1 /*
2 Simple DirectMedia Layer
3 Copyright (C) 1997-2020 Sam Lantinga <slouken@libsdl.org>
4
5 This software is provided 'as-is', without any express or implied
6 warranty. In no event will the authors be held liable for any damages
7 arising from the use of this software.
8
9 Permission is granted to anyone to use this software for any purpose,
10 including commercial applications, and to alter it and redistribute it
11 freely, subject to the following restrictions:
12
13 1. The origin of this software must not be misrepresented; you must not
14 claim that you wrote the original software. If you use this software
15 in a product, an acknowledgment in the product documentation would be
16 appreciated but is not required.
17 2. Altered source versions must be plainly marked as such, and must not be
18 misrepresented as being the original software.
19 3. This notice may not be removed or altered from any source distribution.
20 */
21
22 #if defined(__clang_analyzer__) && !defined(SDL_DISABLE_ANALYZE_MACROS)
23 #define SDL_DISABLE_ANALYZE_MACROS 1
24 #endif
25
26 #include "../SDL_internal.h"
27
28 #include "SDL_stdinc.h"
29 #include "SDL_assert.h"
30
31 #if defined(HAVE_QSORT)
32 void
SDL_qsort(void * base,size_t nmemb,size_t size,int (* compare)(const void *,const void *))33 SDL_qsort(void *base, size_t nmemb, size_t size, int (*compare) (const void *, const void *))
34 {
35 qsort(base, nmemb, size, compare);
36 }
37
38 #else
39
40 #ifdef assert
41 #undef assert
42 #endif
43 #define assert SDL_assert
44 #ifdef malloc
45 #undef malloc
46 #endif
47 #define malloc SDL_malloc
48 #ifdef free
49 #undef free
50 #endif
51 #define free SDL_free
52 #ifdef memcpy
53 #undef memcpy
54 #endif
55 #define memcpy SDL_memcpy
56 #ifdef memmove
57 #undef memmove
58 #endif
59 #define memmove SDL_memmove
60 #ifdef qsortG
61 #undef qsortG
62 #endif
63 #define qsortG SDL_qsort
64
65 /*
66 This code came from Gareth McCaughan, under the zlib license.
67 Specifically this: https://www.mccaughan.org.uk/software/qsort.c-1.15
68
69 Everything below this comment until the HAVE_QSORT #endif was from Gareth
70 (any minor changes will be noted inline).
71
72 Thank you to Gareth for relicensing this code under the zlib license for our
73 benefit!
74
75 --ryan.
76 */
77
78 /* This is a drop-in replacement for the C library's |qsort()| routine.
79 *
80 * It is intended for use where you know or suspect that your
81 * platform's qsort is bad. If that isn't the case, then you
82 * should probably use the qsort your system gives you in preference
83 * to mine -- it will likely have been tested and tuned better.
84 *
85 * Features:
86 * - Median-of-three pivoting (and more)
87 * - Truncation and final polishing by a single insertion sort
88 * - Early truncation when no swaps needed in pivoting step
89 * - Explicit recursion, guaranteed not to overflow
90 * - A few little wrinkles stolen from the GNU |qsort()|.
91 * (For the avoidance of doubt, no code was stolen, only
92 * broad ideas.)
93 * - separate code for non-aligned / aligned / word-size objects
94 *
95 * Earlier releases of this code used an idiosyncratic licence
96 * I wrote myself, because I'm an idiot. The code is now released
97 * under the "zlib/libpng licence"; you will find the actual
98 * terms in the next comment. I request (but do not require)
99 * that if you make any changes beyond the name of the exported
100 * routine and reasonable tweaks to the TRUNC_* and
101 * PIVOT_THRESHOLD values, you modify the _ID string so as
102 * to make it clear that you have changed the code.
103 *
104 * If you find problems with this code, or find ways of
105 * making it significantly faster, please let me know!
106 * My e-mail address, valid as of early 2016 and for the
107 * foreseeable future, is
108 * gareth.mccaughan@pobox.com
109 * Thanks!
110 *
111 * Gareth McCaughan
112 */
113
114 /* Copyright (c) 1998-2016 Gareth McCaughan
115 *
116 * This software is provided 'as-is', without any express or implied
117 * warranty. In no event will the authors be held liable for any
118 * damages arising from the use of this software.
119 *
120 * Permission is granted to anyone to use this software for any purpose,
121 * including commercial applications, and to alter it and redistribute it
122 * freely, subject to the following restrictions:
123 *
124 * 1. The origin of this software must not be misrepresented;
125 * you must not claim that you wrote the original software.
126 * If you use this software in a product, an acknowledgment
127 * in the product documentation would be appreciated but
128 * is not required.
129 *
130 * 2. Altered source versions must be plainly marked as such,
131 * and must not be misrepresented as being the original software.
132 *
133 * 3. This notice may not be removed or altered from any source
134 * distribution.
135 */
136
137 /* Revision history since release:
138 * 1998-03-19 v1.12 First release I have any records of.
139 * 2007-09-02 v1.13 Fix bug kindly reported by Dan Bodoh
140 * (premature termination of recursion).
141 * Add a few clarifying comments.
142 * Minor improvements to debug output.
143 * 2016-02-21 v1.14 Replace licence with 2-clause BSD,
144 * and clarify a couple of things in
145 * comments. No code changes.
146 * 2016-03-10 v1.15 Fix bug kindly reported by Ryan Gordon
147 * (pre-insertion-sort messed up).
148 * Disable DEBUG_QSORT by default.
149 * Tweak comments very slightly.
150 */
151
152 /* BEGIN SDL CHANGE ... commented this out with an #if 0 block. --ryan. */
153 #if 0
154 #include <assert.h>
155 #include <stdlib.h>
156 #include <string.h>
157
158 #undef DEBUG_QSORT
159
160 static char _ID[]="<qsort.c gjm 1.15 2016-03-10>";
161 #endif
162 /* END SDL CHANGE ... commented this out with an #if 0 block. --ryan. */
163
164 /* How many bytes are there per word? (Must be a power of 2,
165 * and must in fact equal sizeof(int).)
166 */
167 #define WORD_BYTES sizeof(int)
168
169 /* How big does our stack need to be? Answer: one entry per
170 * bit in a |size_t|.
171 */
172 #define STACK_SIZE (8*sizeof(size_t))
173
174 /* Different situations have slightly different requirements,
175 * and we make life epsilon easier by using different truncation
176 * points for the three different cases.
177 * So far, I have tuned TRUNC_words and guessed that the same
178 * value might work well for the other two cases. Of course
179 * what works well on my machine might work badly on yours.
180 */
181 #define TRUNC_nonaligned 12
182 #define TRUNC_aligned 12
183 #define TRUNC_words 12*WORD_BYTES /* nb different meaning */
184
185 /* We use a simple pivoting algorithm for shortish sub-arrays
186 * and a more complicated one for larger ones. The threshold
187 * is PIVOT_THRESHOLD.
188 */
189 #define PIVOT_THRESHOLD 40
190
191 typedef struct { char * first; char * last; } stack_entry;
192 #define pushLeft {stack[stacktop].first=ffirst;stack[stacktop++].last=last;}
193 #define pushRight {stack[stacktop].first=first;stack[stacktop++].last=llast;}
194 #define doLeft {first=ffirst;llast=last;continue;}
195 #define doRight {ffirst=first;last=llast;continue;}
196 #define pop {if (--stacktop<0) break;\
197 first=ffirst=stack[stacktop].first;\
198 last=llast=stack[stacktop].last;\
199 continue;}
200
201 /* Some comments on the implementation.
202 * 1. When we finish partitioning the array into "low"
203 * and "high", we forget entirely about short subarrays,
204 * because they'll be done later by insertion sort.
205 * Doing lots of little insertion sorts might be a win
206 * on large datasets for locality-of-reference reasons,
207 * but it makes the code much nastier and increases
208 * bookkeeping overhead.
209 * 2. We always save the shorter and get to work on the
210 * longer. This guarantees that every time we push
211 * an item onto the stack its size is <= 1/2 of that
212 * of its parent; so the stack can't need more than
213 * log_2(max-array-size) entries.
214 * 3. We choose a pivot by looking at the first, last
215 * and middle elements. We arrange them into order
216 * because it's easy to do that in conjunction with
217 * choosing the pivot, and it makes things a little
218 * easier in the partitioning step. Anyway, the pivot
219 * is the middle of these three. It's still possible
220 * to construct datasets where the algorithm takes
221 * time of order n^2, but it simply never happens in
222 * practice.
223 * 3' Newsflash: On further investigation I find that
224 * it's easy to construct datasets where median-of-3
225 * simply isn't good enough. So on large-ish subarrays
226 * we do a more sophisticated pivoting: we take three
227 * sets of 3 elements, find their medians, and then
228 * take the median of those.
229 * 4. We copy the pivot element to a separate place
230 * because that way we can always do our comparisons
231 * directly against a pointer to that separate place,
232 * and don't have to wonder "did we move the pivot
233 * element?". This makes the inner loop better.
234 * 5. It's possible to make the pivoting even more
235 * reliable by looking at more candidates when n
236 * is larger. (Taking this to its logical conclusion
237 * results in a variant of quicksort that doesn't
238 * have that n^2 worst case.) However, the overhead
239 * from the extra bookkeeping means that it's just
240 * not worth while.
241 * 6. This is pretty clean and portable code. Here are
242 * all the potential portability pitfalls and problems
243 * I know of:
244 * - In one place (the insertion sort) I construct
245 * a pointer that points just past the end of the
246 * supplied array, and assume that (a) it won't
247 * compare equal to any pointer within the array,
248 * and (b) it will compare equal to a pointer
249 * obtained by stepping off the end of the array.
250 * These might fail on some segmented architectures.
251 * - I assume that there are 8 bits in a |char| when
252 * computing the size of stack needed. This would
253 * fail on machines with 9-bit or 16-bit bytes.
254 * - I assume that if |((int)base&(sizeof(int)-1))==0|
255 * and |(size&(sizeof(int)-1))==0| then it's safe to
256 * get at array elements via |int*|s, and that if
257 * actually |size==sizeof(int)| as well then it's
258 * safe to treat the elements as |int|s. This might
259 * fail on systems that convert pointers to integers
260 * in non-standard ways.
261 * - I assume that |8*sizeof(size_t)<=INT_MAX|. This
262 * would be false on a machine with 8-bit |char|s,
263 * 16-bit |int|s and 4096-bit |size_t|s. :-)
264 */
265
266 /* The recursion logic is the same in each case.
267 * We keep chopping up until we reach subarrays of size
268 * strictly less than Trunc; we leave these unsorted. */
269 #define Recurse(Trunc) \
270 { size_t l=last-ffirst,r=llast-first; \
271 if (l<Trunc) { \
272 if (r>=Trunc) doRight \
273 else pop \
274 } \
275 else if (l<=r) { pushLeft; doRight } \
276 else if (r>=Trunc) { pushRight; doLeft }\
277 else doLeft \
278 }
279
280 /* and so is the pivoting logic (note: last is inclusive): */
281 #define Pivot(swapper,sz) \
282 if ((size_t)(last-first)>PIVOT_THRESHOLD*sz) mid=pivot_big(first,mid,last,sz,compare);\
283 else { \
284 if (compare(first,mid)<0) { \
285 if (compare(mid,last)>0) { \
286 swapper(mid,last); \
287 if (compare(first,mid)>0) swapper(first,mid);\
288 } \
289 } \
290 else { \
291 if (compare(mid,last)>0) swapper(first,last)\
292 else { \
293 swapper(first,mid); \
294 if (compare(mid,last)>0) swapper(mid,last);\
295 } \
296 } \
297 first+=sz; last-=sz; \
298 }
299
300 #ifdef DEBUG_QSORT
301 #include <stdio.h>
302 #endif
303
304 /* and so is the partitioning logic: */
305 #define Partition(swapper,sz) { \
306 do { \
307 while (compare(first,pivot)<0) first+=sz; \
308 while (compare(pivot,last)<0) last-=sz; \
309 if (first<last) { \
310 swapper(first,last); \
311 first+=sz; last-=sz; } \
312 else if (first==last) { first+=sz; last-=sz; break; }\
313 } while (first<=last); \
314 }
315
316 /* and so is the pre-insertion-sort operation of putting
317 * the smallest element into place as a sentinel.
318 * Doing this makes the inner loop nicer. I got this
319 * idea from the GNU implementation of qsort().
320 * We find the smallest element from the first |nmemb|,
321 * or the first |limit|, whichever is smaller;
322 * therefore we must have ensured that the globally smallest
323 * element is in the first |limit| (because our
324 * quicksort recursion bottoms out only once we
325 * reach subarrays smaller than |limit|).
326 */
327 #define PreInsertion(swapper,limit,sz) \
328 first=base; \
329 last=first + ((nmemb>limit ? limit : nmemb)-1)*sz;\
330 while (last!=base) { \
331 if (compare(first,last)>0) first=last; \
332 last-=sz; } \
333 if (first!=base) swapper(first,(char*)base);
334
335 /* and so is the insertion sort, in the first two cases: */
336 #define Insertion(swapper) \
337 last=((char*)base)+nmemb*size; \
338 for (first=((char*)base)+size;first!=last;first+=size) { \
339 char *test; \
340 /* Find the right place for |first|. \
341 * My apologies for var reuse. */ \
342 for (test=first-size;compare(test,first)>0;test-=size) ; \
343 test+=size; \
344 if (test!=first) { \
345 /* Shift everything in [test,first) \
346 * up by one, and place |first| \
347 * where |test| is. */ \
348 memcpy(pivot,first,size); \
349 memmove(test+size,test,first-test); \
350 memcpy(test,pivot,size); \
351 } \
352 }
353
354 #define SWAP_nonaligned(a,b) { \
355 register char *aa=(a),*bb=(b); \
356 register size_t sz=size; \
357 do { register char t=*aa; *aa++=*bb; *bb++=t; } while (--sz); }
358
359 #define SWAP_aligned(a,b) { \
360 register int *aa=(int*)(a),*bb=(int*)(b); \
361 register size_t sz=size; \
362 do { register int t=*aa;*aa++=*bb; *bb++=t; } while (sz-=WORD_BYTES); }
363
364 #define SWAP_words(a,b) { \
365 register int t=*((int*)a); *((int*)a)=*((int*)b); *((int*)b)=t; }
366
367 /* ---------------------------------------------------------------------- */
368
pivot_big(char * first,char * mid,char * last,size_t size,int compare (const void *,const void *))369 static char * pivot_big(char *first, char *mid, char *last, size_t size,
370 int compare(const void *, const void *)) {
371 size_t d=(((last-first)/size)>>3)*size;
372 #ifdef DEBUG_QSORT
373 fprintf(stderr, "pivot_big: first=%p last=%p size=%lu n=%lu\n", first, (unsigned long)last, size, (unsigned long)((last-first+1)/size));
374 #endif
375 char *m1,*m2,*m3;
376 { char *a=first, *b=first+d, *c=first+2*d;
377 #ifdef DEBUG_QSORT
378 fprintf(stderr,"< %d %d %d @ %p %p %p\n",*(int*)a,*(int*)b,*(int*)c, a,b,c);
379 #endif
380 m1 = compare(a,b)<0 ?
381 (compare(b,c)<0 ? b : (compare(a,c)<0 ? c : a))
382 : (compare(a,c)<0 ? a : (compare(b,c)<0 ? c : b));
383 }
384 { char *a=mid-d, *b=mid, *c=mid+d;
385 #ifdef DEBUG_QSORT
386 fprintf(stderr,". %d %d %d @ %p %p %p\n",*(int*)a,*(int*)b,*(int*)c, a,b,c);
387 #endif
388 m2 = compare(a,b)<0 ?
389 (compare(b,c)<0 ? b : (compare(a,c)<0 ? c : a))
390 : (compare(a,c)<0 ? a : (compare(b,c)<0 ? c : b));
391 }
392 { char *a=last-2*d, *b=last-d, *c=last;
393 #ifdef DEBUG_QSORT
394 fprintf(stderr,"> %d %d %d @ %p %p %p\n",*(int*)a,*(int*)b,*(int*)c, a,b,c);
395 #endif
396 m3 = compare(a,b)<0 ?
397 (compare(b,c)<0 ? b : (compare(a,c)<0 ? c : a))
398 : (compare(a,c)<0 ? a : (compare(b,c)<0 ? c : b));
399 }
400 #ifdef DEBUG_QSORT
401 fprintf(stderr,"-> %d %d %d @ %p %p %p\n",*(int*)m1,*(int*)m2,*(int*)m3, m1,m2,m3);
402 #endif
403 return compare(m1,m2)<0 ?
404 (compare(m2,m3)<0 ? m2 : (compare(m1,m3)<0 ? m3 : m1))
405 : (compare(m1,m3)<0 ? m1 : (compare(m2,m3)<0 ? m3 : m2));
406 }
407
408 /* ---------------------------------------------------------------------- */
409
qsort_nonaligned(void * base,size_t nmemb,size_t size,int (* compare)(const void *,const void *))410 static void qsort_nonaligned(void *base, size_t nmemb, size_t size,
411 int (*compare)(const void *, const void *)) {
412
413 stack_entry stack[STACK_SIZE];
414 int stacktop=0;
415 char *first,*last;
416 char *pivot=malloc(size);
417 size_t trunc=TRUNC_nonaligned*size;
418 assert(pivot!=0);
419
420 first=(char*)base; last=first+(nmemb-1)*size;
421
422 if ((size_t)(last-first)>=trunc) {
423 char *ffirst=first, *llast=last;
424 while (1) {
425 /* Select pivot */
426 { char * mid=first+size*((last-first)/size >> 1);
427 Pivot(SWAP_nonaligned,size);
428 memcpy(pivot,mid,size);
429 }
430 /* Partition. */
431 Partition(SWAP_nonaligned,size);
432 /* Prepare to recurse/iterate. */
433 Recurse(trunc)
434 }
435 }
436 PreInsertion(SWAP_nonaligned,TRUNC_nonaligned,size);
437 Insertion(SWAP_nonaligned);
438 free(pivot);
439 }
440
qsort_aligned(void * base,size_t nmemb,size_t size,int (* compare)(const void *,const void *))441 static void qsort_aligned(void *base, size_t nmemb, size_t size,
442 int (*compare)(const void *, const void *)) {
443
444 stack_entry stack[STACK_SIZE];
445 int stacktop=0;
446 char *first,*last;
447 char *pivot=malloc(size);
448 size_t trunc=TRUNC_aligned*size;
449 assert(pivot!=0);
450
451 first=(char*)base; last=first+(nmemb-1)*size;
452
453 if ((size_t)(last-first)>=trunc) {
454 char *ffirst=first,*llast=last;
455 while (1) {
456 /* Select pivot */
457 { char * mid=first+size*((last-first)/size >> 1);
458 Pivot(SWAP_aligned,size);
459 memcpy(pivot,mid,size);
460 }
461 /* Partition. */
462 Partition(SWAP_aligned,size);
463 /* Prepare to recurse/iterate. */
464 Recurse(trunc)
465 }
466 }
467 PreInsertion(SWAP_aligned,TRUNC_aligned,size);
468 Insertion(SWAP_aligned);
469 free(pivot);
470 }
471
qsort_words(void * base,size_t nmemb,int (* compare)(const void *,const void *))472 static void qsort_words(void *base, size_t nmemb,
473 int (*compare)(const void *, const void *)) {
474
475 stack_entry stack[STACK_SIZE];
476 int stacktop=0;
477 char *first,*last;
478 char *pivot=malloc(WORD_BYTES);
479 assert(pivot!=0);
480
481 first=(char*)base; last=first+(nmemb-1)*WORD_BYTES;
482
483 if (last-first>=TRUNC_words) {
484 char *ffirst=first, *llast=last;
485 while (1) {
486 #ifdef DEBUG_QSORT
487 fprintf(stderr,"Doing %d:%d: ",
488 (first-(char*)base)/WORD_BYTES,
489 (last-(char*)base)/WORD_BYTES);
490 #endif
491 /* Select pivot */
492 { char * mid=first+WORD_BYTES*((last-first) / (2*WORD_BYTES));
493 Pivot(SWAP_words,WORD_BYTES);
494 *(int*)pivot=*(int*)mid;
495 #ifdef DEBUG_QSORT
496 fprintf(stderr,"pivot = %p = #%lu = %d\n", mid, (unsigned long)(((int*)mid)-((int*)base)), *(int*)mid);
497 #endif
498 }
499 /* Partition. */
500 Partition(SWAP_words,WORD_BYTES);
501 #ifdef DEBUG_QSORT
502 fprintf(stderr, "after partitioning first=#%lu last=#%lu\n", (first-(char*)base)/4lu, (last-(char*)base)/4lu);
503 #endif
504 /* Prepare to recurse/iterate. */
505 Recurse(TRUNC_words)
506 }
507 }
508 PreInsertion(SWAP_words,TRUNC_words/WORD_BYTES,WORD_BYTES);
509 /* Now do insertion sort. */
510 last=((char*)base)+nmemb*WORD_BYTES;
511 for (first=((char*)base)+WORD_BYTES;first!=last;first+=WORD_BYTES) {
512 /* Find the right place for |first|. My apologies for var reuse */
513 int *pl=(int*)(first-WORD_BYTES),*pr=(int*)first;
514 *(int*)pivot=*(int*)first;
515 for (;compare(pl,pivot)>0;pr=pl,--pl) {
516 *pr=*pl; }
517 if (pr!=(int*)first) *pr=*(int*)pivot;
518 }
519 free(pivot);
520 }
521
522 /* ---------------------------------------------------------------------- */
523
qsortG(void * base,size_t nmemb,size_t size,int (* compare)(const void *,const void *))524 extern void qsortG(void *base, size_t nmemb, size_t size,
525 int (*compare)(const void *, const void *)) {
526
527 if (nmemb<=1) return;
528 if (((size_t)base|size)&(WORD_BYTES-1))
529 qsort_nonaligned(base,nmemb,size,compare);
530 else if (size!=WORD_BYTES)
531 qsort_aligned(base,nmemb,size,compare);
532 else
533 qsort_words(base,nmemb,compare);
534 }
535
536 #endif /* HAVE_QSORT */
537
538 /* vi: set ts=4 sw=4 expandtab: */
539
540