1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
14  * double x[],y[]; int e0,nx,prec; int ipio2[];
15  *
16  * __kernel_rem_pio2 return the last three digits of N with
17  *		y = x - N*pi/2
18  * so that |y| < pi/2.
19  *
20  * The method is to compute the integer (mod 8) and fraction parts of
21  * (2/pi)*x without doing the full multiplication. In general we
22  * skip the part of the product that are known to be a huge integer (
23  * more accurately, = 0 mod 8 ). Thus the number of operations are
24  * independent of the exponent of the input.
25  *
26  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
27  *
28  * Input parameters:
29  * 	x[]	The input value (must be positive) is broken into nx
30  *		pieces of 24-bit integers in double precision format.
31  *		x[i] will be the i-th 24 bit of x. The scaled exponent
32  *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
33  *		match x's up to 24 bits.
34  *
35  *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
36  *			e0 = ilogb(z)-23
37  *			z  = scalbn(z,-e0)
38  *		for i = 0,1,2
39  *			x[i] = floor(z)
40  *			z    = (z-x[i])*2**24
41  *
42  *
43  *	y[]	ouput result in an array of double precision numbers.
44  *		The dimension of y[] is:
45  *			24-bit  precision	1
46  *			53-bit  precision	2
47  *			64-bit  precision	2
48  *			113-bit precision	3
49  *		The actual value is the sum of them. Thus for 113-bit
50  *		precison, one may have to do something like:
51  *
52  *		long double t,w,r_head, r_tail;
53  *		t = (long double)y[2] + (long double)y[1];
54  *		w = (long double)y[0];
55  *		r_head = t+w;
56  *		r_tail = w - (r_head - t);
57  *
58  *	e0	The exponent of x[0]
59  *
60  *	nx	dimension of x[]
61  *
62  *  	prec	an integer indicating the precision:
63  *			0	24  bits (single)
64  *			1	53  bits (double)
65  *			2	64  bits (extended)
66  *			3	113 bits (quad)
67  *
68  *	ipio2[]
69  *		integer array, contains the (24*i)-th to (24*i+23)-th
70  *		bit of 2/pi after binary point. The corresponding
71  *		floating value is
72  *
73  *			ipio2[i] * 2^(-24(i+1)).
74  *
75  * External function:
76  *	double scalbn(), floor();
77  *
78  *
79  * Here is the description of some local variables:
80  *
81  * 	jk	jk+1 is the initial number of terms of ipio2[] needed
82  *		in the computation. The recommended value is 2,3,4,
83  *		6 for single, double, extended,and quad.
84  *
85  * 	jz	local integer variable indicating the number of
86  *		terms of ipio2[] used.
87  *
88  *	jx	nx - 1
89  *
90  *	jv	index for pointing to the suitable ipio2[] for the
91  *		computation. In general, we want
92  *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
93  *		is an integer. Thus
94  *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
95  *		Hence jv = max(0,(e0-3)/24).
96  *
97  *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
98  *
99  * 	q[]	double array with integral value, representing the
100  *		24-bits chunk of the product of x and 2/pi.
101  *
102  *	q0	the corresponding exponent of q[0]. Note that the
103  *		exponent for q[i] would be q0-24*i.
104  *
105  *	PIo2[]	double precision array, obtained by cutting pi/2
106  *		into 24 bits chunks.
107  *
108  *	f[]	ipio2[] in floating point
109  *
110  *	iq[]	integer array by breaking up q[] in 24-bits chunk.
111  *
112  *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
113  *
114  *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
115  *		it also indicates the *sign* of the result.
116  *
117  */
118 
119 
120 /*
121  * Constants:
122  * The hexadecimal values are the intended ones for the following
123  * constants. The decimal values may be used, provided that the
124  * compiler will convert from decimal to binary accurately enough
125  * to produce the hexadecimal values shown.
126  */
127 
128 #include "math_libm.h"
129 #include "math_private.h"
130 
131 #include "SDL_assert.h"
132 
133 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
134 
135 static const double PIo2[] = {
136   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
137   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
138   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
139   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
140   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
141   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
142   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
143   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
144 };
145 
146 static const double
147 zero   = 0.0,
148 one    = 1.0,
149 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
150 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
151 
__kernel_rem_pio2(const double * x,double * y,int e0,int nx,const unsigned int prec,const int32_t * ipio2)152 int32_t attribute_hidden __kernel_rem_pio2(const double *x, double *y, int e0, int nx, const unsigned int prec, const int32_t *ipio2)
153 {
154 	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
155 	double z,fw,f[20],fq[20],q[20];
156 
157 	if (nx < 1) {
158 		return 0;
159 	}
160 
161     /* initialize jk*/
162 	SDL_assert(prec < SDL_arraysize(init_jk));
163 	jk = init_jk[prec];
164 	SDL_assert(jk > 0);
165 	jp = jk;
166 
167     /* determine jx,jv,q0, note that 3>q0 */
168 	jx =  nx-1;
169 	jv = (e0-3)/24; if(jv<0) jv=0;
170 	q0 =  e0-24*(jv+1);
171 
172     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
173 	j = jv-jx; m = jx+jk;
174 	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
175 	if ((m+1) < SDL_arraysize(f)) {
176         SDL_memset(&f[m+1], 0, sizeof (f) - ((m+1) * sizeof (f[0])));
177     }
178 
179     /* compute q[0],q[1],...q[jk] */
180 	for (i=0;i<=jk;i++) {
181 	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
182 	    q[i] = fw;
183 	}
184 
185 	jz = jk;
186 recompute:
187     /* distill q[] into iq[] reversingly */
188 	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
189 	    fw    =  (double)((int32_t)(twon24* z));
190 	    iq[i] =  (int32_t)(z-two24*fw);
191 	    z     =  q[j-1]+fw;
192 	}
193 	if (jz < SDL_arraysize(iq)) {
194         SDL_memset(&iq[jz], 0, sizeof (q) - (jz * sizeof (iq[0])));
195     }
196 
197     /* compute n */
198 	z  = scalbn(z,q0);		/* actual value of z */
199 	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */
200 	n  = (int32_t) z;
201 	z -= (double)n;
202 	ih = 0;
203 	if(q0>0) {	/* need iq[jz-1] to determine n */
204 	    i  = (iq[jz-1]>>(24-q0)); n += i;
205 	    iq[jz-1] -= i<<(24-q0);
206 	    ih = iq[jz-1]>>(23-q0);
207 	}
208 	else if(q0==0) ih = iq[jz-1]>>23;
209 	else if(z>=0.5) ih=2;
210 
211 	if(ih>0) {	/* q > 0.5 */
212 	    n += 1; carry = 0;
213 	    for(i=0;i<jz ;i++) {	/* compute 1-q */
214 		j = iq[i];
215 		if(carry==0) {
216 		    if(j!=0) {
217 			carry = 1; iq[i] = 0x1000000- j;
218 		    }
219 		} else  iq[i] = 0xffffff - j;
220 	    }
221 	    if(q0>0) {		/* rare case: chance is 1 in 12 */
222 	        switch(q0) {
223 	        case 1:
224 	    	   iq[jz-1] &= 0x7fffff; break;
225 	    	case 2:
226 	    	   iq[jz-1] &= 0x3fffff; break;
227 	        }
228 	    }
229 	    if(ih==2) {
230 		z = one - z;
231 		if(carry!=0) z -= scalbn(one,q0);
232 	    }
233 	}
234 
235     /* check if recomputation is needed */
236 	if(z==zero) {
237 	    j = 0;
238 	    for (i=jz-1;i>=jk;i--) j |= iq[i];
239 	    if(j==0) { /* need recomputation */
240 		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
241 
242 		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
243 		    f[jx+i] = (double) ipio2[jv+i];
244 		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
245 		    q[i] = fw;
246 		}
247 		jz += k;
248 		goto recompute;
249 	    }
250 	}
251 
252     /* chop off zero terms */
253 	if(z==0.0) {
254 	    jz -= 1; q0 -= 24;
255 		SDL_assert(jz >= 0);
256 	    while(iq[jz]==0) { jz--; SDL_assert(jz >= 0); q0-=24;}
257 	} else { /* break z into 24-bit if necessary */
258 	    z = scalbn(z,-q0);
259 	    if(z>=two24) {
260 		fw = (double)((int32_t)(twon24*z));
261 		iq[jz] = (int32_t)(z-two24*fw);
262 		jz += 1; q0 += 24;
263 		iq[jz] = (int32_t) fw;
264 	    } else iq[jz] = (int32_t) z ;
265 	}
266 
267     /* convert integer "bit" chunk to floating-point value */
268 	fw = scalbn(one,q0);
269 	for(i=jz;i>=0;i--) {
270 	    q[i] = fw*(double)iq[i]; fw*=twon24;
271 	}
272 
273     /* compute PIo2[0,...,jp]*q[jz,...,0] */
274 	for(i=jz;i>=0;i--) {
275 	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
276 	    fq[jz-i] = fw;
277 	}
278 	if ((jz+1) < SDL_arraysize(f)) {
279         SDL_memset(&fq[jz+1], 0, sizeof (fq) - ((jz+1) * sizeof (fq[0])));
280     }
281 
282     /* compress fq[] into y[] */
283 	switch(prec) {
284 	    case 0:
285 		fw = 0.0;
286 		for (i=jz;i>=0;i--) fw += fq[i];
287 		y[0] = (ih==0)? fw: -fw;
288 		break;
289 	    case 1:
290 	    case 2:
291 		fw = 0.0;
292 		for (i=jz;i>=0;i--) fw += fq[i];
293 		y[0] = (ih==0)? fw: -fw;
294 		fw = fq[0]-fw;
295 		for (i=1;i<=jz;i++) fw += fq[i];
296 		y[1] = (ih==0)? fw: -fw;
297 		break;
298 	    case 3:	/* painful */
299 		for (i=jz;i>0;i--) {
300 		    fw      = fq[i-1]+fq[i];
301 		    fq[i]  += fq[i-1]-fw;
302 		    fq[i-1] = fw;
303 		}
304 		for (i=jz;i>1;i--) {
305 		    fw      = fq[i-1]+fq[i];
306 		    fq[i]  += fq[i-1]-fw;
307 		    fq[i-1] = fw;
308 		}
309 		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
310 		if(ih==0) {
311 		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
312 		} else {
313 		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
314 		}
315 	}
316 	return n&7;
317 }
318