
111                 addr[bs->length - 1] &= ~mask;
112             else
113                 addr[bs->length - 1] |= mask;
114         }
115     }
116     memset(addr + bs->length, fill, length - bs->length);
117     return 1;
118 }
119 
120 /*
121  * Extract the prefix length from a bitstring.
122  */
123 #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
124 
125 /*
126  * i2r handler for one address bitstring.
127  */
i2r_address(BIO * out,const unsigned afi,const unsigned char fill,const ASN1_BIT_STRING * bs)128 static int i2r_address(BIO *out,
129                        const unsigned afi,
130                        const unsigned char fill, const ASN1_BIT_STRING *bs)
131 {
132     unsigned char addr[ADDR_RAW_BUF_LEN];
133     int i, n;
134 
135     if (bs->length < 0)
136         return 0;
137     switch (afi) {
138     case IANA_AFI_IPV4:
139         if (!addr_expand(addr, bs, 4, fill))
140             return 0;
141         BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
142         break;
143     case IANA_AFI_IPV6:
144         if (!addr_expand(addr, bs, 16, fill))
145             return 0;
146         for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
147              n -= 2) ;
148         for (i = 0; i < n; i += 2)
149             BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
150                        (i < 14 ? ":" : ""));
151         if (i < 16)
152             BIO_puts(out, ":");
153         if (i == 0)
154             BIO_puts(out, ":");
155         break;
156     default:
157         for (i = 0; i < bs->length; i++)
158             BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
159         BIO_printf(out, "[%d]", (int)(bs->flags & 7));
160         break;
161     }
162     return 1;
163 }
164 
165 /*
166  * i2r handler for a sequence of addresses and ranges.
167  */
i2r_IPAddressOrRanges(BIO * out,const int indent,const IPAddressOrRanges * aors,const unsigned afi)168 static int i2r_IPAddressOrRanges(BIO *out,
169                                  const int indent,
170                                  const IPAddressOrRanges *aors,
171                                  const unsigned afi)
172 {
173     int i;
174     for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
175         const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
176         BIO_printf(out, "%*s", indent, "");
177         switch (aor->type) {
178         case IPAddressOrRange_addressPrefix:
179             if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
180                 return 0;
181             BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
182             continue;
183         case IPAddressOrRange_addressRange:
184             if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
185                 return 0;
186             BIO_puts(out, "-");
187             if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
188                 return 0;
189             BIO_puts(out, "\n");
190             continue;
191         }
192     }
193     return 1;
194 }
195 
196 /*
197  * i2r handler for an IPAddrBlocks extension.
198  */
i2r_IPAddrBlocks(const X509V3_EXT_METHOD * method,void * ext,BIO * out,int indent)199 static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
200                             void *ext, BIO *out, int indent)
201 {
202     const IPAddrBlocks *addr = ext;
203     int i;
204     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
205         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
206         const unsigned int afi = X509v3_addr_get_afi(f);
207         switch (afi) {
208         case IANA_AFI_IPV4:
209             BIO_printf(out, "%*sIPv4", indent, "");
210             break;
211         case IANA_AFI_IPV6:
212             BIO_printf(out, "%*sIPv6", indent, "");
213             break;
214         default:
215             BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
216             break;
217         }
218         if (f->addressFamily->length > 2) {
219             switch (f->addressFamily->data[2]) {
220             case 1:
221                 BIO_puts(out, " (Unicast)");
222                 break;
223             case 2:
224                 BIO_puts(out, " (Multicast)");
225                 break;
226             case 3:
227                 BIO_puts(out, " (Unicast/Multicast)");
228                 break;
229             case 4:
230                 BIO_puts(out, " (MPLS)");
231                 break;
232             case 64:
233                 BIO_puts(out, " (Tunnel)");
234                 break;
235             case 65:
236                 BIO_puts(out, " (VPLS)");
237                 break;
238             case 66:
239                 BIO_puts(out, " (BGP MDT)");
240                 break;
241             case 128:
242                 BIO_puts(out, " (MPLS-labeled VPN)");
243                 break;
244             default:
245                 BIO_printf(out, " (Unknown SAFI %u)",
246                            (unsigned)f->addressFamily->data[2]);
247                 break;
248             }
249         }
250         switch (f->ipAddressChoice->type) {
251         case IPAddressChoice_inherit:
252             BIO_puts(out, ": inherit\n");
253             break;
254         case IPAddressChoice_addressesOrRanges:
255             BIO_puts(out, ":\n");
256             if (!i2r_IPAddressOrRanges(out,
257                                        indent + 2,
258                                        f->ipAddressChoice->
259                                        u.addressesOrRanges, afi))
260                 return 0;
261             break;
262         }
263     }
264     return 1;
265 }
266 
267 /*
268  * Sort comparison function for a sequence of IPAddressOrRange
269  * elements.
270  *
271  * There's no sane answer we can give if addr_expand() fails, and an
272  * assertion failure on externally supplied data is seriously uncool,
273  * so we just arbitrarily declare that if given invalid inputs this
274  * function returns -1.  If this messes up your preferred sort order
275  * for garbage input, tough noogies.
276  */
IPAddressOrRange_cmp(const IPAddressOrRange * a,const IPAddressOrRange * b,const int length)277 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
278                                 const IPAddressOrRange *b, const int length)
279 {
280     unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
281     int prefixlen_a = 0, prefixlen_b = 0;
282     int r;
283 
284     switch (a->type) {
285     case IPAddressOrRange_addressPrefix:
286         if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
287             return -1;
288         prefixlen_a = addr_prefixlen(a->u.addressPrefix);
289         break;
290     case IPAddressOrRange_addressRange:
291         if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
292             return -1;
293         prefixlen_a = length * 8;
294         break;
295     }
296 
297     switch (b->type) {
298     case IPAddressOrRange_addressPrefix:
299         if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
300             return -1;
301         prefixlen_b = addr_prefixlen(b->u.addressPrefix);
302         break;
303     case IPAddressOrRange_addressRange:
304         if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
305             return -1;
306         prefixlen_b = length * 8;
307         break;
308     }
309 
310     if ((r = memcmp(addr_a, addr_b, length)) != 0)
311         return r;
312     else
313         return prefixlen_a - prefixlen_b;
314 }
315 
316 /*
317  * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
318  * comparison routines are only allowed two arguments.
319  */
v4IPAddressOrRange_cmp(const IPAddressOrRange * const * a,const IPAddressOrRange * const * b)320 static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
321                                   const IPAddressOrRange *const *b)
322 {
323     return IPAddressOrRange_cmp(*a, *b, 4);
324 }
325 
326 /*
327  * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
328  * comparison routines are only allowed two arguments.
329  */
v6IPAddressOrRange_cmp(const IPAddressOrRange * const * a,const IPAddressOrRange * const * b)330 static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
331                                   const IPAddressOrRange *const *b)
332 {
333     return IPAddressOrRange_cmp(*a, *b, 16);
334 }
335 
336 /*
337  * Calculate whether a range collapses to a prefix.
338  * See last paragraph of RFC 3779 2.2.3.7.
339  */
range_should_be_prefix(const unsigned char * min,const unsigned char * max,const int length)340 static int range_should_be_prefix(const unsigned char *min,
341                                   const unsigned char *max, const int length)
342 {
343     unsigned char mask;
344     int i, j;
345 
346     if (memcmp(min, max, length) <= 0)
347         return -1;
348     for (i = 0; i < length && min[i] == max[i]; i++) ;
349     for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
350     if (i < j)
351         return -1;
352     if (i > j)
353         return i * 8;
354     mask = min[i] ^ max[i];
355     switch (mask) {
356     case 0x01:
357         j = 7;
358         break;
359     case 0x03:
360         j = 6;
361         break;
362     case 0x07:
363         j = 5;
364         break;
365     case 0x0F:
366         j = 4;
367         break;
368     case 0x1F:
369         j = 3;
370         break;
371     case 0x3F:
372         j = 2;
373         break;
374     case 0x7F:
375         j = 1;
376         break;
377     default:
378         return -1;
379     }
380     if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
381         return -1;
382     else
383         return i * 8 + j;
384 }
385 
386 /*
387  * Construct a prefix.
388  */
make_addressPrefix(IPAddressOrRange ** result,unsigned char * addr,const int prefixlen)389 static int make_addressPrefix(IPAddressOrRange **result,
390                               unsigned char *addr, const int prefixlen)
391 {
392     int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
393     IPAddressOrRange *aor = IPAddressOrRange_new();
394 
395     if (aor == NULL)
396         return 0;
397     aor->type = IPAddressOrRange_addressPrefix;
398     if (aor->u.addressPrefix == NULL &&
399         (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
400         goto err;
401     if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
402         goto err;
403     aor->u.addressPrefix->flags &= ~7;
404     aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
405     if (bitlen > 0) {
406         aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
407         aor->u.addressPrefix->flags |= 8 - bitlen;
408     }
409 
410     *result = aor;
411     return 1;
412 
413  err:
414     IPAddressOrRange_free(aor);
415     return 0;
416 }
417 
418 /*
419  * Construct a range.  If it can be expressed as a prefix,
420  * return a prefix instead.  Doing this here simplifies
421  * the rest of the code considerably.
422  */
make_addressRange(IPAddressOrRange ** result,unsigned char * min,unsigned char * max,const int length)423 static int make_addressRange(IPAddressOrRange **result,
424                              unsigned char *min,
425                              unsigned char *max, const int length)
426 {
427     IPAddressOrRange *aor;
428     int i, prefixlen;
429 
430     if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
431         return make_addressPrefix(result, min, prefixlen);
432 
433     if ((aor = IPAddressOrRange_new()) == NULL)
434         return 0;
435     aor->type = IPAddressOrRange_addressRange;
436     if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
437         goto err;
438     if (aor->u.addressRange->min == NULL &&
439         (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
440         goto err;
441     if (aor->u.addressRange->max == NULL &&
442         (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
443         goto err;
444 
445     for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
446     if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
447         goto err;
448     aor->u.addressRange->min->flags &= ~7;
449     aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
450     if (i > 0) {
451         unsigned char b = min[i - 1];
452         int j = 1;
453         while ((b & (0xFFU >> j)) != 0)
454             ++j;
455         aor->u.addressRange->min->flags |= 8 - j;
456     }
457 
458     for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
459     if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
460         goto err;
461     aor->u.addressRange->max->flags &= ~7;
462     aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
463     if (i > 0) {
464         unsigned char b = max[i - 1];
465         int j = 1;
466         while ((b & (0xFFU >> j)) != (0xFFU >> j))
467             ++j;
468         aor->u.addressRange->max->flags |= 8 - j;
469     }
470 
471     *result = aor;
472     return 1;
473 
474  err:
475     IPAddressOrRange_free(aor);
476     return 0;
477 }
478 
479 /*
480  * Construct a new address family or find an existing one.
481  */
make_IPAddressFamily(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi)482 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
483                                              const unsigned afi,
484                                              const unsigned *safi)
485 {
486     IPAddressFamily *f;
487     unsigned char key[3];
488     int keylen;
489     int i;
490 
491     key[0] = (afi >> 8) & 0xFF;
492     key[1] = afi & 0xFF;
493     if (safi != NULL) {
494         key[2] = *safi & 0xFF;
495         keylen = 3;
496     } else {
497         keylen = 2;
498     }
499 
500     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
501         f = sk_IPAddressFamily_value(addr, i);
502         if (f->addressFamily->length == keylen &&
503             !memcmp(f->addressFamily->data, key, keylen))
504             return f;
505     }
506 
507     if ((f = IPAddressFamily_new()) == NULL)
508         goto err;
509     if (f->ipAddressChoice == NULL &&
510         (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
511         goto err;
512     if (f->addressFamily == NULL &&
513         (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
514         goto err;
515     if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
516         goto err;
517     if (!sk_IPAddressFamily_push(addr, f))
518         goto err;
519 
520     return f;
521 
522  err:
523     IPAddressFamily_free(f);
524     return NULL;
525 }
526 
527 /*
528  * Add an inheritance element.
529  */
X509v3_addr_add_inherit(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi)530 int X509v3_addr_add_inherit(IPAddrBlocks *addr,
531                             const unsigned afi, const unsigned *safi)
532 {
533     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
534     if (f == NULL ||
535         f->ipAddressChoice == NULL ||
536         (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
537          f->ipAddressChoice->u.addressesOrRanges != NULL))
538         return 0;
539     if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
540         f->ipAddressChoice->u.inherit != NULL)
541         return 1;
542     if (f->ipAddressChoice->u.inherit == NULL &&
543         (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
544         return 0;
545     f->ipAddressChoice->type = IPAddressChoice_inherit;
546     return 1;
547 }
548 
549 /*
550  * Construct an IPAddressOrRange sequence, or return an existing one.
551  */
make_prefix_or_range(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi)552 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
553                                                const unsigned afi,
554                                                const unsigned *safi)
555 {
556     IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
557     IPAddressOrRanges *aors = NULL;
558 
559     if (f == NULL ||
560         f->ipAddressChoice == NULL ||
561         (f->ipAddressChoice->type == IPAddressChoice_inherit &&
562          f->ipAddressChoice->u.inherit != NULL))
563         return NULL;
564     if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
565         aors = f->ipAddressChoice->u.addressesOrRanges;
566     if (aors != NULL)
567         return aors;
568     if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
569         return NULL;
570     switch (afi) {
571     case IANA_AFI_IPV4:
572         (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
573         break;
574     case IANA_AFI_IPV6:
575         (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
576         break;
577     }
578     f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
579     f->ipAddressChoice->u.addressesOrRanges = aors;
580     return aors;
581 }
582 
583 /*
584  * Add a prefix.
585  */
X509v3_addr_add_prefix(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi,unsigned char * a,const int prefixlen)586 int X509v3_addr_add_prefix(IPAddrBlocks *addr,
587                            const unsigned afi,
588                            const unsigned *safi,
589                            unsigned char *a, const int prefixlen)
590 {
591     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
592     IPAddressOrRange *aor;
593     if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
594         return 0;
595     if (sk_IPAddressOrRange_push(aors, aor))
596         return 1;
597     IPAddressOrRange_free(aor);
598     return 0;
599 }
600 
601 /*
602  * Add a range.
603  */
X509v3_addr_add_range(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi,unsigned char * min,unsigned char * max)604 int X509v3_addr_add_range(IPAddrBlocks *addr,
605                           const unsigned afi,
606                           const unsigned *safi,
607                           unsigned char *min, unsigned char *max)
608 {
609     IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
610     IPAddressOrRange *aor;
611     int length = length_from_afi(afi);
612     if (aors == NULL)
613         return 0;
614     if (!make_addressRange(&aor, min, max, length))
615         return 0;
616     if (sk_IPAddressOrRange_push(aors, aor))
617         return 1;
618     IPAddressOrRange_free(aor);
619     return 0;
620 }
621 
622 /*
623  * Extract min and max values from an IPAddressOrRange.
624  */
extract_min_max(IPAddressOrRange * aor,unsigned char * min,unsigned char * max,int length)625 static int extract_min_max(IPAddressOrRange *aor,
626                            unsigned char *min, unsigned char *max, int length)
627 {
628     if (aor == NULL || min == NULL || max == NULL)
629         return 0;
630     switch (aor->type) {
631     case IPAddressOrRange_addressPrefix:
632         return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
633                 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
634     case IPAddressOrRange_addressRange:
635         return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
636                 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
637     }
638     return 0;
639 }
640 
641 /*
642  * Public wrapper for extract_min_max().
643  */
X509v3_addr_get_range(IPAddressOrRange * aor,const unsigned afi,unsigned char * min,unsigned char * max,const int length)644 int X509v3_addr_get_range(IPAddressOrRange *aor,
645                           const unsigned afi,
646                           unsigned char *min,
647                           unsigned char *max, const int length)
648 {
649     int afi_length = length_from_afi(afi);
650     if (aor == NULL || min == NULL || max == NULL ||
651         afi_length == 0 || length < afi_length ||
652         (aor->type != IPAddressOrRange_addressPrefix &&
653          aor->type != IPAddressOrRange_addressRange) ||
654         !extract_min_max(aor, min, max, afi_length))
655         return 0;
656 
657     return afi_length;
658 }
659 
660 /*
661  * Sort comparison function for a sequence of IPAddressFamily.
662  *
663  * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
664  * the ordering: I can read it as meaning that IPv6 without a SAFI
665  * comes before IPv4 with a SAFI, which seems pretty weird.  The
666  * examples in appendix B suggest that the author intended the
667  * null-SAFI rule to apply only within a single AFI, which is what I
668  * would have expected and is what the following code implements.
669  */
IPAddressFamily_cmp(const IPAddressFamily * const * a_,const IPAddressFamily * const * b_)670 static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
671                                const IPAddressFamily *const *b_)
672 {
673     const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
674     const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
675     int len = ((a->length <= b->length) ? a->length : b->length);
676     int cmp = memcmp(a->data, b->data, len);
677     return cmp ? cmp : a->length - b->length;
678 }
679 
680 /*
681  * Check whether an IPAddrBLocks is in canonical form.
682  */
X509v3_addr_is_canonical(IPAddrBlocks * addr)683 int X509v3_addr_is_canonical(IPAddrBlocks *addr)
684 {
685     unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
686     unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
687     IPAddressOrRanges *aors;
688     int i, j, k;
689 
690     /*
691      * Empty extension is canonical.
692      */
693     if (addr == NULL)
694         return 1;
695 
696     /*
697      * Check whether the top-level list is in order.
698      */
699     for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
700         const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
701         const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
702         if (IPAddressFamily_cmp(&a, &b) >= 0)
703             return 0;
704     }
705 
706     /*
707      * Top level's ok, now check each address family.
708      */
709     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
710         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
711         int length = length_from_afi(X509v3_addr_get_afi(f));
712 
713         /*
714          * Inheritance is canonical.  Anything other than inheritance or
715          * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
716          */
717         if (f == NULL || f->ipAddressChoice == NULL)
718             return 0;
719         switch (f->ipAddressChoice->type) {
720         case IPAddressChoice_inherit:
721             continue;
722         case IPAddressChoice_addressesOrRanges:
723             break;
724         default:
725             return 0;
726         }
727 
728         /*
729          * It's an IPAddressOrRanges sequence, check it.
730          */
731         aors = f->ipAddressChoice->u.addressesOrRanges;
732         if (sk_IPAddressOrRange_num(aors) == 0)
733             return 0;
734         for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
735             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
736             IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
737 
738             if (!extract_min_max(a, a_min, a_max, length) ||
739                 !extract_min_max(b, b_min, b_max, length))
740                 return 0;
741 
742             /*
743              * Punt misordered list, overlapping start, or inverted range.
744              */
745             if (memcmp(a_min, b_min, length) >= 0 ||
746                 memcmp(a_min, a_max, length) > 0 ||
747                 memcmp(b_min, b_max, length) > 0)
748                 return 0;
749 
750             /*
751              * Punt if adjacent or overlapping.  Check for adjacency by
752              * subtracting one from b_min first.
753              */
754             for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
755             if (memcmp(a_max, b_min, length) >= 0)
756                 return 0;
757 
758             /*
759              * Check for range that should be expressed as a prefix.
760              */
761             if (a->type == IPAddressOrRange_addressRange &&
762                 range_should_be_prefix(a_min, a_max, length) >= 0)
763                 return 0;
764         }
765 
766         /*
767          * Check range to see if it's inverted or should be a
768          * prefix.
769          */
770         j = sk_IPAddressOrRange_num(aors) - 1;
771         {
772             IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
773             if (a != NULL && a->type == IPAddressOrRange_addressRange) {
774                 if (!extract_min_max(a, a_min, a_max, length))
775                     return 0;
776                 if (memcmp(a_min, a_max, length) > 0 ||
777                     range_should_be_prefix(a_min, a_max, length) >= 0)
778                     return 0;
779             }
780         }
781     }
782 
783     /*
784      * If we made it through all that, we're happy.
785      */
786     return 1;
787 }
788 
789 /*
790  * Whack an IPAddressOrRanges into canonical form.
791  */
IPAddressOrRanges_canonize(IPAddressOrRanges * aors,const unsigned afi)792 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
793                                       const unsigned afi)
794 {
795     int i, j, length = length_from_afi(afi);
796 
797     /*
798      * Sort the IPAddressOrRanges sequence.
799      */
800     sk_IPAddressOrRange_sort(aors);
801 
802     /*
803      * Clean up representation issues, punt on duplicates or overlaps.
804      */
805     for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
806         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
807         IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
808         unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
809         unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
810 
811         if (!extract_min_max(a, a_min, a_max, length) ||
812             !extract_min_max(b, b_min, b_max, length))
813             return 0;
814 
815         /*
816          * Punt inverted ranges.
817          */
818         if (memcmp(a_min, a_max, length) > 0 ||
819             memcmp(b_min, b_max, length) > 0)
820             return 0;
821 
822         /*
823          * Punt overlaps.
824          */
825         if (memcmp(a_max, b_min, length) >= 0)
826             return 0;
827 
828         /*
829          * Merge if a and b are adjacent.  We check for
830          * adjacency by subtracting one from b_min first.
831          */
832         for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
833         if (memcmp(a_max, b_min, length) == 0) {
834             IPAddressOrRange *merged;
835             if (!make_addressRange(&merged, a_min, b_max, length))
836                 return 0;
837             (void)sk_IPAddressOrRange_set(aors, i, merged);
838             (void)sk_IPAddressOrRange_delete(aors, i + 1);
839             IPAddressOrRange_free(a);
840             IPAddressOrRange_free(b);
841             --i;
842             continue;
843         }
844     }
845 
846     /*
847      * Check for inverted final range.
848      */
849     j = sk_IPAddressOrRange_num(aors) - 1;
850     {
851         IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
852         if (a != NULL && a->type == IPAddressOrRange_addressRange) {
853             unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
854             if (!extract_min_max(a, a_min, a_max, length))
855                 return 0;
856             if (memcmp(a_min, a_max, length) > 0)
857                 return 0;
858         }
859     }
860 
861     return 1;
862 }
863 
864 /*
865  * Whack an IPAddrBlocks extension into canonical form.
866  */
X509v3_addr_canonize(IPAddrBlocks * addr)867 int X509v3_addr_canonize(IPAddrBlocks *addr)
868 {
869     int i;
870     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
871         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
872         if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
873             !IPAddressOrRanges_canonize(f->ipAddressChoice->
874                                         u.addressesOrRanges,
875                                         X509v3_addr_get_afi(f)))
876             return 0;
877     }
878     (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
879     sk_IPAddressFamily_sort(addr);
880     if (!ossl_assert(X509v3_addr_is_canonical(addr)))
881         return 0;
882     return 1;
883 }
884 
885 /*
886  * v2i handler for the IPAddrBlocks extension.
887  */
v2i_IPAddrBlocks(const struct v3_ext_method * method,struct v3_ext_ctx * ctx,STACK_OF (CONF_VALUE)* values)888 static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
889                               struct v3_ext_ctx *ctx,
890                               STACK_OF(CONF_VALUE) *values)
891 {
892     static const char v4addr_chars[] = "0123456789.";
893     static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
894     IPAddrBlocks *addr = NULL;
895     char *s = NULL, *t;
896     int i;
897 
898     if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
899         ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
900         return NULL;
901     }
902 
903     for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
904         CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
905         unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
906         unsigned afi, *safi = NULL, safi_;
907         const char *addr_chars = NULL;
908         int prefixlen, i1, i2, delim, length;
909 
910         if (!ossl_v3_name_cmp(val->name, "IPv4")) {
911             afi = IANA_AFI_IPV4;
912         } else if (!ossl_v3_name_cmp(val->name, "IPv6")) {
913             afi = IANA_AFI_IPV6;
914         } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) {
915             afi = IANA_AFI_IPV4;
916             safi = &safi_;
917         } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) {
918             afi = IANA_AFI_IPV6;
919             safi = &safi_;
920         } else {
921             ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR,
922                            "%s", val->name);
923             goto err;
924         }
925 
926         switch (afi) {
927         case IANA_AFI_IPV4:
928             addr_chars = v4addr_chars;
929             break;
930         case IANA_AFI_IPV6:
931             addr_chars = v6addr_chars;
932             break;
933         }
934 
935         length = length_from_afi(afi);
936 
937         /*
938          * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
939          * the other input values.
940          */
941         if (safi != NULL) {
942             *safi = strtoul(val->value, &t, 0);
943             t += strspn(t, " \t");
944             if (*safi > 0xFF || *t++ != ':') {
945                 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI);
946                 X509V3_conf_add_error_name_value(val);
947                 goto err;
948             }
949             t += strspn(t, " \t");
950             s = OPENSSL_strdup(t);
951         } else {
952             s = OPENSSL_strdup(val->value);
953         }
954         if (s == NULL) {
955             ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
956             goto err;
957         }
958 
959         /*
960          * Check for inheritance.  Not worth additional complexity to
961          * optimize this (seldom-used) case.
962          */
963         if (strcmp(s, "inherit") == 0) {
964             if (!X509v3_addr_add_inherit(addr, afi, safi)) {
965                 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE);
966                 X509V3_conf_add_error_name_value(val);
967                 goto err;
968             }
969             OPENSSL_free(s);
970             s = NULL;
971             continue;
972         }
973 
974         i1 = strspn(s, addr_chars);
975         i2 = i1 + strspn(s + i1, " \t");
976         delim = s[i2++];
977         s[i1] = '\0';
978 
979         if (ossl_a2i_ipadd(min, s) != length) {
980             ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
981             X509V3_conf_add_error_name_value(val);
982             goto err;
983         }
984 
985         switch (delim) {
986         case '/':
987             prefixlen = (int)strtoul(s + i2, &t, 10);
988             if (t == s + i2 || *t != '\0') {
989                 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
990                 X509V3_conf_add_error_name_value(val);
991                 goto err;
992             }
993             if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
994                 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
995                 goto err;
996             }
997             break;
998         case '-':
999             i1 = i2 + strspn(s + i2, " \t");
1000             i2 = i1 + strspn(s + i1, addr_chars);
1001             if (i1 == i2 || s[i2] != '\0') {
1002                 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1003                 X509V3_conf_add_error_name_value(val);
1004                 goto err;
1005             }
1006             if (ossl_a2i_ipadd(max, s + i1) != length) {
1007                 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1008                 X509V3_conf_add_error_name_value(val);
1009                 goto err;
1010             }
1011             if (memcmp(min, max, length_from_afi(afi)) > 0) {
1012                 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1013                 X509V3_conf_add_error_name_value(val);
1014                 goto err;
1015             }
1016             if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1017                 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1018                 goto err;
1019             }
1020             break;
1021         case '\0':
1022             if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1023                 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1024                 goto err;
1025             }
1026             break;
1027         default:
1028             ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1029             X509V3_conf_add_error_name_value(val);
1030             goto err;
1031         }
1032 
1033         OPENSSL_free(s);
1034         s = NULL;
1035     }
1036 
1037     /*
1038      * Canonize the result, then we're done.
1039      */
1040     if (!X509v3_addr_canonize(addr))
1041         goto err;
1042     return addr;
1043 
1044  err:
1045     OPENSSL_free(s);
1046     sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1047     return NULL;
1048 }
1049 
1050 /*
1051  * OpenSSL dispatch
1052  */
1053 const X509V3_EXT_METHOD ossl_v3_addr = {
1054     NID_sbgp_ipAddrBlock,       /* nid */
1055     0,                          /* flags */
1056     ASN1_ITEM_ref(IPAddrBlocks), /* template */
1057     0, 0, 0, 0,                 /* old functions, ignored */
1058     0,                          /* i2s */
1059     0,                          /* s2i */
1060     0,                          /* i2v */
1061     v2i_IPAddrBlocks,           /* v2i */
1062     i2r_IPAddrBlocks,           /* i2r */
1063     0,                          /* r2i */
1064     NULL                        /* extension-specific data */
1065 };
1066 
1067 /*
1068  * Figure out whether extension sues inheritance.
1069  */
X509v3_addr_inherits(IPAddrBlocks * addr)1070 int X509v3_addr_inherits(IPAddrBlocks *addr)
1071 {
1072     int i;
1073     if (addr == NULL)
1074         return 0;
1075     for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1076         IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1077         if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1078             return 1;
1079     }
1080     return 0;
1081 }
1082 
1083 /*
1084  * Figure out whether parent contains child.
1085  */
addr_contains(IPAddressOrRanges * parent,IPAddressOrRanges * child,int length)1086 static int addr_contains(IPAddressOrRanges *parent,
1087                          IPAddressOrRanges *child, int length)
1088 {
1089     unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1090     unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1091     int p, c;
1092 
1093     if (child == NULL || parent == child)
1094         return 1;
1095     if (parent == NULL)
1096         return 0;
1097 
1098     p = 0;
1099     for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1100         if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1101                              c_min, c_max, length))
1102             return -1;
1103         for (;; p++) {
1104             if (p >= sk_IPAddressOrRange_num(parent))
1105                 return 0;
1106             if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1107                                  p_min, p_max, length))
1108                 return 0;
1109             if (memcmp(p_max, c_max, length) < 0)
1110                 continue;
1111             if (memcmp(p_min, c_min, length) > 0)
1112                 return 0;
1113             break;
1114         }
1115     }
1116 
1117     return 1;
1118 }
1119 
1120 /*
1121  * Test whether a is a subset of b.
1122  */
X509v3_addr_subset(IPAddrBlocks * a,IPAddrBlocks * b)1123 int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1124 {
1125     int i;
1126     if (a == NULL || a == b)
1127         return 1;
1128     if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1129         return 0;
1130     (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1131     for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1132         IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1133         int j = sk_IPAddressFamily_find(b, fa);
1134         IPAddressFamily *fb;
1135         fb = sk_IPAddressFamily_value(b, j);
1136         if (fb == NULL)
1137             return 0;
1138         if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1139                            fa->ipAddressChoice->u.addressesOrRanges,
1140                            length_from_afi(X509v3_addr_get_afi(fb))))
1141             return 0;
1142     }
1143     return 1;
1144 }
1145 
1146 /*
1147  * Validation error handling via callback.
1148  */
1149 #define validation_err(_err_)           \
1150   do {                                  \
1151     if (ctx != NULL) {                  \
1152       ctx->error = _err_;               \
1153       ctx->error_depth = i;             \
1154       ctx->current_cert = x;            \
1155       ret = ctx->verify_cb(0, ctx);     \
1156     } else {                            \
1157       ret = 0;                          \
1158     }                                   \
1159     if (!ret)                           \
1160       goto done;                        \
1161   } while (0)
1162 
1163 /*
1164  * Core code for RFC 3779 2.3 path validation.
1165  *
1166  * Returns 1 for success, 0 on error.
1167  *
1168  * When returning 0, ctx->error MUST be set to an appropriate value other than
1169  * X509_V_OK.
1170  */
addr_validate_path_internal(X509_STORE_CTX * ctx,STACK_OF (X509)* chain,IPAddrBlocks * ext)1171 static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1172                                        STACK_OF(X509) *chain,
1173                                        IPAddrBlocks *ext)
1174 {
1175     IPAddrBlocks *child = NULL;
1176     int i, j, ret = 1;
1177     X509 *x;
1178 
1179     if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1180             || !ossl_assert(ctx != NULL || ext != NULL)
1181             || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1182         if (ctx != NULL)
1183             ctx->error = X509_V_ERR_UNSPECIFIED;
1184         return 0;
1185     }
1186 
1187     /*
1188      * Figure out where to start.  If we don't have an extension to
1189      * check, we're done.  Otherwise, check canonical form and
1190      * set up for walking up the chain.
1191      */
1192     if (ext != NULL) {
1193         i = -1;
1194         x = NULL;
1195     } else {
1196         i = 0;
1197         x = sk_X509_value(chain, i);
1198         if ((ext = x->rfc3779_addr) == NULL)
1199             goto done;
1200     }
1201     if (!X509v3_addr_is_canonical(ext))
1202         validation_err(X509_V_ERR_INVALID_EXTENSION);
1203     (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1204     if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1205         ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1206         if (ctx != NULL)
1207             ctx->error = X509_V_ERR_OUT_OF_MEM;
1208         ret = 0;
1209         goto done;
1210     }
1211 
1212     /*
1213      * Now walk up the chain.  No cert may list resources that its
1214      * parent doesn't list.
1215      */
1216     for (i++; i < sk_X509_num(chain); i++) {
1217         x = sk_X509_value(chain, i);
1218         if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1219             validation_err(X509_V_ERR_INVALID_EXTENSION);
1220         if (x->rfc3779_addr == NULL) {
1221             for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1222                 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1223                 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1224                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1225                     break;
1226                 }
1227             }
1228             continue;
1229         }
1230         (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1231                                               IPAddressFamily_cmp);
1232         for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1233             IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1234             int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1235             IPAddressFamily *fp =
1236                 sk_IPAddressFamily_value(x->rfc3779_addr, k);
1237             if (fp == NULL) {
1238                 if (fc->ipAddressChoice->type ==
1239                     IPAddressChoice_addressesOrRanges) {
1240                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1241                     break;
1242                 }
1243                 continue;
1244             }
1245             if (fp->ipAddressChoice->type ==
1246                 IPAddressChoice_addressesOrRanges) {
1247                 if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1248                     || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1249                                      fc->ipAddressChoice->u.addressesOrRanges,
1250                                      length_from_afi(X509v3_addr_get_afi(fc))))
1251                     (void)sk_IPAddressFamily_set(child, j, fp);
1252                 else
1253                     validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1254             }
1255         }
1256     }
1257 
1258     /*
1259      * Trust anchor can't inherit.
1260      */
1261     if (x->rfc3779_addr != NULL) {
1262         for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1263             IPAddressFamily *fp =
1264                 sk_IPAddressFamily_value(x->rfc3779_addr, j);
1265             if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1266                 && sk_IPAddressFamily_find(child, fp) >= 0)
1267                 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1268         }
1269     }
1270 
1271  done:
1272     sk_IPAddressFamily_free(child);
1273     return ret;
1274 }
1275 
1276 #undef validation_err
1277 
1278 /*
1279  * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1280  */
X509v3_addr_validate_path(X509_STORE_CTX * ctx)1281 int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1282 {
1283     if (ctx->chain == NULL
1284             || sk_X509_num(ctx->chain) == 0
1285             || ctx->verify_cb == NULL) {
1286         ctx->error = X509_V_ERR_UNSPECIFIED;
1287         return 0;
1288     }
1289     return addr_validate_path_internal(ctx, ctx->chain, NULL);
1290 }
1291 
1292 /*
1293  * RFC 3779 2.3 path validation of an extension.
1294  * Test whether chain covers extension.
1295  */
X509v3_addr_validate_resource_set(STACK_OF (X509)* chain,IPAddrBlocks * ext,int allow_inheritance)1296 int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1297                                   IPAddrBlocks *ext, int allow_inheritance)
1298 {
1299     if (ext == NULL)
1300         return 1;
1301     if (chain == NULL || sk_X509_num(chain) == 0)
1302         return 0;
1303     if (!allow_inheritance && X509v3_addr_inherits(ext))
1304         return 0;
1305     return addr_validate_path_internal(NULL, chain, ext);
1306 }
1307 
1308 #endif                          /* OPENSSL_NO_RFC3779 */
1309