1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /* tan(x)
13  * Return tangent function of x.
14  *
15  * kernel function:
16  *	__kernel_tan		... tangent function on [-pi/4,pi/4]
17  *	__ieee754_rem_pio2	... argument reduction routine
18  *
19  * Method.
20  *      Let S,C and T denote the sin, cos and tan respectively on
21  *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
22  *	in [-pi/4 , +pi/4], and let n = k mod 4.
23  *	We have
24  *
25  *          n        sin(x)      cos(x)        tan(x)
26  *     ----------------------------------------------------------
27  *	    0	       S	   C		 T
28  *	    1	       C	  -S		-1/T
29  *	    2	      -S	  -C		 T
30  *	    3	      -C	   S		-1/T
31  *     ----------------------------------------------------------
32  *
33  * Special cases:
34  *      Let trig be any of sin, cos, or tan.
35  *      trig(+-INF)  is NaN, with signals;
36  *      trig(NaN)    is that NaN;
37  *
38  * Accuracy:
39  *	TRIG(x) returns trig(x) nearly rounded
40  */
41 
42 #include "math_libm.h"
43 #include "math_private.h"
44 
tan(double x)45 double tan(double x)
46 {
47 	double y[2],z=0.0;
48 	int32_t n, ix;
49 
50     /* High word of x. */
51 	GET_HIGH_WORD(ix,x);
52 
53     /* |x| ~< pi/4 */
54 	ix &= 0x7fffffff;
55 	if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
56 
57     /* tan(Inf or NaN) is NaN */
58 	else if (ix>=0x7ff00000) return x-x;		/* NaN */
59 
60     /* argument reduction needed */
61 	else {
62 	    n = __ieee754_rem_pio2(x,y);
63 	    return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
64 							-1 -- n odd */
65 	}
66 }
67 libm_hidden_def(tan)
68