1 /* $Id: tif_pixarlog.c,v 1.54 2017-07-10 10:40:28 erouault Exp $ */
2
3 /*
4 * Copyright (c) 1996-1997 Sam Leffler
5 * Copyright (c) 1996 Pixar
6 *
7 * Permission to use, copy, modify, distribute, and sell this software and
8 * its documentation for any purpose is hereby granted without fee, provided
9 * that (i) the above copyright notices and this permission notice appear in
10 * all copies of the software and related documentation, and (ii) the names of
11 * Pixar, Sam Leffler and Silicon Graphics may not be used in any advertising or
12 * publicity relating to the software without the specific, prior written
13 * permission of Pixar, Sam Leffler and Silicon Graphics.
14 *
15 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18 *
19 * IN NO EVENT SHALL PIXAR, SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20 * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24 * OF THIS SOFTWARE.
25 */
26
27 #include "tiffiop.h"
28 #ifdef PIXARLOG_SUPPORT
29
30 /*
31 * TIFF Library.
32 * PixarLog Compression Support
33 *
34 * Contributed by Dan McCoy.
35 *
36 * PixarLog film support uses the TIFF library to store companded
37 * 11 bit values into a tiff file, which are compressed using the
38 * zip compressor.
39 *
40 * The codec can take as input and produce as output 32-bit IEEE float values
41 * as well as 16-bit or 8-bit unsigned integer values.
42 *
43 * On writing any of the above are converted into the internal
44 * 11-bit log format. In the case of 8 and 16 bit values, the
45 * input is assumed to be unsigned linear color values that represent
46 * the range 0-1. In the case of IEEE values, the 0-1 range is assumed to
47 * be the normal linear color range, in addition over 1 values are
48 * accepted up to a value of about 25.0 to encode "hot" highlights and such.
49 * The encoding is lossless for 8-bit values, slightly lossy for the
50 * other bit depths. The actual color precision should be better
51 * than the human eye can perceive with extra room to allow for
52 * error introduced by further image computation. As with any quantized
53 * color format, it is possible to perform image calculations which
54 * expose the quantization error. This format should certainly be less
55 * susceptible to such errors than standard 8-bit encodings, but more
56 * susceptible than straight 16-bit or 32-bit encodings.
57 *
58 * On reading the internal format is converted to the desired output format.
59 * The program can request which format it desires by setting the internal
60 * pseudo tag TIFFTAG_PIXARLOGDATAFMT to one of these possible values:
61 * PIXARLOGDATAFMT_FLOAT = provide IEEE float values.
62 * PIXARLOGDATAFMT_16BIT = provide unsigned 16-bit integer values
63 * PIXARLOGDATAFMT_8BIT = provide unsigned 8-bit integer values
64 *
65 * alternately PIXARLOGDATAFMT_8BITABGR provides unsigned 8-bit integer
66 * values with the difference that if there are exactly three or four channels
67 * (rgb or rgba) it swaps the channel order (bgr or abgr).
68 *
69 * PIXARLOGDATAFMT_11BITLOG provides the internal encoding directly
70 * packed in 16-bit values. However no tools are supplied for interpreting
71 * these values.
72 *
73 * "hot" (over 1.0) areas written in floating point get clamped to
74 * 1.0 in the integer data types.
75 *
76 * When the file is closed after writing, the bit depth and sample format
77 * are set always to appear as if 8-bit data has been written into it.
78 * That way a naive program unaware of the particulars of the encoding
79 * gets the format it is most likely able to handle.
80 *
81 * The codec does it's own horizontal differencing step on the coded
82 * values so the libraries predictor stuff should be turned off.
83 * The codec also handle byte swapping the encoded values as necessary
84 * since the library does not have the information necessary
85 * to know the bit depth of the raw unencoded buffer.
86 *
87 * NOTE: This decoder does not appear to update tif_rawcp, and tif_rawcc.
88 * This can cause problems with the implementation of CHUNKY_STRIP_READ_SUPPORT
89 * as noted in http://trac.osgeo.org/gdal/ticket/3894. FrankW - Jan'11
90 */
91
92 #include "tif_predict.h"
93 #include "zlib.h"
94
95 #include <stdio.h>
96 #include <stdlib.h>
97 #include <math.h>
98
99 /* Tables for converting to/from 11 bit coded values */
100
101 #define TSIZE 2048 /* decode table size (11-bit tokens) */
102 #define TSIZEP1 2049 /* Plus one for slop */
103 #define ONE 1250 /* token value of 1.0 exactly */
104 #define RATIO 1.004 /* nominal ratio for log part */
105
106 #define CODE_MASK 0x7ff /* 11 bits. */
107
108 static float Fltsize;
109 static float LogK1, LogK2;
110
111 #define REPEAT(n, op) { int i; i=n; do { i--; op; } while (i>0); }
112
113 static void
horizontalAccumulateF(uint16 * wp,int n,int stride,float * op,float * ToLinearF)114 horizontalAccumulateF(uint16 *wp, int n, int stride, float *op,
115 float *ToLinearF)
116 {
117 register unsigned int cr, cg, cb, ca, mask;
118 register float t0, t1, t2, t3;
119
120 if (n >= stride) {
121 mask = CODE_MASK;
122 if (stride == 3) {
123 t0 = ToLinearF[cr = (wp[0] & mask)];
124 t1 = ToLinearF[cg = (wp[1] & mask)];
125 t2 = ToLinearF[cb = (wp[2] & mask)];
126 op[0] = t0;
127 op[1] = t1;
128 op[2] = t2;
129 n -= 3;
130 while (n > 0) {
131 wp += 3;
132 op += 3;
133 n -= 3;
134 t0 = ToLinearF[(cr += wp[0]) & mask];
135 t1 = ToLinearF[(cg += wp[1]) & mask];
136 t2 = ToLinearF[(cb += wp[2]) & mask];
137 op[0] = t0;
138 op[1] = t1;
139 op[2] = t2;
140 }
141 } else if (stride == 4) {
142 t0 = ToLinearF[cr = (wp[0] & mask)];
143 t1 = ToLinearF[cg = (wp[1] & mask)];
144 t2 = ToLinearF[cb = (wp[2] & mask)];
145 t3 = ToLinearF[ca = (wp[3] & mask)];
146 op[0] = t0;
147 op[1] = t1;
148 op[2] = t2;
149 op[3] = t3;
150 n -= 4;
151 while (n > 0) {
152 wp += 4;
153 op += 4;
154 n -= 4;
155 t0 = ToLinearF[(cr += wp[0]) & mask];
156 t1 = ToLinearF[(cg += wp[1]) & mask];
157 t2 = ToLinearF[(cb += wp[2]) & mask];
158 t3 = ToLinearF[(ca += wp[3]) & mask];
159 op[0] = t0;
160 op[1] = t1;
161 op[2] = t2;
162 op[3] = t3;
163 }
164 } else {
165 REPEAT(stride, *op = ToLinearF[*wp&mask]; wp++; op++)
166 n -= stride;
167 while (n > 0) {
168 REPEAT(stride,
169 wp[stride] += *wp; *op = ToLinearF[*wp&mask]; wp++; op++)
170 n -= stride;
171 }
172 }
173 }
174 }
175
176 static void
horizontalAccumulate12(uint16 * wp,int n,int stride,int16 * op,float * ToLinearF)177 horizontalAccumulate12(uint16 *wp, int n, int stride, int16 *op,
178 float *ToLinearF)
179 {
180 register unsigned int cr, cg, cb, ca, mask;
181 register float t0, t1, t2, t3;
182
183 #define SCALE12 2048.0F
184 #define CLAMP12(t) (((t) < 3071) ? (uint16) (t) : 3071)
185
186 if (n >= stride) {
187 mask = CODE_MASK;
188 if (stride == 3) {
189 t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12;
190 t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12;
191 t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12;
192 op[0] = CLAMP12(t0);
193 op[1] = CLAMP12(t1);
194 op[2] = CLAMP12(t2);
195 n -= 3;
196 while (n > 0) {
197 wp += 3;
198 op += 3;
199 n -= 3;
200 t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
201 t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
202 t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
203 op[0] = CLAMP12(t0);
204 op[1] = CLAMP12(t1);
205 op[2] = CLAMP12(t2);
206 }
207 } else if (stride == 4) {
208 t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12;
209 t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12;
210 t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12;
211 t3 = ToLinearF[ca = (wp[3] & mask)] * SCALE12;
212 op[0] = CLAMP12(t0);
213 op[1] = CLAMP12(t1);
214 op[2] = CLAMP12(t2);
215 op[3] = CLAMP12(t3);
216 n -= 4;
217 while (n > 0) {
218 wp += 4;
219 op += 4;
220 n -= 4;
221 t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
222 t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
223 t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
224 t3 = ToLinearF[(ca += wp[3]) & mask] * SCALE12;
225 op[0] = CLAMP12(t0);
226 op[1] = CLAMP12(t1);
227 op[2] = CLAMP12(t2);
228 op[3] = CLAMP12(t3);
229 }
230 } else {
231 REPEAT(stride, t0 = ToLinearF[*wp&mask] * SCALE12;
232 *op = CLAMP12(t0); wp++; op++)
233 n -= stride;
234 while (n > 0) {
235 REPEAT(stride,
236 wp[stride] += *wp; t0 = ToLinearF[wp[stride]&mask]*SCALE12;
237 *op = CLAMP12(t0); wp++; op++)
238 n -= stride;
239 }
240 }
241 }
242 }
243
244 static void
horizontalAccumulate16(uint16 * wp,int n,int stride,uint16 * op,uint16 * ToLinear16)245 horizontalAccumulate16(uint16 *wp, int n, int stride, uint16 *op,
246 uint16 *ToLinear16)
247 {
248 register unsigned int cr, cg, cb, ca, mask;
249
250 if (n >= stride) {
251 mask = CODE_MASK;
252 if (stride == 3) {
253 op[0] = ToLinear16[cr = (wp[0] & mask)];
254 op[1] = ToLinear16[cg = (wp[1] & mask)];
255 op[2] = ToLinear16[cb = (wp[2] & mask)];
256 n -= 3;
257 while (n > 0) {
258 wp += 3;
259 op += 3;
260 n -= 3;
261 op[0] = ToLinear16[(cr += wp[0]) & mask];
262 op[1] = ToLinear16[(cg += wp[1]) & mask];
263 op[2] = ToLinear16[(cb += wp[2]) & mask];
264 }
265 } else if (stride == 4) {
266 op[0] = ToLinear16[cr = (wp[0] & mask)];
267 op[1] = ToLinear16[cg = (wp[1] & mask)];
268 op[2] = ToLinear16[cb = (wp[2] & mask)];
269 op[3] = ToLinear16[ca = (wp[3] & mask)];
270 n -= 4;
271 while (n > 0) {
272 wp += 4;
273 op += 4;
274 n -= 4;
275 op[0] = ToLinear16[(cr += wp[0]) & mask];
276 op[1] = ToLinear16[(cg += wp[1]) & mask];
277 op[2] = ToLinear16[(cb += wp[2]) & mask];
278 op[3] = ToLinear16[(ca += wp[3]) & mask];
279 }
280 } else {
281 REPEAT(stride, *op = ToLinear16[*wp&mask]; wp++; op++)
282 n -= stride;
283 while (n > 0) {
284 REPEAT(stride,
285 wp[stride] += *wp; *op = ToLinear16[*wp&mask]; wp++; op++)
286 n -= stride;
287 }
288 }
289 }
290 }
291
292 /*
293 * Returns the log encoded 11-bit values with the horizontal
294 * differencing undone.
295 */
296 static void
horizontalAccumulate11(uint16 * wp,int n,int stride,uint16 * op)297 horizontalAccumulate11(uint16 *wp, int n, int stride, uint16 *op)
298 {
299 register unsigned int cr, cg, cb, ca, mask;
300
301 if (n >= stride) {
302 mask = CODE_MASK;
303 if (stride == 3) {
304 op[0] = wp[0]; op[1] = wp[1]; op[2] = wp[2];
305 cr = wp[0]; cg = wp[1]; cb = wp[2];
306 n -= 3;
307 while (n > 0) {
308 wp += 3;
309 op += 3;
310 n -= 3;
311 op[0] = (uint16)((cr += wp[0]) & mask);
312 op[1] = (uint16)((cg += wp[1]) & mask);
313 op[2] = (uint16)((cb += wp[2]) & mask);
314 }
315 } else if (stride == 4) {
316 op[0] = wp[0]; op[1] = wp[1];
317 op[2] = wp[2]; op[3] = wp[3];
318 cr = wp[0]; cg = wp[1]; cb = wp[2]; ca = wp[3];
319 n -= 4;
320 while (n > 0) {
321 wp += 4;
322 op += 4;
323 n -= 4;
324 op[0] = (uint16)((cr += wp[0]) & mask);
325 op[1] = (uint16)((cg += wp[1]) & mask);
326 op[2] = (uint16)((cb += wp[2]) & mask);
327 op[3] = (uint16)((ca += wp[3]) & mask);
328 }
329 } else {
330 REPEAT(stride, *op = *wp&mask; wp++; op++)
331 n -= stride;
332 while (n > 0) {
333 REPEAT(stride,
334 wp[stride] += *wp; *op = *wp&mask; wp++; op++)
335 n -= stride;
336 }
337 }
338 }
339 }
340
341 static void
horizontalAccumulate8(uint16 * wp,int n,int stride,unsigned char * op,unsigned char * ToLinear8)342 horizontalAccumulate8(uint16 *wp, int n, int stride, unsigned char *op,
343 unsigned char *ToLinear8)
344 {
345 register unsigned int cr, cg, cb, ca, mask;
346
347 if (n >= stride) {
348 mask = CODE_MASK;
349 if (stride == 3) {
350 op[0] = ToLinear8[cr = (wp[0] & mask)];
351 op[1] = ToLinear8[cg = (wp[1] & mask)];
352 op[2] = ToLinear8[cb = (wp[2] & mask)];
353 n -= 3;
354 while (n > 0) {
355 n -= 3;
356 wp += 3;
357 op += 3;
358 op[0] = ToLinear8[(cr += wp[0]) & mask];
359 op[1] = ToLinear8[(cg += wp[1]) & mask];
360 op[2] = ToLinear8[(cb += wp[2]) & mask];
361 }
362 } else if (stride == 4) {
363 op[0] = ToLinear8[cr = (wp[0] & mask)];
364 op[1] = ToLinear8[cg = (wp[1] & mask)];
365 op[2] = ToLinear8[cb = (wp[2] & mask)];
366 op[3] = ToLinear8[ca = (wp[3] & mask)];
367 n -= 4;
368 while (n > 0) {
369 n -= 4;
370 wp += 4;
371 op += 4;
372 op[0] = ToLinear8[(cr += wp[0]) & mask];
373 op[1] = ToLinear8[(cg += wp[1]) & mask];
374 op[2] = ToLinear8[(cb += wp[2]) & mask];
375 op[3] = ToLinear8[(ca += wp[3]) & mask];
376 }
377 } else {
378 REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
379 n -= stride;
380 while (n > 0) {
381 REPEAT(stride,
382 wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
383 n -= stride;
384 }
385 }
386 }
387 }
388
389
390 static void
horizontalAccumulate8abgr(uint16 * wp,int n,int stride,unsigned char * op,unsigned char * ToLinear8)391 horizontalAccumulate8abgr(uint16 *wp, int n, int stride, unsigned char *op,
392 unsigned char *ToLinear8)
393 {
394 register unsigned int cr, cg, cb, ca, mask;
395 register unsigned char t0, t1, t2, t3;
396
397 if (n >= stride) {
398 mask = CODE_MASK;
399 if (stride == 3) {
400 op[0] = 0;
401 t1 = ToLinear8[cb = (wp[2] & mask)];
402 t2 = ToLinear8[cg = (wp[1] & mask)];
403 t3 = ToLinear8[cr = (wp[0] & mask)];
404 op[1] = t1;
405 op[2] = t2;
406 op[3] = t3;
407 n -= 3;
408 while (n > 0) {
409 n -= 3;
410 wp += 3;
411 op += 4;
412 op[0] = 0;
413 t1 = ToLinear8[(cb += wp[2]) & mask];
414 t2 = ToLinear8[(cg += wp[1]) & mask];
415 t3 = ToLinear8[(cr += wp[0]) & mask];
416 op[1] = t1;
417 op[2] = t2;
418 op[3] = t3;
419 }
420 } else if (stride == 4) {
421 t0 = ToLinear8[ca = (wp[3] & mask)];
422 t1 = ToLinear8[cb = (wp[2] & mask)];
423 t2 = ToLinear8[cg = (wp[1] & mask)];
424 t3 = ToLinear8[cr = (wp[0] & mask)];
425 op[0] = t0;
426 op[1] = t1;
427 op[2] = t2;
428 op[3] = t3;
429 n -= 4;
430 while (n > 0) {
431 n -= 4;
432 wp += 4;
433 op += 4;
434 t0 = ToLinear8[(ca += wp[3]) & mask];
435 t1 = ToLinear8[(cb += wp[2]) & mask];
436 t2 = ToLinear8[(cg += wp[1]) & mask];
437 t3 = ToLinear8[(cr += wp[0]) & mask];
438 op[0] = t0;
439 op[1] = t1;
440 op[2] = t2;
441 op[3] = t3;
442 }
443 } else {
444 REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
445 n -= stride;
446 while (n > 0) {
447 REPEAT(stride,
448 wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
449 n -= stride;
450 }
451 }
452 }
453 }
454
455 /*
456 * State block for each open TIFF
457 * file using PixarLog compression/decompression.
458 */
459 typedef struct {
460 TIFFPredictorState predict;
461 z_stream stream;
462 tmsize_t tbuf_size; /* only set/used on reading for now */
463 uint16 *tbuf;
464 uint16 stride;
465 int state;
466 int user_datafmt;
467 int quality;
468 #define PLSTATE_INIT 1
469
470 TIFFVSetMethod vgetparent; /* super-class method */
471 TIFFVSetMethod vsetparent; /* super-class method */
472
473 float *ToLinearF;
474 uint16 *ToLinear16;
475 unsigned char *ToLinear8;
476 uint16 *FromLT2;
477 uint16 *From14; /* Really for 16-bit data, but we shift down 2 */
478 uint16 *From8;
479
480 } PixarLogState;
481
482 static int
PixarLogMakeTables(PixarLogState * sp)483 PixarLogMakeTables(PixarLogState *sp)
484 {
485
486 /*
487 * We make several tables here to convert between various external
488 * representations (float, 16-bit, and 8-bit) and the internal
489 * 11-bit companded representation. The 11-bit representation has two
490 * distinct regions. A linear bottom end up through .018316 in steps
491 * of about .000073, and a region of constant ratio up to about 25.
492 * These floating point numbers are stored in the main table ToLinearF.
493 * All other tables are derived from this one. The tables (and the
494 * ratios) are continuous at the internal seam.
495 */
496
497 int nlin, lt2size;
498 int i, j;
499 double b, c, linstep, v;
500 float *ToLinearF;
501 uint16 *ToLinear16;
502 unsigned char *ToLinear8;
503 uint16 *FromLT2;
504 uint16 *From14; /* Really for 16-bit data, but we shift down 2 */
505 uint16 *From8;
506
507 c = log(RATIO);
508 nlin = (int)(1./c); /* nlin must be an integer */
509 c = 1./nlin;
510 b = exp(-c*ONE); /* multiplicative scale factor [b*exp(c*ONE) = 1] */
511 linstep = b*c*exp(1.);
512
513 LogK1 = (float)(1./c); /* if (v >= 2) token = k1*log(v*k2) */
514 LogK2 = (float)(1./b);
515 lt2size = (int)(2./linstep) + 1;
516 FromLT2 = (uint16 *)_TIFFmalloc(lt2size*sizeof(uint16));
517 From14 = (uint16 *)_TIFFmalloc(16384*sizeof(uint16));
518 From8 = (uint16 *)_TIFFmalloc(256*sizeof(uint16));
519 ToLinearF = (float *)_TIFFmalloc(TSIZEP1 * sizeof(float));
520 ToLinear16 = (uint16 *)_TIFFmalloc(TSIZEP1 * sizeof(uint16));
521 ToLinear8 = (unsigned char *)_TIFFmalloc(TSIZEP1 * sizeof(unsigned char));
522 if (FromLT2 == NULL || From14 == NULL || From8 == NULL ||
523 ToLinearF == NULL || ToLinear16 == NULL || ToLinear8 == NULL) {
524 if (FromLT2) _TIFFfree(FromLT2);
525 if (From14) _TIFFfree(From14);
526 if (From8) _TIFFfree(From8);
527 if (ToLinearF) _TIFFfree(ToLinearF);
528 if (ToLinear16) _TIFFfree(ToLinear16);
529 if (ToLinear8) _TIFFfree(ToLinear8);
530 sp->FromLT2 = NULL;
531 sp->From14 = NULL;
532 sp->From8 = NULL;
533 sp->ToLinearF = NULL;
534 sp->ToLinear16 = NULL;
535 sp->ToLinear8 = NULL;
536 return 0;
537 }
538
539 j = 0;
540
541 for (i = 0; i < nlin; i++) {
542 v = i * linstep;
543 ToLinearF[j++] = (float)v;
544 }
545
546 for (i = nlin; i < TSIZE; i++)
547 ToLinearF[j++] = (float)(b*exp(c*i));
548
549 ToLinearF[2048] = ToLinearF[2047];
550
551 for (i = 0; i < TSIZEP1; i++) {
552 v = ToLinearF[i]*65535.0 + 0.5;
553 ToLinear16[i] = (v > 65535.0) ? 65535 : (uint16)v;
554 v = ToLinearF[i]*255.0 + 0.5;
555 ToLinear8[i] = (v > 255.0) ? 255 : (unsigned char)v;
556 }
557
558 j = 0;
559 for (i = 0; i < lt2size; i++) {
560 if ((i*linstep)*(i*linstep) > ToLinearF[j]*ToLinearF[j+1])
561 j++;
562 FromLT2[i] = (uint16)j;
563 }
564
565 /*
566 * Since we lose info anyway on 16-bit data, we set up a 14-bit
567 * table and shift 16-bit values down two bits on input.
568 * saves a little table space.
569 */
570 j = 0;
571 for (i = 0; i < 16384; i++) {
572 while ((i/16383.)*(i/16383.) > ToLinearF[j]*ToLinearF[j+1])
573 j++;
574 From14[i] = (uint16)j;
575 }
576
577 j = 0;
578 for (i = 0; i < 256; i++) {
579 while ((i/255.)*(i/255.) > ToLinearF[j]*ToLinearF[j+1])
580 j++;
581 From8[i] = (uint16)j;
582 }
583
584 Fltsize = (float)(lt2size/2);
585
586 sp->ToLinearF = ToLinearF;
587 sp->ToLinear16 = ToLinear16;
588 sp->ToLinear8 = ToLinear8;
589 sp->FromLT2 = FromLT2;
590 sp->From14 = From14;
591 sp->From8 = From8;
592
593 return 1;
594 }
595
596 #define DecoderState(tif) ((PixarLogState*) (tif)->tif_data)
597 #define EncoderState(tif) ((PixarLogState*) (tif)->tif_data)
598
599 static int PixarLogEncode(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s);
600 static int PixarLogDecode(TIFF* tif, uint8* op, tmsize_t occ, uint16 s);
601
602 #define PIXARLOGDATAFMT_UNKNOWN -1
603
604 static int
PixarLogGuessDataFmt(TIFFDirectory * td)605 PixarLogGuessDataFmt(TIFFDirectory *td)
606 {
607 int guess = PIXARLOGDATAFMT_UNKNOWN;
608 int format = td->td_sampleformat;
609
610 /* If the user didn't tell us his datafmt,
611 * take our best guess from the bitspersample.
612 */
613 switch (td->td_bitspersample) {
614 case 32:
615 if (format == SAMPLEFORMAT_IEEEFP)
616 guess = PIXARLOGDATAFMT_FLOAT;
617 break;
618 case 16:
619 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
620 guess = PIXARLOGDATAFMT_16BIT;
621 break;
622 case 12:
623 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_INT)
624 guess = PIXARLOGDATAFMT_12BITPICIO;
625 break;
626 case 11:
627 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
628 guess = PIXARLOGDATAFMT_11BITLOG;
629 break;
630 case 8:
631 if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
632 guess = PIXARLOGDATAFMT_8BIT;
633 break;
634 }
635
636 return guess;
637 }
638
639 #define TIFF_SIZE_T_MAX ((size_t) ~ ((size_t)0))
640 #define TIFF_TMSIZE_T_MAX (tmsize_t)(TIFF_SIZE_T_MAX >> 1)
641
642 static tmsize_t
multiply_ms(tmsize_t m1,tmsize_t m2)643 multiply_ms(tmsize_t m1, tmsize_t m2)
644 {
645 if( m1 == 0 || m2 > TIFF_TMSIZE_T_MAX / m1 )
646 return 0;
647 return m1 * m2;
648 }
649
650 static tmsize_t
add_ms(tmsize_t m1,tmsize_t m2)651 add_ms(tmsize_t m1, tmsize_t m2)
652 {
653 /* if either input is zero, assume overflow already occurred */
654 if (m1 == 0 || m2 == 0)
655 return 0;
656 else if (m1 > TIFF_TMSIZE_T_MAX - m2)
657 return 0;
658
659 return m1 + m2;
660 }
661
662 static int
PixarLogFixupTags(TIFF * tif)663 PixarLogFixupTags(TIFF* tif)
664 {
665 (void) tif;
666 return (1);
667 }
668
669 static int
PixarLogSetupDecode(TIFF * tif)670 PixarLogSetupDecode(TIFF* tif)
671 {
672 static const char module[] = "PixarLogSetupDecode";
673 TIFFDirectory *td = &tif->tif_dir;
674 PixarLogState* sp = DecoderState(tif);
675 tmsize_t tbuf_size;
676 uint32 strip_height;
677
678 assert(sp != NULL);
679
680 /* This function can possibly be called several times by */
681 /* PredictorSetupDecode() if this function succeeds but */
682 /* PredictorSetup() fails */
683 if( (sp->state & PLSTATE_INIT) != 0 )
684 return 1;
685
686 strip_height = td->td_rowsperstrip;
687 if( strip_height > td->td_imagelength )
688 strip_height = td->td_imagelength;
689
690 /* Make sure no byte swapping happens on the data
691 * after decompression. */
692 tif->tif_postdecode = _TIFFNoPostDecode;
693
694 /* for some reason, we can't do this in TIFFInitPixarLog */
695
696 sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
697 td->td_samplesperpixel : 1);
698 tbuf_size = multiply_ms(multiply_ms(multiply_ms(sp->stride, td->td_imagewidth),
699 strip_height), sizeof(uint16));
700 /* add one more stride in case input ends mid-stride */
701 tbuf_size = add_ms(tbuf_size, sizeof(uint16) * sp->stride);
702 if (tbuf_size == 0)
703 return (0); /* TODO: this is an error return without error report through TIFFErrorExt */
704 sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
705 if (sp->tbuf == NULL)
706 return (0);
707 sp->tbuf_size = tbuf_size;
708 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
709 sp->user_datafmt = PixarLogGuessDataFmt(td);
710 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
711 _TIFFfree(sp->tbuf);
712 sp->tbuf = NULL;
713 sp->tbuf_size = 0;
714 TIFFErrorExt(tif->tif_clientdata, module,
715 "PixarLog compression can't handle bits depth/data format combination (depth: %d)",
716 td->td_bitspersample);
717 return (0);
718 }
719
720 if (inflateInit(&sp->stream) != Z_OK) {
721 _TIFFfree(sp->tbuf);
722 sp->tbuf = NULL;
723 sp->tbuf_size = 0;
724 TIFFErrorExt(tif->tif_clientdata, module, "%s", sp->stream.msg ? sp->stream.msg : "(null)");
725 return (0);
726 } else {
727 sp->state |= PLSTATE_INIT;
728 return (1);
729 }
730 }
731
732 /*
733 * Setup state for decoding a strip.
734 */
735 static int
PixarLogPreDecode(TIFF * tif,uint16 s)736 PixarLogPreDecode(TIFF* tif, uint16 s)
737 {
738 static const char module[] = "PixarLogPreDecode";
739 PixarLogState* sp = DecoderState(tif);
740
741 (void) s;
742 assert(sp != NULL);
743 sp->stream.next_in = tif->tif_rawdata;
744 assert(sizeof(sp->stream.avail_in)==4); /* if this assert gets raised,
745 we need to simplify this code to reflect a ZLib that is likely updated
746 to deal with 8byte memory sizes, though this code will respond
747 appropriately even before we simplify it */
748 sp->stream.avail_in = (uInt) tif->tif_rawcc;
749 if ((tmsize_t)sp->stream.avail_in != tif->tif_rawcc)
750 {
751 TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size");
752 return (0);
753 }
754 return (inflateReset(&sp->stream) == Z_OK);
755 }
756
757 static int
PixarLogDecode(TIFF * tif,uint8 * op,tmsize_t occ,uint16 s)758 PixarLogDecode(TIFF* tif, uint8* op, tmsize_t occ, uint16 s)
759 {
760 static const char module[] = "PixarLogDecode";
761 TIFFDirectory *td = &tif->tif_dir;
762 PixarLogState* sp = DecoderState(tif);
763 tmsize_t i;
764 tmsize_t nsamples;
765 int llen;
766 uint16 *up;
767
768 switch (sp->user_datafmt) {
769 case PIXARLOGDATAFMT_FLOAT:
770 nsamples = occ / sizeof(float); /* XXX float == 32 bits */
771 break;
772 case PIXARLOGDATAFMT_16BIT:
773 case PIXARLOGDATAFMT_12BITPICIO:
774 case PIXARLOGDATAFMT_11BITLOG:
775 nsamples = occ / sizeof(uint16); /* XXX uint16 == 16 bits */
776 break;
777 case PIXARLOGDATAFMT_8BIT:
778 case PIXARLOGDATAFMT_8BITABGR:
779 nsamples = occ;
780 break;
781 default:
782 TIFFErrorExt(tif->tif_clientdata, module,
783 "%d bit input not supported in PixarLog",
784 td->td_bitspersample);
785 return 0;
786 }
787
788 llen = sp->stride * td->td_imagewidth;
789
790 (void) s;
791 assert(sp != NULL);
792
793 sp->stream.next_in = tif->tif_rawcp;
794 sp->stream.avail_in = (uInt) tif->tif_rawcc;
795
796 sp->stream.next_out = (unsigned char *) sp->tbuf;
797 assert(sizeof(sp->stream.avail_out)==4); /* if this assert gets raised,
798 we need to simplify this code to reflect a ZLib that is likely updated
799 to deal with 8byte memory sizes, though this code will respond
800 appropriately even before we simplify it */
801 sp->stream.avail_out = (uInt) (nsamples * sizeof(uint16));
802 if (sp->stream.avail_out != nsamples * sizeof(uint16))
803 {
804 TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size");
805 return (0);
806 }
807 /* Check that we will not fill more than what was allocated */
808 if ((tmsize_t)sp->stream.avail_out > sp->tbuf_size)
809 {
810 TIFFErrorExt(tif->tif_clientdata, module, "sp->stream.avail_out > sp->tbuf_size");
811 return (0);
812 }
813 do {
814 int state = inflate(&sp->stream, Z_PARTIAL_FLUSH);
815 if (state == Z_STREAM_END) {
816 break; /* XXX */
817 }
818 if (state == Z_DATA_ERROR) {
819 TIFFErrorExt(tif->tif_clientdata, module,
820 "Decoding error at scanline %lu, %s",
821 (unsigned long) tif->tif_row, sp->stream.msg ? sp->stream.msg : "(null)");
822 if (inflateSync(&sp->stream) != Z_OK)
823 return (0);
824 continue;
825 }
826 if (state != Z_OK) {
827 TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s",
828 sp->stream.msg ? sp->stream.msg : "(null)");
829 return (0);
830 }
831 } while (sp->stream.avail_out > 0);
832
833 /* hopefully, we got all the bytes we needed */
834 if (sp->stream.avail_out != 0) {
835 TIFFErrorExt(tif->tif_clientdata, module,
836 "Not enough data at scanline %lu (short " TIFF_UINT64_FORMAT " bytes)",
837 (unsigned long) tif->tif_row, (TIFF_UINT64_T) sp->stream.avail_out);
838 return (0);
839 }
840
841 tif->tif_rawcp = sp->stream.next_in;
842 tif->tif_rawcc = sp->stream.avail_in;
843
844 up = sp->tbuf;
845 /* Swap bytes in the data if from a different endian machine. */
846 if (tif->tif_flags & TIFF_SWAB)
847 TIFFSwabArrayOfShort(up, nsamples);
848
849 /*
850 * if llen is not an exact multiple of nsamples, the decode operation
851 * may overflow the output buffer, so truncate it enough to prevent
852 * that but still salvage as much data as possible.
853 */
854 if (nsamples % llen) {
855 TIFFWarningExt(tif->tif_clientdata, module,
856 "stride %lu is not a multiple of sample count, "
857 "%lu, data truncated.", (unsigned long) llen, (unsigned long) nsamples);
858 nsamples -= nsamples % llen;
859 }
860
861 for (i = 0; i < nsamples; i += llen, up += llen) {
862 switch (sp->user_datafmt) {
863 case PIXARLOGDATAFMT_FLOAT:
864 horizontalAccumulateF(up, llen, sp->stride,
865 (float *)op, sp->ToLinearF);
866 op += llen * sizeof(float);
867 break;
868 case PIXARLOGDATAFMT_16BIT:
869 horizontalAccumulate16(up, llen, sp->stride,
870 (uint16 *)op, sp->ToLinear16);
871 op += llen * sizeof(uint16);
872 break;
873 case PIXARLOGDATAFMT_12BITPICIO:
874 horizontalAccumulate12(up, llen, sp->stride,
875 (int16 *)op, sp->ToLinearF);
876 op += llen * sizeof(int16);
877 break;
878 case PIXARLOGDATAFMT_11BITLOG:
879 horizontalAccumulate11(up, llen, sp->stride,
880 (uint16 *)op);
881 op += llen * sizeof(uint16);
882 break;
883 case PIXARLOGDATAFMT_8BIT:
884 horizontalAccumulate8(up, llen, sp->stride,
885 (unsigned char *)op, sp->ToLinear8);
886 op += llen * sizeof(unsigned char);
887 break;
888 case PIXARLOGDATAFMT_8BITABGR:
889 horizontalAccumulate8abgr(up, llen, sp->stride,
890 (unsigned char *)op, sp->ToLinear8);
891 op += llen * sizeof(unsigned char);
892 break;
893 default:
894 TIFFErrorExt(tif->tif_clientdata, module,
895 "Unsupported bits/sample: %d",
896 td->td_bitspersample);
897 return (0);
898 }
899 }
900
901 return (1);
902 }
903
904 static int
PixarLogSetupEncode(TIFF * tif)905 PixarLogSetupEncode(TIFF* tif)
906 {
907 static const char module[] = "PixarLogSetupEncode";
908 TIFFDirectory *td = &tif->tif_dir;
909 PixarLogState* sp = EncoderState(tif);
910 tmsize_t tbuf_size;
911
912 assert(sp != NULL);
913
914 /* for some reason, we can't do this in TIFFInitPixarLog */
915
916 sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
917 td->td_samplesperpixel : 1);
918 tbuf_size = multiply_ms(multiply_ms(multiply_ms(sp->stride, td->td_imagewidth),
919 td->td_rowsperstrip), sizeof(uint16));
920 if (tbuf_size == 0)
921 return (0); /* TODO: this is an error return without error report through TIFFErrorExt */
922 sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
923 if (sp->tbuf == NULL)
924 return (0);
925 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
926 sp->user_datafmt = PixarLogGuessDataFmt(td);
927 if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
928 TIFFErrorExt(tif->tif_clientdata, module, "PixarLog compression can't handle %d bit linear encodings", td->td_bitspersample);
929 return (0);
930 }
931
932 if (deflateInit(&sp->stream, sp->quality) != Z_OK) {
933 TIFFErrorExt(tif->tif_clientdata, module, "%s", sp->stream.msg ? sp->stream.msg : "(null)");
934 return (0);
935 } else {
936 sp->state |= PLSTATE_INIT;
937 return (1);
938 }
939 }
940
941 /*
942 * Reset encoding state at the start of a strip.
943 */
944 static int
PixarLogPreEncode(TIFF * tif,uint16 s)945 PixarLogPreEncode(TIFF* tif, uint16 s)
946 {
947 static const char module[] = "PixarLogPreEncode";
948 PixarLogState *sp = EncoderState(tif);
949
950 (void) s;
951 assert(sp != NULL);
952 sp->stream.next_out = tif->tif_rawdata;
953 assert(sizeof(sp->stream.avail_out)==4); /* if this assert gets raised,
954 we need to simplify this code to reflect a ZLib that is likely updated
955 to deal with 8byte memory sizes, though this code will respond
956 appropriately even before we simplify it */
957 sp->stream.avail_out = (uInt)tif->tif_rawdatasize;
958 if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize)
959 {
960 TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size");
961 return (0);
962 }
963 return (deflateReset(&sp->stream) == Z_OK);
964 }
965
966 static void
horizontalDifferenceF(float * ip,int n,int stride,uint16 * wp,uint16 * FromLT2)967 horizontalDifferenceF(float *ip, int n, int stride, uint16 *wp, uint16 *FromLT2)
968 {
969 int32 r1, g1, b1, a1, r2, g2, b2, a2, mask;
970 float fltsize = Fltsize;
971
972 #define CLAMP(v) ( (v<(float)0.) ? 0 \
973 : (v<(float)2.) ? FromLT2[(int)(v*fltsize)] \
974 : (v>(float)24.2) ? 2047 \
975 : LogK1*log(v*LogK2) + 0.5 )
976
977 mask = CODE_MASK;
978 if (n >= stride) {
979 if (stride == 3) {
980 r2 = wp[0] = (uint16) CLAMP(ip[0]);
981 g2 = wp[1] = (uint16) CLAMP(ip[1]);
982 b2 = wp[2] = (uint16) CLAMP(ip[2]);
983 n -= 3;
984 while (n > 0) {
985 n -= 3;
986 wp += 3;
987 ip += 3;
988 r1 = (int32) CLAMP(ip[0]); wp[0] = (uint16)((r1-r2) & mask); r2 = r1;
989 g1 = (int32) CLAMP(ip[1]); wp[1] = (uint16)((g1-g2) & mask); g2 = g1;
990 b1 = (int32) CLAMP(ip[2]); wp[2] = (uint16)((b1-b2) & mask); b2 = b1;
991 }
992 } else if (stride == 4) {
993 r2 = wp[0] = (uint16) CLAMP(ip[0]);
994 g2 = wp[1] = (uint16) CLAMP(ip[1]);
995 b2 = wp[2] = (uint16) CLAMP(ip[2]);
996 a2 = wp[3] = (uint16) CLAMP(ip[3]);
997 n -= 4;
998 while (n > 0) {
999 n -= 4;
1000 wp += 4;
1001 ip += 4;
1002 r1 = (int32) CLAMP(ip[0]); wp[0] = (uint16)((r1-r2) & mask); r2 = r1;
1003 g1 = (int32) CLAMP(ip[1]); wp[1] = (uint16)((g1-g2) & mask); g2 = g1;
1004 b1 = (int32) CLAMP(ip[2]); wp[2] = (uint16)((b1-b2) & mask); b2 = b1;
1005 a1 = (int32) CLAMP(ip[3]); wp[3] = (uint16)((a1-a2) & mask); a2 = a1;
1006 }
1007 } else {
1008 REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]); wp++; ip++)
1009 n -= stride;
1010 while (n > 0) {
1011 REPEAT(stride,
1012 wp[0] = (uint16)(((int32)CLAMP(ip[0])-(int32)CLAMP(ip[-stride])) & mask);
1013 wp++; ip++)
1014 n -= stride;
1015 }
1016 }
1017 }
1018 }
1019
1020 static void
horizontalDifference16(unsigned short * ip,int n,int stride,unsigned short * wp,uint16 * From14)1021 horizontalDifference16(unsigned short *ip, int n, int stride,
1022 unsigned short *wp, uint16 *From14)
1023 {
1024 register int r1, g1, b1, a1, r2, g2, b2, a2, mask;
1025
1026 /* assumption is unsigned pixel values */
1027 #undef CLAMP
1028 #define CLAMP(v) From14[(v) >> 2]
1029
1030 mask = CODE_MASK;
1031 if (n >= stride) {
1032 if (stride == 3) {
1033 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1034 b2 = wp[2] = CLAMP(ip[2]);
1035 n -= 3;
1036 while (n > 0) {
1037 n -= 3;
1038 wp += 3;
1039 ip += 3;
1040 r1 = CLAMP(ip[0]); wp[0] = (uint16)((r1-r2) & mask); r2 = r1;
1041 g1 = CLAMP(ip[1]); wp[1] = (uint16)((g1-g2) & mask); g2 = g1;
1042 b1 = CLAMP(ip[2]); wp[2] = (uint16)((b1-b2) & mask); b2 = b1;
1043 }
1044 } else if (stride == 4) {
1045 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1046 b2 = wp[2] = CLAMP(ip[2]); a2 = wp[3] = CLAMP(ip[3]);
1047 n -= 4;
1048 while (n > 0) {
1049 n -= 4;
1050 wp += 4;
1051 ip += 4;
1052 r1 = CLAMP(ip[0]); wp[0] = (uint16)((r1-r2) & mask); r2 = r1;
1053 g1 = CLAMP(ip[1]); wp[1] = (uint16)((g1-g2) & mask); g2 = g1;
1054 b1 = CLAMP(ip[2]); wp[2] = (uint16)((b1-b2) & mask); b2 = b1;
1055 a1 = CLAMP(ip[3]); wp[3] = (uint16)((a1-a2) & mask); a2 = a1;
1056 }
1057 } else {
1058 REPEAT(stride, wp[0] = CLAMP(ip[0]); wp++; ip++)
1059 n -= stride;
1060 while (n > 0) {
1061 REPEAT(stride,
1062 wp[0] = (uint16)((CLAMP(ip[0])-CLAMP(ip[-stride])) & mask);
1063 wp++; ip++)
1064 n -= stride;
1065 }
1066 }
1067 }
1068 }
1069
1070
1071 static void
horizontalDifference8(unsigned char * ip,int n,int stride,unsigned short * wp,uint16 * From8)1072 horizontalDifference8(unsigned char *ip, int n, int stride,
1073 unsigned short *wp, uint16 *From8)
1074 {
1075 register int r1, g1, b1, a1, r2, g2, b2, a2, mask;
1076
1077 #undef CLAMP
1078 #define CLAMP(v) (From8[(v)])
1079
1080 mask = CODE_MASK;
1081 if (n >= stride) {
1082 if (stride == 3) {
1083 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1084 b2 = wp[2] = CLAMP(ip[2]);
1085 n -= 3;
1086 while (n > 0) {
1087 n -= 3;
1088 r1 = CLAMP(ip[3]); wp[3] = (uint16)((r1-r2) & mask); r2 = r1;
1089 g1 = CLAMP(ip[4]); wp[4] = (uint16)((g1-g2) & mask); g2 = g1;
1090 b1 = CLAMP(ip[5]); wp[5] = (uint16)((b1-b2) & mask); b2 = b1;
1091 wp += 3;
1092 ip += 3;
1093 }
1094 } else if (stride == 4) {
1095 r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1096 b2 = wp[2] = CLAMP(ip[2]); a2 = wp[3] = CLAMP(ip[3]);
1097 n -= 4;
1098 while (n > 0) {
1099 n -= 4;
1100 r1 = CLAMP(ip[4]); wp[4] = (uint16)((r1-r2) & mask); r2 = r1;
1101 g1 = CLAMP(ip[5]); wp[5] = (uint16)((g1-g2) & mask); g2 = g1;
1102 b1 = CLAMP(ip[6]); wp[6] = (uint16)((b1-b2) & mask); b2 = b1;
1103 a1 = CLAMP(ip[7]); wp[7] = (uint16)((a1-a2) & mask); a2 = a1;
1104 wp += 4;
1105 ip += 4;
1106 }
1107 } else {
1108 REPEAT(stride, wp[0] = CLAMP(ip[0]); wp++; ip++)
1109 n -= stride;
1110 while (n > 0) {
1111 REPEAT(stride,
1112 wp[0] = (uint16)((CLAMP(ip[0])-CLAMP(ip[-stride])) & mask);
1113 wp++; ip++)
1114 n -= stride;
1115 }
1116 }
1117 }
1118 }
1119
1120 /*
1121 * Encode a chunk of pixels.
1122 */
1123 static int
PixarLogEncode(TIFF * tif,uint8 * bp,tmsize_t cc,uint16 s)1124 PixarLogEncode(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
1125 {
1126 static const char module[] = "PixarLogEncode";
1127 TIFFDirectory *td = &tif->tif_dir;
1128 PixarLogState *sp = EncoderState(tif);
1129 tmsize_t i;
1130 tmsize_t n;
1131 int llen;
1132 unsigned short * up;
1133
1134 (void) s;
1135
1136 switch (sp->user_datafmt) {
1137 case PIXARLOGDATAFMT_FLOAT:
1138 n = cc / sizeof(float); /* XXX float == 32 bits */
1139 break;
1140 case PIXARLOGDATAFMT_16BIT:
1141 case PIXARLOGDATAFMT_12BITPICIO:
1142 case PIXARLOGDATAFMT_11BITLOG:
1143 n = cc / sizeof(uint16); /* XXX uint16 == 16 bits */
1144 break;
1145 case PIXARLOGDATAFMT_8BIT:
1146 case PIXARLOGDATAFMT_8BITABGR:
1147 n = cc;
1148 break;
1149 default:
1150 TIFFErrorExt(tif->tif_clientdata, module,
1151 "%d bit input not supported in PixarLog",
1152 td->td_bitspersample);
1153 return 0;
1154 }
1155
1156 llen = sp->stride * td->td_imagewidth;
1157 /* Check against the number of elements (of size uint16) of sp->tbuf */
1158 if( n > (tmsize_t)(td->td_rowsperstrip * llen) )
1159 {
1160 TIFFErrorExt(tif->tif_clientdata, module,
1161 "Too many input bytes provided");
1162 return 0;
1163 }
1164
1165 for (i = 0, up = sp->tbuf; i < n; i += llen, up += llen) {
1166 switch (sp->user_datafmt) {
1167 case PIXARLOGDATAFMT_FLOAT:
1168 horizontalDifferenceF((float *)bp, llen,
1169 sp->stride, up, sp->FromLT2);
1170 bp += llen * sizeof(float);
1171 break;
1172 case PIXARLOGDATAFMT_16BIT:
1173 horizontalDifference16((uint16 *)bp, llen,
1174 sp->stride, up, sp->From14);
1175 bp += llen * sizeof(uint16);
1176 break;
1177 case PIXARLOGDATAFMT_8BIT:
1178 horizontalDifference8((unsigned char *)bp, llen,
1179 sp->stride, up, sp->From8);
1180 bp += llen * sizeof(unsigned char);
1181 break;
1182 default:
1183 TIFFErrorExt(tif->tif_clientdata, module,
1184 "%d bit input not supported in PixarLog",
1185 td->td_bitspersample);
1186 return 0;
1187 }
1188 }
1189
1190 sp->stream.next_in = (unsigned char *) sp->tbuf;
1191 assert(sizeof(sp->stream.avail_in)==4); /* if this assert gets raised,
1192 we need to simplify this code to reflect a ZLib that is likely updated
1193 to deal with 8byte memory sizes, though this code will respond
1194 appropriately even before we simplify it */
1195 sp->stream.avail_in = (uInt) (n * sizeof(uint16));
1196 if ((sp->stream.avail_in / sizeof(uint16)) != (uInt) n)
1197 {
1198 TIFFErrorExt(tif->tif_clientdata, module,
1199 "ZLib cannot deal with buffers this size");
1200 return (0);
1201 }
1202
1203 do {
1204 if (deflate(&sp->stream, Z_NO_FLUSH) != Z_OK) {
1205 TIFFErrorExt(tif->tif_clientdata, module, "Encoder error: %s",
1206 sp->stream.msg ? sp->stream.msg : "(null)");
1207 return (0);
1208 }
1209 if (sp->stream.avail_out == 0) {
1210 tif->tif_rawcc = tif->tif_rawdatasize;
1211 TIFFFlushData1(tif);
1212 sp->stream.next_out = tif->tif_rawdata;
1213 sp->stream.avail_out = (uInt) tif->tif_rawdatasize; /* this is a safe typecast, as check is made already in PixarLogPreEncode */
1214 }
1215 } while (sp->stream.avail_in > 0);
1216 return (1);
1217 }
1218
1219 /*
1220 * Finish off an encoded strip by flushing the last
1221 * string and tacking on an End Of Information code.
1222 */
1223
1224 static int
PixarLogPostEncode(TIFF * tif)1225 PixarLogPostEncode(TIFF* tif)
1226 {
1227 static const char module[] = "PixarLogPostEncode";
1228 PixarLogState *sp = EncoderState(tif);
1229 int state;
1230
1231 sp->stream.avail_in = 0;
1232
1233 do {
1234 state = deflate(&sp->stream, Z_FINISH);
1235 switch (state) {
1236 case Z_STREAM_END:
1237 case Z_OK:
1238 if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize) {
1239 tif->tif_rawcc =
1240 tif->tif_rawdatasize - sp->stream.avail_out;
1241 TIFFFlushData1(tif);
1242 sp->stream.next_out = tif->tif_rawdata;
1243 sp->stream.avail_out = (uInt) tif->tif_rawdatasize; /* this is a safe typecast, as check is made already in PixarLogPreEncode */
1244 }
1245 break;
1246 default:
1247 TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s",
1248 sp->stream.msg ? sp->stream.msg : "(null)");
1249 return (0);
1250 }
1251 } while (state != Z_STREAM_END);
1252 return (1);
1253 }
1254
1255 static void
PixarLogClose(TIFF * tif)1256 PixarLogClose(TIFF* tif)
1257 {
1258 PixarLogState* sp = (PixarLogState*) tif->tif_data;
1259 TIFFDirectory *td = &tif->tif_dir;
1260
1261 assert(sp != 0);
1262 /* In a really sneaky (and really incorrect, and untruthful, and
1263 * troublesome, and error-prone) maneuver that completely goes against
1264 * the spirit of TIFF, and breaks TIFF, on close, we covertly
1265 * modify both bitspersample and sampleformat in the directory to
1266 * indicate 8-bit linear. This way, the decode "just works" even for
1267 * readers that don't know about PixarLog, or how to set
1268 * the PIXARLOGDATFMT pseudo-tag.
1269 */
1270
1271 if (sp->state&PLSTATE_INIT) {
1272 /* We test the state to avoid an issue such as in
1273 * http://bugzilla.maptools.org/show_bug.cgi?id=2604
1274 * What appends in that case is that the bitspersample is 1 and
1275 * a TransferFunction is set. The size of the TransferFunction
1276 * depends on 1<<bitspersample. So if we increase it, an access
1277 * out of the buffer will happen at directory flushing.
1278 * Another option would be to clear those targs.
1279 */
1280 td->td_bitspersample = 8;
1281 td->td_sampleformat = SAMPLEFORMAT_UINT;
1282 }
1283 }
1284
1285 static void
PixarLogCleanup(TIFF * tif)1286 PixarLogCleanup(TIFF* tif)
1287 {
1288 PixarLogState* sp = (PixarLogState*) tif->tif_data;
1289
1290 assert(sp != 0);
1291
1292 (void)TIFFPredictorCleanup(tif);
1293
1294 tif->tif_tagmethods.vgetfield = sp->vgetparent;
1295 tif->tif_tagmethods.vsetfield = sp->vsetparent;
1296
1297 if (sp->FromLT2) _TIFFfree(sp->FromLT2);
1298 if (sp->From14) _TIFFfree(sp->From14);
1299 if (sp->From8) _TIFFfree(sp->From8);
1300 if (sp->ToLinearF) _TIFFfree(sp->ToLinearF);
1301 if (sp->ToLinear16) _TIFFfree(sp->ToLinear16);
1302 if (sp->ToLinear8) _TIFFfree(sp->ToLinear8);
1303 if (sp->state&PLSTATE_INIT) {
1304 if (tif->tif_mode == O_RDONLY)
1305 inflateEnd(&sp->stream);
1306 else
1307 deflateEnd(&sp->stream);
1308 }
1309 if (sp->tbuf)
1310 _TIFFfree(sp->tbuf);
1311 _TIFFfree(sp);
1312 tif->tif_data = NULL;
1313
1314 _TIFFSetDefaultCompressionState(tif);
1315 }
1316
1317 static int
PixarLogVSetField(TIFF * tif,uint32 tag,va_list ap)1318 PixarLogVSetField(TIFF* tif, uint32 tag, va_list ap)
1319 {
1320 static const char module[] = "PixarLogVSetField";
1321 PixarLogState *sp = (PixarLogState *)tif->tif_data;
1322 int result;
1323
1324 switch (tag) {
1325 case TIFFTAG_PIXARLOGQUALITY:
1326 sp->quality = (int) va_arg(ap, int);
1327 if (tif->tif_mode != O_RDONLY && (sp->state&PLSTATE_INIT)) {
1328 if (deflateParams(&sp->stream,
1329 sp->quality, Z_DEFAULT_STRATEGY) != Z_OK) {
1330 TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s",
1331 sp->stream.msg ? sp->stream.msg : "(null)");
1332 return (0);
1333 }
1334 }
1335 return (1);
1336 case TIFFTAG_PIXARLOGDATAFMT:
1337 sp->user_datafmt = (int) va_arg(ap, int);
1338 /* Tweak the TIFF header so that the rest of libtiff knows what
1339 * size of data will be passed between app and library, and
1340 * assume that the app knows what it is doing and is not
1341 * confused by these header manipulations...
1342 */
1343 switch (sp->user_datafmt) {
1344 case PIXARLOGDATAFMT_8BIT:
1345 case PIXARLOGDATAFMT_8BITABGR:
1346 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
1347 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1348 break;
1349 case PIXARLOGDATAFMT_11BITLOG:
1350 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1351 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1352 break;
1353 case PIXARLOGDATAFMT_12BITPICIO:
1354 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1355 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
1356 break;
1357 case PIXARLOGDATAFMT_16BIT:
1358 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1359 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1360 break;
1361 case PIXARLOGDATAFMT_FLOAT:
1362 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 32);
1363 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
1364 break;
1365 }
1366 /*
1367 * Must recalculate sizes should bits/sample change.
1368 */
1369 tif->tif_tilesize = isTiled(tif) ? TIFFTileSize(tif) : (tmsize_t)(-1);
1370 tif->tif_scanlinesize = TIFFScanlineSize(tif);
1371 result = 1; /* NB: pseudo tag */
1372 break;
1373 default:
1374 result = (*sp->vsetparent)(tif, tag, ap);
1375 }
1376 return (result);
1377 }
1378
1379 static int
PixarLogVGetField(TIFF * tif,uint32 tag,va_list ap)1380 PixarLogVGetField(TIFF* tif, uint32 tag, va_list ap)
1381 {
1382 PixarLogState *sp = (PixarLogState *)tif->tif_data;
1383
1384 switch (tag) {
1385 case TIFFTAG_PIXARLOGQUALITY:
1386 *va_arg(ap, int*) = sp->quality;
1387 break;
1388 case TIFFTAG_PIXARLOGDATAFMT:
1389 *va_arg(ap, int*) = sp->user_datafmt;
1390 break;
1391 default:
1392 return (*sp->vgetparent)(tif, tag, ap);
1393 }
1394 return (1);
1395 }
1396
1397 static const TIFFField pixarlogFields[] = {
1398 {TIFFTAG_PIXARLOGDATAFMT, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "", NULL},
1399 {TIFFTAG_PIXARLOGQUALITY, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "", NULL}
1400 };
1401
1402 int
TIFFInitPixarLog(TIFF * tif,int scheme)1403 TIFFInitPixarLog(TIFF* tif, int scheme)
1404 {
1405 static const char module[] = "TIFFInitPixarLog";
1406
1407 PixarLogState* sp;
1408
1409 assert(scheme == COMPRESSION_PIXARLOG);
1410
1411 /*
1412 * Merge codec-specific tag information.
1413 */
1414 if (!_TIFFMergeFields(tif, pixarlogFields,
1415 TIFFArrayCount(pixarlogFields))) {
1416 TIFFErrorExt(tif->tif_clientdata, module,
1417 "Merging PixarLog codec-specific tags failed");
1418 return 0;
1419 }
1420
1421 /*
1422 * Allocate state block so tag methods have storage to record values.
1423 */
1424 tif->tif_data = (uint8*) _TIFFmalloc(sizeof (PixarLogState));
1425 if (tif->tif_data == NULL)
1426 goto bad;
1427 sp = (PixarLogState*) tif->tif_data;
1428 _TIFFmemset(sp, 0, sizeof (*sp));
1429 sp->stream.data_type = Z_BINARY;
1430 sp->user_datafmt = PIXARLOGDATAFMT_UNKNOWN;
1431
1432 /*
1433 * Install codec methods.
1434 */
1435 tif->tif_fixuptags = PixarLogFixupTags;
1436 tif->tif_setupdecode = PixarLogSetupDecode;
1437 tif->tif_predecode = PixarLogPreDecode;
1438 tif->tif_decoderow = PixarLogDecode;
1439 tif->tif_decodestrip = PixarLogDecode;
1440 tif->tif_decodetile = PixarLogDecode;
1441 tif->tif_setupencode = PixarLogSetupEncode;
1442 tif->tif_preencode = PixarLogPreEncode;
1443 tif->tif_postencode = PixarLogPostEncode;
1444 tif->tif_encoderow = PixarLogEncode;
1445 tif->tif_encodestrip = PixarLogEncode;
1446 tif->tif_encodetile = PixarLogEncode;
1447 tif->tif_close = PixarLogClose;
1448 tif->tif_cleanup = PixarLogCleanup;
1449
1450 /* Override SetField so we can handle our private pseudo-tag */
1451 sp->vgetparent = tif->tif_tagmethods.vgetfield;
1452 tif->tif_tagmethods.vgetfield = PixarLogVGetField; /* hook for codec tags */
1453 sp->vsetparent = tif->tif_tagmethods.vsetfield;
1454 tif->tif_tagmethods.vsetfield = PixarLogVSetField; /* hook for codec tags */
1455
1456 /* Default values for codec-specific fields */
1457 sp->quality = Z_DEFAULT_COMPRESSION; /* default comp. level */
1458 sp->state = 0;
1459
1460 /* we don't wish to use the predictor,
1461 * the default is none, which predictor value 1
1462 */
1463 (void) TIFFPredictorInit(tif);
1464
1465 /*
1466 * build the companding tables
1467 */
1468 PixarLogMakeTables(sp);
1469
1470 return (1);
1471 bad:
1472 TIFFErrorExt(tif->tif_clientdata, module,
1473 "No space for PixarLog state block");
1474 return (0);
1475 }
1476 #endif /* PIXARLOG_SUPPORT */
1477
1478 /* vim: set ts=8 sts=8 sw=8 noet: */
1479 /*
1480 * Local Variables:
1481 * mode: c
1482 * c-basic-offset: 8
1483 * fill-column: 78
1484 * End:
1485 */
1486