1 /*
2  * FreeRTOS Kernel V10.3.1
3  * Copyright (C) 2020 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * http://www.FreeRTOS.org
24  * http://aws.amazon.com/freertos
25  *
26  * 1 tab == 4 spaces!
27  */
28 
29 #ifndef INC_TASK_H
30 #define INC_TASK_H
31 
32 #ifndef INC_FREERTOS_H
33 #    error \
34         "include FreeRTOS.h must appear in source files before include task.h"
35 #endif
36 
37 #include "list.h"
38 
39 #ifdef __cplusplus
40 extern "C" {
41 #endif
42 
43 /*-----------------------------------------------------------
44  * MACROS AND DEFINITIONS
45  *----------------------------------------------------------*/
46 
47 #define tskKERNEL_VERSION_NUMBER "V10.3.1"
48 #define tskKERNEL_VERSION_MAJOR 10
49 #define tskKERNEL_VERSION_MINOR 3
50 #define tskKERNEL_VERSION_BUILD 1
51 
52 /* MPU region parameters passed in ulParameters
53  * of MemoryRegion_t struct. */
54 #define tskMPU_REGION_READ_ONLY (1UL << 0UL)
55 #define tskMPU_REGION_READ_WRITE (1UL << 1UL)
56 #define tskMPU_REGION_EXECUTE_NEVER (1UL << 2UL)
57 #define tskMPU_REGION_NORMAL_MEMORY (1UL << 3UL)
58 #define tskMPU_REGION_DEVICE_MEMORY (1UL << 4UL)
59 
60 /**
61  * task. h
62  *
63  * Type by which tasks are referenced.  For example, a call to xTaskCreate
64  * returns (via a pointer parameter) an TaskHandle_t variable that can then
65  * be used as a parameter to vTaskDelete to delete the task.
66  *
67  * \defgroup TaskHandle_t TaskHandle_t
68  * \ingroup Tasks
69  */
70 struct tskTaskControlBlock; /* The old naming convention is used to prevent
71                                breaking kernel aware debuggers. */
72 typedef struct tskTaskControlBlock *TaskHandle_t;
73 
74 /*
75  * Defines the prototype to which the application task hook function must
76  * conform.
77  */
78 typedef BaseType_t (*TaskHookFunction_t)(void *);
79 
80 /* Task states returned by eTaskGetState. */
81 typedef enum {
82     eRunning =
83         0, /* A task is querying the state of itself, so must be running. */
84     eReady, /* The task being queried is in a read or pending ready list. */
85     eBlocked, /* The task being queried is in the Blocked state. */
86     eSuspended, /* The task being queried is in the Suspended state, or is in
87                    the Blocked state with an infinite time out. */
88     eDeleted, /* The task being queried has been deleted, but its TCB has not
89                  yet been freed. */
90     eInvalid /* Used as an 'invalid state' value. */
91 } eTaskState;
92 
93 /* Actions that can be performed when vTaskNotify() is called. */
94 typedef enum {
95     eNoAction = 0, /* Notify the task without updating its notify value. */
96     eSetBits, /* Set bits in the task's notification value. */
97     eIncrement, /* Increment the task's notification value. */
98     eSetValueWithOverwrite, /* Set the task's notification value to a specific
99                                value even if the previous value has not yet been
100                                read by the task. */
101     eSetValueWithoutOverwrite /* Set the task's notification value if the
102                                  previous value has been read by the task. */
103 } eNotifyAction;
104 
105 /*
106  * Used internally only.
107  */
108 typedef struct xTIME_OUT {
109     BaseType_t xOverflowCount;
110     TickType_t xTimeOnEntering;
111 } TimeOut_t;
112 
113 /*
114  * Defines the memory ranges allocated to the task when an MPU is used.
115  */
116 typedef struct xMEMORY_REGION {
117     void *pvBaseAddress;
118     uint32_t ulLengthInBytes;
119     uint32_t ulParameters;
120 } MemoryRegion_t;
121 
122 /*
123  * Parameters required to create an MPU protected task.
124  */
125 typedef struct xTASK_PARAMETERS {
126     TaskFunction_t pvTaskCode;
127     const char *const pcName; /*lint !e971 Unqualified char types are allowed
128                                  for strings and single characters only. */
129     configSTACK_DEPTH_TYPE usStackDepth;
130     void *pvParameters;
131     UBaseType_t uxPriority;
132     StackType_t *puxStackBuffer;
133     MemoryRegion_t xRegions[portNUM_CONFIGURABLE_REGIONS];
134 #if ((portUSING_MPU_WRAPPERS == 1) && (configSUPPORT_STATIC_ALLOCATION == 1))
135     StaticTask_t *const pxTaskBuffer;
136 #endif
137 } TaskParameters_t;
138 
139 /* Used with the uxTaskGetSystemState() function to return the state of each
140 task in the system. */
141 typedef struct xTASK_STATUS {
142     TaskHandle_t xHandle; /* The handle of the task to which the rest of the
143                              information in the structure relates. */
144     const char *pcTaskName;			/* A pointer to the task's name.  This value will be invalid if the task was deleted since the structure was populated! */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
145     UBaseType_t xTaskNumber; /* A number unique to the task. */
146     eTaskState eCurrentState; /* The state in which the task existed when the
147                                  structure was populated. */
148     UBaseType_t
149         uxCurrentPriority; /* The priority at which the task was running (may be
150                               inherited) when the structure was populated. */
151     UBaseType_t
152         uxBasePriority; /* The priority to which the task will return if the
153                            task's current priority has been inherited to avoid
154                            unbounded priority inversion when obtaining a mutex.
155                            Only valid if configUSE_MUTEXES is defined as 1 in
156                            FreeRTOSConfig.h. */
157     uint32_t
158         ulRunTimeCounter; /* The total run time allocated to the task so far, as
159                              defined by the run time stats clock.  See
160                              http://www.freertos.org/rtos-run-time-stats.html.
161                              Only valid when configGENERATE_RUN_TIME_STATS is
162                              defined as 1 in FreeRTOSConfig.h. */
163     StackType_t *pxStackBase; /* Points to the lowest address of the task's
164                                  stack area. */
165     configSTACK_DEPTH_TYPE
166         usStackHighWaterMark; /* The minimum amount of stack space that has
167                                  remained for the task since the task was
168                                  created.  The closer this value is to zero the
169                                  closer the task has come to overflowing its
170                                  stack. */
171 } TaskStatus_t;
172 
173 /* Possible return values for eTaskConfirmSleepModeStatus(). */
174 typedef enum {
175     eAbortSleep = 0, /* A task has been made ready or a context switch pended
176                         since portSUPPORESS_TICKS_AND_SLEEP() was called - abort
177                         entering a sleep mode. */
178     eStandardSleep, /* Enter a sleep mode that will not last any longer than the
179                        expected idle time. */
180     eNoTasksWaitingTimeout /* No tasks are waiting for a timeout so it is safe
181                               to enter a sleep mode that can only be exited by
182                               an external interrupt. */
183 } eSleepModeStatus;
184 
185 /**
186  * Defines the priority used by the idle task.  This must not be modified.
187  *
188  * \ingroup TaskUtils
189  */
190 #define tskIDLE_PRIORITY ((UBaseType_t)0U)
191 
192 /**
193  * task. h
194  *
195  * Macro for forcing a context switch.
196  *
197  * \defgroup taskYIELD taskYIELD
198  * \ingroup SchedulerControl
199  */
200 #define taskYIELD() portYIELD()
201 
202 /**
203  * task. h
204  *
205  * Macro to mark the start of a critical code region.  Preemptive context
206  * switches cannot occur when in a critical region.
207  *
208  * NOTE: This may alter the stack (depending on the portable implementation)
209  * so must be used with care!
210  *
211  * \defgroup taskENTER_CRITICAL taskENTER_CRITICAL
212  * \ingroup SchedulerControl
213  */
214 #define taskENTER_CRITICAL() portENTER_CRITICAL()
215 #define taskENTER_CRITICAL_FROM_ISR() portSET_INTERRUPT_MASK_FROM_ISR()
216 
217 /**
218  * task. h
219  *
220  * Macro to mark the end of a critical code region.  Preemptive context
221  * switches cannot occur when in a critical region.
222  *
223  * NOTE: This may alter the stack (depending on the portable implementation)
224  * so must be used with care!
225  *
226  * \defgroup taskEXIT_CRITICAL taskEXIT_CRITICAL
227  * \ingroup SchedulerControl
228  */
229 #define taskEXIT_CRITICAL() portEXIT_CRITICAL()
230 #define taskEXIT_CRITICAL_FROM_ISR(x) portCLEAR_INTERRUPT_MASK_FROM_ISR(x)
231 /**
232  * task. h
233  *
234  * Macro to disable all maskable interrupts.
235  *
236  * \defgroup taskDISABLE_INTERRUPTS taskDISABLE_INTERRUPTS
237  * \ingroup SchedulerControl
238  */
239 #define taskDISABLE_INTERRUPTS() portDISABLE_INTERRUPTS()
240 
241 /**
242  * task. h
243  *
244  * Macro to enable microcontroller interrupts.
245  *
246  * \defgroup taskENABLE_INTERRUPTS taskENABLE_INTERRUPTS
247  * \ingroup SchedulerControl
248  */
249 #define taskENABLE_INTERRUPTS() portENABLE_INTERRUPTS()
250 
251 /* Definitions returned by xTaskGetSchedulerState().  taskSCHEDULER_SUSPENDED is
252 0 to generate more optimal code when configASSERT() is defined as the constant
253 is used in assert() statements. */
254 #define taskSCHEDULER_SUSPENDED ((BaseType_t)0)
255 #define taskSCHEDULER_NOT_STARTED ((BaseType_t)1)
256 #define taskSCHEDULER_RUNNING ((BaseType_t)2)
257 
258 /*-----------------------------------------------------------
259  * TASK CREATION API
260  *----------------------------------------------------------*/
261 
262 /**
263  * task. h
264  *<pre>
265  BaseType_t xTaskCreate(
266                               TaskFunction_t pvTaskCode,
267                               const char * const pcName,
268                               configSTACK_DEPTH_TYPE usStackDepth,
269                               void *pvParameters,
270                               UBaseType_t uxPriority,
271                               TaskHandle_t *pvCreatedTask
272                           );</pre>
273  *
274  * Create a new task and add it to the list of tasks that are ready to run.
275  *
276  * Internally, within the FreeRTOS implementation, tasks use two blocks of
277  * memory.  The first block is used to hold the task's data structures.  The
278  * second block is used by the task as its stack.  If a task is created using
279  * xTaskCreate() then both blocks of memory are automatically dynamically
280  * allocated inside the xTaskCreate() function.  (see
281  * http://www.freertos.org/a00111.html).  If a task is created using
282  * xTaskCreateStatic() then the application writer must provide the required
283  * memory.  xTaskCreateStatic() therefore allows a task to be created without
284  * using any dynamic memory allocation.
285  *
286  * See xTaskCreateStatic() for a version that does not use any dynamic memory
287  * allocation.
288  *
289  * xTaskCreate() can only be used to create a task that has unrestricted
290  * access to the entire microcontroller memory map.  Systems that include MPU
291  * support can alternatively create an MPU constrained task using
292  * xTaskCreateRestricted().
293  *
294  * @param pvTaskCode Pointer to the task entry function.  Tasks
295  * must be implemented to never return (i.e. continuous loop).
296  *
297  * @param pcName A descriptive name for the task.  This is mainly used to
298  * facilitate debugging.  Max length defined by configMAX_TASK_NAME_LEN -
299  default
300  * is 16.
301  *
302  * @param usStackDepth The size of the task stack specified as the number of
303  * variables the stack can hold - not the number of bytes.  For example, if
304  * the stack is 16 bits wide and usStackDepth is defined as 100, 200 bytes
305  * will be allocated for stack storage.
306  *
307  * @param pvParameters Pointer that will be used as the parameter for the task
308  * being created.
309  *
310  * @param uxPriority The priority at which the task should run.  Systems that
311  * include MPU support can optionally create tasks in a privileged (system)
312  * mode by setting bit portPRIVILEGE_BIT of the priority parameter.  For
313  * example, to create a privileged task at priority 2 the uxPriority parameter
314  * should be set to ( 2 | portPRIVILEGE_BIT ).
315  *
316  * @param pvCreatedTask Used to pass back a handle by which the created task
317  * can be referenced.
318  *
319  * @return pdPASS if the task was successfully created and added to a ready
320  * list, otherwise an error code defined in the file projdefs.h
321  *
322  * Example usage:
323    <pre>
324  // Task to be created.
325  void vTaskCode( void * pvParameters )
326  {
327      for( ;; )
328      {
329          // Task code goes here.
330      }
331  }
332 
333  // Function that creates a task.
334  void vOtherFunction( void )
335  {
336  static uint8_t ucParameterToPass;
337  TaskHandle_t xHandle = NULL;
338 
339      // Create the task, storing the handle.  Note that the passed parameter
340  ucParameterToPass
341      // must exist for the lifetime of the task, so in this case is declared
342  static.  If it was just an
343      // an automatic stack variable it might no longer exist, or at least have
344  been corrupted, by the time
345      // the new task attempts to access it.
346      xTaskCreate( vTaskCode, "NAME", STACK_SIZE, &ucParameterToPass,
347  tskIDLE_PRIORITY, &xHandle ); configASSERT( xHandle );
348 
349      // Use the handle to delete the task.
350      if( xHandle != NULL )
351      {
352         vTaskDelete( xHandle );
353      }
354  }
355    </pre>
356  * \defgroup xTaskCreate xTaskCreate
357  * \ingroup Tasks
358  */
359 #if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
360 BaseType_t xTaskCreate(
361     TaskFunction_t pxTaskCode,
362     const char *const pcName, /*lint !e971 Unqualified char types are allowed
363                                  for strings and single characters only. */
364     const configSTACK_DEPTH_TYPE usStackDepth,
365     void *const pvParameters,
366     UBaseType_t uxPriority,
367     TaskHandle_t *const pxCreatedTask) PRIVILEGED_FUNCTION;
368 #endif
369 
370 /**
371  * task. h
372  *<pre>
373  TaskHandle_t xTaskCreateStatic( TaskFunction_t pvTaskCode,
374                                  const char * const pcName,
375                                  uint32_t ulStackDepth,
376                                  void *pvParameters,
377                                  UBaseType_t uxPriority,
378                                  StackType_t *pxStackBuffer,
379                                  StaticTask_t *pxTaskBuffer );</pre>
380  *
381  * Create a new task and add it to the list of tasks that are ready to run.
382  *
383  * Internally, within the FreeRTOS implementation, tasks use two blocks of
384  * memory.  The first block is used to hold the task's data structures.  The
385  * second block is used by the task as its stack.  If a task is created using
386  * xTaskCreate() then both blocks of memory are automatically dynamically
387  * allocated inside the xTaskCreate() function.  (see
388  * http://www.freertos.org/a00111.html).  If a task is created using
389  * xTaskCreateStatic() then the application writer must provide the required
390  * memory.  xTaskCreateStatic() therefore allows a task to be created without
391  * using any dynamic memory allocation.
392  *
393  * @param pvTaskCode Pointer to the task entry function.  Tasks
394  * must be implemented to never return (i.e. continuous loop).
395  *
396  * @param pcName A descriptive name for the task.  This is mainly used to
397  * facilitate debugging.  The maximum length of the string is defined by
398  * configMAX_TASK_NAME_LEN in FreeRTOSConfig.h.
399  *
400  * @param ulStackDepth The size of the task stack specified as the number of
401  * variables the stack can hold - not the number of bytes.  For example, if
402  * the stack is 32-bits wide and ulStackDepth is defined as 100 then 400 bytes
403  * will be allocated for stack storage.
404  *
405  * @param pvParameters Pointer that will be used as the parameter for the task
406  * being created.
407  *
408  * @param uxPriority The priority at which the task will run.
409  *
410  * @param pxStackBuffer Must point to a StackType_t array that has at least
411  * ulStackDepth indexes - the array will then be used as the task's stack,
412  * removing the need for the stack to be allocated dynamically.
413  *
414  * @param pxTaskBuffer Must point to a variable of type StaticTask_t, which will
415  * then be used to hold the task's data structures, removing the need for the
416  * memory to be allocated dynamically.
417  *
418  * @return If neither pxStackBuffer or pxTaskBuffer are NULL, then the task will
419  * be created and a handle to the created task is returned.  If either
420  * pxStackBuffer or pxTaskBuffer are NULL then the task will not be created and
421  * NULL is returned.
422  *
423  * Example usage:
424    <pre>
425 
426     // Dimensions the buffer that the task being created will use as its stack.
427     // NOTE:  This is the number of words the stack will hold, not the number of
428     // bytes.  For example, if each stack item is 32-bits, and this is set to
429  100,
430     // then 400 bytes (100 * 32-bits) will be allocated.
431     #define STACK_SIZE 200
432 
433     // Structure that will hold the TCB of the task being created.
434     StaticTask_t xTaskBuffer;
435 
436     // Buffer that the task being created will use as its stack.  Note this is
437     // an array of StackType_t variables.  The size of StackType_t is dependent
438  on
439     // the RTOS port.
440     StackType_t xStack[ STACK_SIZE ];
441 
442     // Function that implements the task being created.
443     void vTaskCode( void * pvParameters )
444     {
445         // The parameter value is expected to be 1 as 1 is passed in the
446         // pvParameters value in the call to xTaskCreateStatic().
447         configASSERT( ( uint32_t ) pvParameters == 1UL );
448 
449         for( ;; )
450         {
451             // Task code goes here.
452         }
453     }
454 
455     // Function that creates a task.
456     void vOtherFunction( void )
457     {
458         TaskHandle_t xHandle = NULL;
459 
460         // Create the task without using any dynamic memory allocation.
461         xHandle = xTaskCreateStatic(
462                       vTaskCode,       // Function that implements the task.
463                       "NAME",          // Text name for the task.
464                       STACK_SIZE,      // Stack size in words, not bytes.
465                       ( void * ) 1,    // Parameter passed into the task.
466                       tskIDLE_PRIORITY,// Priority at which the task is created.
467                       xStack,          // Array to use as the task's stack.
468                       &xTaskBuffer );  // Variable to hold the task's data
469  structure.
470 
471         // puxStackBuffer and pxTaskBuffer were not NULL, so the task will have
472         // been created, and xHandle will be the task's handle.  Use the handle
473         // to suspend the task.
474         vTaskSuspend( xHandle );
475     }
476    </pre>
477  * \defgroup xTaskCreateStatic xTaskCreateStatic
478  * \ingroup Tasks
479  */
480 #if (configSUPPORT_STATIC_ALLOCATION == 1)
481 TaskHandle_t xTaskCreateStatic(
482     TaskFunction_t pxTaskCode,
483     const char *const pcName, /*lint !e971 Unqualified char types are allowed
484                                  for strings and single characters only. */
485     const uint32_t ulStackDepth,
486     void *const pvParameters,
487     UBaseType_t uxPriority,
488     StackType_t *const puxStackBuffer,
489     StaticTask_t *const pxTaskBuffer) PRIVILEGED_FUNCTION;
490 #endif /* configSUPPORT_STATIC_ALLOCATION */
491 
492 /**
493  * task. h
494  *<pre>
495  BaseType_t xTaskCreateRestricted( TaskParameters_t *pxTaskDefinition,
496 TaskHandle_t *pxCreatedTask );</pre>
497  *
498  * Only available when configSUPPORT_DYNAMIC_ALLOCATION is set to 1.
499  *
500  * xTaskCreateRestricted() should only be used in systems that include an MPU
501  * implementation.
502  *
503  * Create a new task and add it to the list of tasks that are ready to run.
504  * The function parameters define the memory regions and associated access
505  * permissions allocated to the task.
506  *
507  * See xTaskCreateRestrictedStatic() for a version that does not use any
508  * dynamic memory allocation.
509  *
510  * @param pxTaskDefinition Pointer to a structure that contains a member
511  * for each of the normal xTaskCreate() parameters (see the xTaskCreate() API
512  * documentation) plus an optional stack buffer and the memory region
513  * definitions.
514  *
515  * @param pxCreatedTask Used to pass back a handle by which the created task
516  * can be referenced.
517  *
518  * @return pdPASS if the task was successfully created and added to a ready
519  * list, otherwise an error code defined in the file projdefs.h
520  *
521  * Example usage:
522    <pre>
523 // Create an TaskParameters_t structure that defines the task to be created.
524 static const TaskParameters_t xCheckTaskParameters =
525 {
526     vATask,		// pvTaskCode - the function that implements the task.
527     "ATask",	// pcName - just a text name for the task to assist debugging.
528     100,		// usStackDepth	- the stack size DEFINED IN WORDS.
529     NULL,		// pvParameters - passed into the task function as the function
530 parameters. ( 1UL | portPRIVILEGE_BIT ),// uxPriority - task priority, set the
531 portPRIVILEGE_BIT if the task should run in a privileged state. cStackBuffer,//
532 puxStackBuffer - the buffer to be used as the task stack.
533 
534     // xRegions - Allocate up to three separate memory regions for access by
535     // the task, with appropriate access permissions.  Different processors have
536     // different memory alignment requirements - refer to the FreeRTOS
537 documentation
538     // for full information.
539     {
540         // Base address					Length	Parameters
541         { cReadWriteArray,				32,		portMPU_REGION_READ_WRITE },
542         { cReadOnlyArray,				32,		portMPU_REGION_READ_ONLY },
543         { cPrivilegedOnlyAccessArray,	128,
544 portMPU_REGION_PRIVILEGED_READ_WRITE }
545     }
546 };
547 
548 int main( void )
549 {
550 TaskHandle_t xHandle;
551 
552     // Create a task from the const structure defined above.  The task handle
553     // is requested (the second parameter is not NULL) but in this case just for
554     // demonstration purposes as its not actually used.
555     xTaskCreateRestricted( &xRegTest1Parameters, &xHandle );
556 
557     // Start the scheduler.
558     vTaskStartScheduler();
559 
560     // Will only get here if there was insufficient memory to create the idle
561     // and/or timer task.
562     for( ;; );
563 }
564    </pre>
565  * \defgroup xTaskCreateRestricted xTaskCreateRestricted
566  * \ingroup Tasks
567  */
568 #if (portUSING_MPU_WRAPPERS == 1)
569 BaseType_t xTaskCreateRestricted(
570     const TaskParameters_t *const pxTaskDefinition,
571     TaskHandle_t *pxCreatedTask) PRIVILEGED_FUNCTION;
572 #endif
573 
574 /**
575  * task. h
576  *<pre>
577  BaseType_t xTaskCreateRestrictedStatic( TaskParameters_t *pxTaskDefinition,
578 TaskHandle_t *pxCreatedTask );</pre>
579  *
580  * Only available when configSUPPORT_STATIC_ALLOCATION is set to 1.
581  *
582  * xTaskCreateRestrictedStatic() should only be used in systems that include an
583  * MPU implementation.
584  *
585  * Internally, within the FreeRTOS implementation, tasks use two blocks of
586  * memory.  The first block is used to hold the task's data structures.  The
587  * second block is used by the task as its stack.  If a task is created using
588  * xTaskCreateRestricted() then the stack is provided by the application writer,
589  * and the memory used to hold the task's data structure is automatically
590  * dynamically allocated inside the xTaskCreateRestricted() function.  If a task
591  * is created using xTaskCreateRestrictedStatic() then the application writer
592  * must provide the memory used to hold the task's data structures too.
593  * xTaskCreateRestrictedStatic() therefore allows a memory protected task to be
594  * created without using any dynamic memory allocation.
595  *
596  * @param pxTaskDefinition Pointer to a structure that contains a member
597  * for each of the normal xTaskCreate() parameters (see the xTaskCreate() API
598  * documentation) plus an optional stack buffer and the memory region
599  * definitions.  If configSUPPORT_STATIC_ALLOCATION is set to 1 the structure
600  * contains an additional member, which is used to point to a variable of type
601  * StaticTask_t - which is then used to hold the task's data structure.
602  *
603  * @param pxCreatedTask Used to pass back a handle by which the created task
604  * can be referenced.
605  *
606  * @return pdPASS if the task was successfully created and added to a ready
607  * list, otherwise an error code defined in the file projdefs.h
608  *
609  * Example usage:
610    <pre>
611 // Create an TaskParameters_t structure that defines the task to be created.
612 // The StaticTask_t variable is only included in the structure when
613 // configSUPPORT_STATIC_ALLOCATION is set to 1.  The PRIVILEGED_DATA macro can
614 // be used to force the variable into the RTOS kernel's privileged data area.
615 static PRIVILEGED_DATA StaticTask_t xTaskBuffer;
616 static const TaskParameters_t xCheckTaskParameters =
617 {
618     vATask,		// pvTaskCode - the function that implements the task.
619     "ATask",	// pcName - just a text name for the task to assist debugging.
620     100,		// usStackDepth	- the stack size DEFINED IN WORDS.
621     NULL,		// pvParameters - passed into the task function as the function
622 parameters. ( 1UL | portPRIVILEGE_BIT ),// uxPriority - task priority, set the
623 portPRIVILEGE_BIT if the task should run in a privileged state. cStackBuffer,//
624 puxStackBuffer - the buffer to be used as the task stack.
625 
626     // xRegions - Allocate up to three separate memory regions for access by
627     // the task, with appropriate access permissions.  Different processors have
628     // different memory alignment requirements - refer to the FreeRTOS
629 documentation
630     // for full information.
631     {
632         // Base address					Length	Parameters
633         { cReadWriteArray,				32,		portMPU_REGION_READ_WRITE },
634         { cReadOnlyArray,				32,		portMPU_REGION_READ_ONLY },
635         { cPrivilegedOnlyAccessArray,	128,
636 portMPU_REGION_PRIVILEGED_READ_WRITE }
637     }
638 
639     &xTaskBuffer; // Holds the task's data structure.
640 };
641 
642 int main( void )
643 {
644 TaskHandle_t xHandle;
645 
646     // Create a task from the const structure defined above.  The task handle
647     // is requested (the second parameter is not NULL) but in this case just for
648     // demonstration purposes as its not actually used.
649     xTaskCreateRestricted( &xRegTest1Parameters, &xHandle );
650 
651     // Start the scheduler.
652     vTaskStartScheduler();
653 
654     // Will only get here if there was insufficient memory to create the idle
655     // and/or timer task.
656     for( ;; );
657 }
658    </pre>
659  * \defgroup xTaskCreateRestrictedStatic xTaskCreateRestrictedStatic
660  * \ingroup Tasks
661  */
662 #if ((portUSING_MPU_WRAPPERS == 1) && (configSUPPORT_STATIC_ALLOCATION == 1))
663 BaseType_t xTaskCreateRestrictedStatic(
664     const TaskParameters_t *const pxTaskDefinition,
665     TaskHandle_t *pxCreatedTask) PRIVILEGED_FUNCTION;
666 #endif
667 
668 /**
669  * task. h
670  *<pre>
671  void vTaskAllocateMPURegions( TaskHandle_t xTask, const MemoryRegion_t * const
672 pxRegions );</pre>
673  *
674  * Memory regions are assigned to a restricted task when the task is created by
675  * a call to xTaskCreateRestricted().  These regions can be redefined using
676  * vTaskAllocateMPURegions().
677  *
678  * @param xTask The handle of the task being updated.
679  *
680  * @param xRegions A pointer to an MemoryRegion_t structure that contains the
681  * new memory region definitions.
682  *
683  * Example usage:
684    <pre>
685 // Define an array of MemoryRegion_t structures that configures an MPU region
686 // allowing read/write access for 1024 bytes starting at the beginning of the
687 // ucOneKByte array.  The other two of the maximum 3 definable regions are
688 // unused so set to zero.
689 static const MemoryRegion_t xAltRegions[ portNUM_CONFIGURABLE_REGIONS ] =
690 {
691     // Base address		Length		Parameters
692     { ucOneKByte,		1024,		portMPU_REGION_READ_WRITE },
693     { 0,				0,			0 },
694     { 0,				0,			0 }
695 };
696 
697 void vATask( void *pvParameters )
698 {
699     // This task was created such that it has access to certain regions of
700     // memory as defined by the MPU configuration.  At some point it is
701     // desired that these MPU regions are replaced with that defined in the
702     // xAltRegions const struct above.  Use a call to vTaskAllocateMPURegions()
703     // for this purpose.  NULL is used as the task handle to indicate that this
704     // function should modify the MPU regions of the calling task.
705     vTaskAllocateMPURegions( NULL, xAltRegions );
706 
707     // Now the task can continue its function, but from this point on can only
708     // access its stack and the ucOneKByte array (unless any other statically
709     // defined or shared regions have been declared elsewhere).
710 }
711    </pre>
712  * \defgroup xTaskCreateRestricted xTaskCreateRestricted
713  * \ingroup Tasks
714  */
715 void vTaskAllocateMPURegions(
716     TaskHandle_t xTask,
717     const MemoryRegion_t *const pxRegions) PRIVILEGED_FUNCTION;
718 
719 /**
720  * task. h
721  * <pre>void vTaskDelete( TaskHandle_t xTask );</pre>
722  *
723  * INCLUDE_vTaskDelete must be defined as 1 for this function to be available.
724  * See the configuration section for more information.
725  *
726  * Remove a task from the RTOS real time kernel's management.  The task being
727  * deleted will be removed from all ready, blocked, suspended and event lists.
728  *
729  * NOTE:  The idle task is responsible for freeing the kernel allocated
730  * memory from tasks that have been deleted.  It is therefore important that
731  * the idle task is not starved of microcontroller processing time if your
732  * application makes any calls to vTaskDelete ().  Memory allocated by the
733  * task code is not automatically freed, and should be freed before the task
734  * is deleted.
735  *
736  * See the demo application file death.c for sample code that utilises
737  * vTaskDelete ().
738  *
739  * @param xTask The handle of the task to be deleted.  Passing NULL will
740  * cause the calling task to be deleted.
741  *
742  * Example usage:
743    <pre>
744  void vOtherFunction( void )
745  {
746  TaskHandle_t xHandle;
747 
748      // Create the task, storing the handle.
749      xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY,
750  &xHandle );
751 
752      // Use the handle to delete the task.
753      vTaskDelete( xHandle );
754  }
755    </pre>
756  * \defgroup vTaskDelete vTaskDelete
757  * \ingroup Tasks
758  */
759 void vTaskDelete(TaskHandle_t xTaskToDelete) PRIVILEGED_FUNCTION;
760 
761 /*-----------------------------------------------------------
762  * TASK CONTROL API
763  *----------------------------------------------------------*/
764 
765 /**
766  * task. h
767  * <pre>void vTaskDelay( const TickType_t xTicksToDelay );</pre>
768  *
769  * Delay a task for a given number of ticks.  The actual time that the
770  * task remains blocked depends on the tick rate.  The constant
771  * portTICK_PERIOD_MS can be used to calculate real time from the tick
772  * rate - with the resolution of one tick period.
773  *
774  * INCLUDE_vTaskDelay must be defined as 1 for this function to be available.
775  * See the configuration section for more information.
776  *
777  *
778  * vTaskDelay() specifies a time at which the task wishes to unblock relative to
779  * the time at which vTaskDelay() is called.  For example, specifying a block
780  * period of 100 ticks will cause the task to unblock 100 ticks after
781  * vTaskDelay() is called.  vTaskDelay() does not therefore provide a good
782  method
783  * of controlling the frequency of a periodic task as the path taken through the
784  * code, as well as other task and interrupt activity, will effect the frequency
785  * at which vTaskDelay() gets called and therefore the time at which the task
786  * next executes.  See vTaskDelayUntil() for an alternative API function
787  designed
788  * to facilitate fixed frequency execution.  It does this by specifying an
789  * absolute time (rather than a relative time) at which the calling task should
790  * unblock.
791  *
792  * @param xTicksToDelay The amount of time, in tick periods, that
793  * the calling task should block.
794  *
795  * Example usage:
796 
797  void vTaskFunction( void * pvParameters )
798  {
799  // Block for 500ms.
800  const TickType_t xDelay = 500 / portTICK_PERIOD_MS;
801 
802      for( ;; )
803      {
804          // Simply toggle the LED every 500ms, blocking between each toggle.
805          vToggleLED();
806          vTaskDelay( xDelay );
807      }
808  }
809 
810  * \defgroup vTaskDelay vTaskDelay
811  * \ingroup TaskCtrl
812  */
813 void vTaskDelay(const TickType_t xTicksToDelay) PRIVILEGED_FUNCTION;
814 
815 /**
816  * task. h
817  * <pre>void vTaskDelayUntil( TickType_t *pxPreviousWakeTime, const TickType_t
818  xTimeIncrement );</pre>
819  *
820  * INCLUDE_vTaskDelayUntil must be defined as 1 for this function to be
821  available.
822  * See the configuration section for more information.
823  *
824  * Delay a task until a specified time.  This function can be used by periodic
825  * tasks to ensure a constant execution frequency.
826  *
827  * This function differs from vTaskDelay () in one important aspect:  vTaskDelay
828  () will
829  * cause a task to block for the specified number of ticks from the time
830  vTaskDelay () is
831  * called.  It is therefore difficult to use vTaskDelay () by itself to generate
832  a fixed
833  * execution frequency as the time between a task starting to execute and that
834  task
835  * calling vTaskDelay () may not be fixed [the task may take a different path
836  though the
837  * code between calls, or may get interrupted or preempted a different number of
838  times
839  * each time it executes].
840  *
841  * Whereas vTaskDelay () specifies a wake time relative to the time at which the
842  function
843  * is called, vTaskDelayUntil () specifies the absolute (exact) time at which it
844  wishes to
845  * unblock.
846  *
847  * The constant portTICK_PERIOD_MS can be used to calculate real time from the
848  tick
849  * rate - with the resolution of one tick period.
850  *
851  * @param pxPreviousWakeTime Pointer to a variable that holds the time at which
852  the
853  * task was last unblocked.  The variable must be initialised with the current
854  time
855  * prior to its first use (see the example below).  Following this the variable
856  is
857  * automatically updated within vTaskDelayUntil ().
858  *
859  * @param xTimeIncrement The cycle time period.  The task will be unblocked at
860  * time *pxPreviousWakeTime + xTimeIncrement.  Calling vTaskDelayUntil with the
861  * same xTimeIncrement parameter value will cause the task to execute with
862  * a fixed interface period.
863  *
864  * Example usage:
865    <pre>
866  // Perform an action every 10 ticks.
867  void vTaskFunction( void * pvParameters )
868  {
869  TickType_t xLastWakeTime;
870  const TickType_t xFrequency = 10;
871 
872      // Initialise the xLastWakeTime variable with the current time.
873      xLastWakeTime = xTaskGetTickCount ();
874      for( ;; )
875      {
876          // Wait for the next cycle.
877          vTaskDelayUntil( &xLastWakeTime, xFrequency );
878 
879          // Perform action here.
880      }
881  }
882    </pre>
883  * \defgroup vTaskDelayUntil vTaskDelayUntil
884  * \ingroup TaskCtrl
885  */
886 void vTaskDelayUntil(
887     TickType_t *const pxPreviousWakeTime,
888     const TickType_t xTimeIncrement) PRIVILEGED_FUNCTION;
889 
890 /**
891  * task. h
892  * <pre>BaseType_t xTaskAbortDelay( TaskHandle_t xTask );</pre>
893  *
894  * INCLUDE_xTaskAbortDelay must be defined as 1 in FreeRTOSConfig.h for this
895  * function to be available.
896  *
897  * A task will enter the Blocked state when it is waiting for an event.  The
898  * event it is waiting for can be a temporal event (waiting for a time), such
899  * as when vTaskDelay() is called, or an event on an object, such as when
900  * xQueueReceive() or ulTaskNotifyTake() is called.  If the handle of a task
901  * that is in the Blocked state is used in a call to xTaskAbortDelay() then the
902  * task will leave the Blocked state, and return from whichever function call
903  * placed the task into the Blocked state.
904  *
905  * There is no 'FromISR' version of this function as an interrupt would need to
906  * know which object a task was blocked on in order to know which actions to
907  * take.  For example, if the task was blocked on a queue the interrupt handler
908  * would then need to know if the queue was locked.
909  *
910  * @param xTask The handle of the task to remove from the Blocked state.
911  *
912  * @return If the task referenced by xTask was not in the Blocked state then
913  * pdFAIL is returned.  Otherwise pdPASS is returned.
914  *
915  * \defgroup xTaskAbortDelay xTaskAbortDelay
916  * \ingroup TaskCtrl
917  */
918 BaseType_t xTaskAbortDelay(TaskHandle_t xTask) PRIVILEGED_FUNCTION;
919 
920 /**
921  * task. h
922  * <pre>UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask );</pre>
923  *
924  * INCLUDE_uxTaskPriorityGet must be defined as 1 for this function to be
925  available.
926  * See the configuration section for more information.
927  *
928  * Obtain the priority of any task.
929  *
930  * @param xTask Handle of the task to be queried.  Passing a NULL
931  * handle results in the priority of the calling task being returned.
932  *
933  * @return The priority of xTask.
934  *
935  * Example usage:
936    <pre>
937  void vAFunction( void )
938  {
939  TaskHandle_t xHandle;
940 
941      // Create a task, storing the handle.
942      xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY,
943  &xHandle );
944 
945      // ...
946 
947      // Use the handle to obtain the priority of the created task.
948      // It was created with tskIDLE_PRIORITY, but may have changed
949      // it itself.
950      if( uxTaskPriorityGet( xHandle ) != tskIDLE_PRIORITY )
951      {
952          // The task has changed it's priority.
953      }
954 
955      // ...
956 
957      // Is our priority higher than the created task?
958      if( uxTaskPriorityGet( xHandle ) < uxTaskPriorityGet( NULL ) )
959      {
960          // Our priority (obtained using NULL handle) is higher.
961      }
962  }
963    </pre>
964  * \defgroup uxTaskPriorityGet uxTaskPriorityGet
965  * \ingroup TaskCtrl
966  */
967 UBaseType_t uxTaskPriorityGet(const TaskHandle_t xTask) PRIVILEGED_FUNCTION;
968 
969 /**
970  * task. h
971  * <pre>UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask );</pre>
972  *
973  * A version of uxTaskPriorityGet() that can be used from an ISR.
974  */
975 UBaseType_t uxTaskPriorityGetFromISR(const TaskHandle_t xTask)
976     PRIVILEGED_FUNCTION;
977 
978 /**
979  * task. h
980  * <pre>eTaskState eTaskGetState( TaskHandle_t xTask );</pre>
981  *
982  * INCLUDE_eTaskGetState must be defined as 1 for this function to be available.
983  * See the configuration section for more information.
984  *
985  * Obtain the state of any task.  States are encoded by the eTaskState
986  * enumerated type.
987  *
988  * @param xTask Handle of the task to be queried.
989  *
990  * @return The state of xTask at the time the function was called.  Note the
991  * state of the task might change between the function being called, and the
992  * functions return value being tested by the calling task.
993  */
994 eTaskState eTaskGetState(TaskHandle_t xTask) PRIVILEGED_FUNCTION;
995 
996 /**
997  * task. h
998  * <pre>void vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t *pxTaskStatus,
999  BaseType_t xGetFreeStackSpace, eTaskState eState );</pre>
1000  *
1001  * configUSE_TRACE_FACILITY must be defined as 1 for this function to be
1002  * available.  See the configuration section for more information.
1003  *
1004  * Populates a TaskStatus_t structure with information about a task.
1005  *
1006  * @param xTask Handle of the task being queried.  If xTask is NULL then
1007  * information will be returned about the calling task.
1008  *
1009  * @param pxTaskStatus A pointer to the TaskStatus_t structure that will be
1010  * filled with information about the task referenced by the handle passed using
1011  * the xTask parameter.
1012  *
1013  * @xGetFreeStackSpace The TaskStatus_t structure contains a member to report
1014  * the stack high water mark of the task being queried.  Calculating the stack
1015  * high water mark takes a relatively long time, and can make the system
1016  * temporarily unresponsive - so the xGetFreeStackSpace parameter is provided to
1017  * allow the high water mark checking to be skipped.  The high watermark value
1018  * will only be written to the TaskStatus_t structure if xGetFreeStackSpace is
1019  * not set to pdFALSE;
1020  *
1021  * @param eState The TaskStatus_t structure contains a member to report the
1022  * state of the task being queried.  Obtaining the task state is not as fast as
1023  * a simple assignment - so the eState parameter is provided to allow the state
1024  * information to be omitted from the TaskStatus_t structure.  To obtain state
1025  * information then set eState to eInvalid - otherwise the value passed in
1026  * eState will be reported as the task state in the TaskStatus_t structure.
1027  *
1028  * Example usage:
1029    <pre>
1030  void vAFunction( void )
1031  {
1032  TaskHandle_t xHandle;
1033  TaskStatus_t xTaskDetails;
1034 
1035     // Obtain the handle of a task from its name.
1036     xHandle = xTaskGetHandle( "Task_Name" );
1037 
1038     // Check the handle is not NULL.
1039     configASSERT( xHandle );
1040 
1041     // Use the handle to obtain further information about the task.
1042     vTaskGetInfo( xHandle,
1043                   &xTaskDetails,
1044                   pdTRUE, // Include the high water mark in xTaskDetails.
1045                   eInvalid ); // Include the task state in xTaskDetails.
1046  }
1047    </pre>
1048  * \defgroup vTaskGetInfo vTaskGetInfo
1049  * \ingroup TaskCtrl
1050  */
1051 void vTaskGetInfo(
1052     TaskHandle_t xTask,
1053     TaskStatus_t *pxTaskStatus,
1054     BaseType_t xGetFreeStackSpace,
1055     eTaskState eState) PRIVILEGED_FUNCTION;
1056 
1057 /**
1058  * task. h
1059  * <pre>void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority
1060  );</pre>
1061  *
1062  * INCLUDE_vTaskPrioritySet must be defined as 1 for this function to be
1063  available.
1064  * See the configuration section for more information.
1065  *
1066  * Set the priority of any task.
1067  *
1068  * A context switch will occur before the function returns if the priority
1069  * being set is higher than the currently executing task.
1070  *
1071  * @param xTask Handle to the task for which the priority is being set.
1072  * Passing a NULL handle results in the priority of the calling task being set.
1073  *
1074  * @param uxNewPriority The priority to which the task will be set.
1075  *
1076  * Example usage:
1077    <pre>
1078  void vAFunction( void )
1079  {
1080  TaskHandle_t xHandle;
1081 
1082      // Create a task, storing the handle.
1083      xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY,
1084  &xHandle );
1085 
1086      // ...
1087 
1088      // Use the handle to raise the priority of the created task.
1089      vTaskPrioritySet( xHandle, tskIDLE_PRIORITY + 1 );
1090 
1091      // ...
1092 
1093      // Use a NULL handle to raise our priority to the same value.
1094      vTaskPrioritySet( NULL, tskIDLE_PRIORITY + 1 );
1095  }
1096    </pre>
1097  * \defgroup vTaskPrioritySet vTaskPrioritySet
1098  * \ingroup TaskCtrl
1099  */
1100 void vTaskPrioritySet(TaskHandle_t xTask, UBaseType_t uxNewPriority)
1101     PRIVILEGED_FUNCTION;
1102 
1103 /**
1104  * task. h
1105  * <pre>void vTaskSuspend( TaskHandle_t xTaskToSuspend );</pre>
1106  *
1107  * INCLUDE_vTaskSuspend must be defined as 1 for this function to be available.
1108  * See the configuration section for more information.
1109  *
1110  * Suspend any task.  When suspended a task will never get any microcontroller
1111  * processing time, no matter what its priority.
1112  *
1113  * Calls to vTaskSuspend are not accumulative -
1114  * i.e. calling vTaskSuspend () twice on the same task still only requires one
1115  * call to vTaskResume () to ready the suspended task.
1116  *
1117  * @param xTaskToSuspend Handle to the task being suspended.  Passing a NULL
1118  * handle will cause the calling task to be suspended.
1119  *
1120  * Example usage:
1121    <pre>
1122  void vAFunction( void )
1123  {
1124  TaskHandle_t xHandle;
1125 
1126      // Create a task, storing the handle.
1127      xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY,
1128  &xHandle );
1129 
1130      // ...
1131 
1132      // Use the handle to suspend the created task.
1133      vTaskSuspend( xHandle );
1134 
1135      // ...
1136 
1137      // The created task will not run during this period, unless
1138      // another task calls vTaskResume( xHandle ).
1139 
1140      //...
1141 
1142 
1143      // Suspend ourselves.
1144      vTaskSuspend( NULL );
1145 
1146      // We cannot get here unless another task calls vTaskResume
1147      // with our handle as the parameter.
1148  }
1149    </pre>
1150  * \defgroup vTaskSuspend vTaskSuspend
1151  * \ingroup TaskCtrl
1152  */
1153 void vTaskSuspend(TaskHandle_t xTaskToSuspend) PRIVILEGED_FUNCTION;
1154 
1155 /**
1156  * task. h
1157  * <pre>void vTaskResume( TaskHandle_t xTaskToResume );</pre>
1158  *
1159  * INCLUDE_vTaskSuspend must be defined as 1 for this function to be available.
1160  * See the configuration section for more information.
1161  *
1162  * Resumes a suspended task.
1163  *
1164  * A task that has been suspended by one or more calls to vTaskSuspend ()
1165  * will be made available for running again by a single call to
1166  * vTaskResume ().
1167  *
1168  * @param xTaskToResume Handle to the task being readied.
1169  *
1170  * Example usage:
1171    <pre>
1172  void vAFunction( void )
1173  {
1174  TaskHandle_t xHandle;
1175 
1176      // Create a task, storing the handle.
1177      xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY,
1178  &xHandle );
1179 
1180      // ...
1181 
1182      // Use the handle to suspend the created task.
1183      vTaskSuspend( xHandle );
1184 
1185      // ...
1186 
1187      // The created task will not run during this period, unless
1188      // another task calls vTaskResume( xHandle ).
1189 
1190      //...
1191 
1192 
1193      // Resume the suspended task ourselves.
1194      vTaskResume( xHandle );
1195 
1196      // The created task will once again get microcontroller processing
1197      // time in accordance with its priority within the system.
1198  }
1199    </pre>
1200  * \defgroup vTaskResume vTaskResume
1201  * \ingroup TaskCtrl
1202  */
1203 void vTaskResume(TaskHandle_t xTaskToResume) PRIVILEGED_FUNCTION;
1204 
1205 /**
1206  * task. h
1207  * <pre>void xTaskResumeFromISR( TaskHandle_t xTaskToResume );</pre>
1208  *
1209  * INCLUDE_xTaskResumeFromISR must be defined as 1 for this function to be
1210  * available.  See the configuration section for more information.
1211  *
1212  * An implementation of vTaskResume() that can be called from within an ISR.
1213  *
1214  * A task that has been suspended by one or more calls to vTaskSuspend ()
1215  * will be made available for running again by a single call to
1216  * xTaskResumeFromISR ().
1217  *
1218  * xTaskResumeFromISR() should not be used to synchronise a task with an
1219  * interrupt if there is a chance that the interrupt could arrive prior to the
1220  * task being suspended - as this can lead to interrupts being missed. Use of a
1221  * semaphore as a synchronisation mechanism would avoid this eventuality.
1222  *
1223  * @param xTaskToResume Handle to the task being readied.
1224  *
1225  * @return pdTRUE if resuming the task should result in a context switch,
1226  * otherwise pdFALSE. This is used by the ISR to determine if a context switch
1227  * may be required following the ISR.
1228  *
1229  * \defgroup vTaskResumeFromISR vTaskResumeFromISR
1230  * \ingroup TaskCtrl
1231  */
1232 BaseType_t xTaskResumeFromISR(TaskHandle_t xTaskToResume) PRIVILEGED_FUNCTION;
1233 
1234 /*-----------------------------------------------------------
1235  * SCHEDULER CONTROL
1236  *----------------------------------------------------------*/
1237 
1238 /**
1239  * task. h
1240  * <pre>void vTaskStartScheduler( void );</pre>
1241  *
1242  * Starts the real time kernel tick processing.  After calling the kernel
1243  * has control over which tasks are executed and when.
1244  *
1245  * See the demo application file main.c for an example of creating
1246  * tasks and starting the kernel.
1247  *
1248  * Example usage:
1249    <pre>
1250  void vAFunction( void )
1251  {
1252      // Create at least one task before starting the kernel.
1253      xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
1254 
1255      // Start the real time kernel with preemption.
1256      vTaskStartScheduler ();
1257 
1258      // Will not get here unless a task calls vTaskEndScheduler ()
1259  }
1260    </pre>
1261  *
1262  * \defgroup vTaskStartScheduler vTaskStartScheduler
1263  * \ingroup SchedulerControl
1264  */
1265 void vTaskStartScheduler(void) PRIVILEGED_FUNCTION;
1266 
1267 /**
1268  * task. h
1269  * <pre>void vTaskEndScheduler( void );</pre>
1270  *
1271  * NOTE:  At the time of writing only the x86 real mode port, which runs on a PC
1272  * in place of DOS, implements this function.
1273  *
1274  * Stops the real time kernel tick.  All created tasks will be automatically
1275  * deleted and multitasking (either preemptive or cooperative) will
1276  * stop.  Execution then resumes from the point where vTaskStartScheduler ()
1277  * was called, as if vTaskStartScheduler () had just returned.
1278  *
1279  * See the demo application file main. c in the demo/PC directory for an
1280  * example that uses vTaskEndScheduler ().
1281  *
1282  * vTaskEndScheduler () requires an exit function to be defined within the
1283  * portable layer (see vPortEndScheduler () in port. c for the PC port).  This
1284  * performs hardware specific operations such as stopping the kernel tick.
1285  *
1286  * vTaskEndScheduler () will cause all of the resources allocated by the
1287  * kernel to be freed - but will not free resources allocated by application
1288  * tasks.
1289  *
1290  * Example usage:
1291    <pre>
1292  void vTaskCode( void * pvParameters )
1293  {
1294      for( ;; )
1295      {
1296          // Task code goes here.
1297 
1298          // At some point we want to end the real time kernel processing
1299          // so call ...
1300          vTaskEndScheduler ();
1301      }
1302  }
1303 
1304  void vAFunction( void )
1305  {
1306      // Create at least one task before starting the kernel.
1307      xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
1308 
1309      // Start the real time kernel with preemption.
1310      vTaskStartScheduler ();
1311 
1312      // Will only get here when the vTaskCode () task has called
1313      // vTaskEndScheduler ().  When we get here we are back to single task
1314      // execution.
1315  }
1316    </pre>
1317  *
1318  * \defgroup vTaskEndScheduler vTaskEndScheduler
1319  * \ingroup SchedulerControl
1320  */
1321 void vTaskEndScheduler(void) PRIVILEGED_FUNCTION;
1322 
1323 /**
1324  * task. h
1325  * <pre>void vTaskSuspendAll( void );</pre>
1326  *
1327  * Suspends the scheduler without disabling interrupts.  Context switches will
1328  * not occur while the scheduler is suspended.
1329  *
1330  * After calling vTaskSuspendAll () the calling task will continue to execute
1331  * without risk of being swapped out until a call to xTaskResumeAll () has been
1332  * made.
1333  *
1334  * API functions that have the potential to cause a context switch (for example,
1335  * vTaskDelayUntil(), xQueueSend(), etc.) must not be called while the scheduler
1336  * is suspended.
1337  *
1338  * Example usage:
1339    <pre>
1340  void vTask1( void * pvParameters )
1341  {
1342      for( ;; )
1343      {
1344          // Task code goes here.
1345 
1346          // ...
1347 
1348          // At some point the task wants to perform a long operation during
1349          // which it does not want to get swapped out.  It cannot use
1350          // taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
1351          // operation may cause interrupts to be missed - including the
1352          // ticks.
1353 
1354          // Prevent the real time kernel swapping out the task.
1355          vTaskSuspendAll ();
1356 
1357          // Perform the operation here.  There is no need to use critical
1358          // sections as we have all the microcontroller processing time.
1359          // During this time interrupts will still operate and the kernel
1360          // tick count will be maintained.
1361 
1362          // ...
1363 
1364          // The operation is complete.  Restart the kernel.
1365          xTaskResumeAll ();
1366      }
1367  }
1368    </pre>
1369  * \defgroup vTaskSuspendAll vTaskSuspendAll
1370  * \ingroup SchedulerControl
1371  */
1372 void vTaskSuspendAll(void) PRIVILEGED_FUNCTION;
1373 
1374 /**
1375  * task. h
1376  * <pre>BaseType_t xTaskResumeAll( void );</pre>
1377  *
1378  * Resumes scheduler activity after it was suspended by a call to
1379  * vTaskSuspendAll().
1380  *
1381  * xTaskResumeAll() only resumes the scheduler.  It does not unsuspend tasks
1382  * that were previously suspended by a call to vTaskSuspend().
1383  *
1384  * @return If resuming the scheduler caused a context switch then pdTRUE is
1385  *		  returned, otherwise pdFALSE is returned.
1386  *
1387  * Example usage:
1388    <pre>
1389  void vTask1( void * pvParameters )
1390  {
1391      for( ;; )
1392      {
1393          // Task code goes here.
1394 
1395          // ...
1396 
1397          // At some point the task wants to perform a long operation during
1398          // which it does not want to get swapped out.  It cannot use
1399          // taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
1400          // operation may cause interrupts to be missed - including the
1401          // ticks.
1402 
1403          // Prevent the real time kernel swapping out the task.
1404          vTaskSuspendAll ();
1405 
1406          // Perform the operation here.  There is no need to use critical
1407          // sections as we have all the microcontroller processing time.
1408          // During this time interrupts will still operate and the real
1409          // time kernel tick count will be maintained.
1410 
1411          // ...
1412 
1413          // The operation is complete.  Restart the kernel.  We want to force
1414          // a context switch - but there is no point if resuming the scheduler
1415          // caused a context switch already.
1416          if( !xTaskResumeAll () )
1417          {
1418               taskYIELD ();
1419          }
1420      }
1421  }
1422    </pre>
1423  * \defgroup xTaskResumeAll xTaskResumeAll
1424  * \ingroup SchedulerControl
1425  */
1426 BaseType_t xTaskResumeAll(void) PRIVILEGED_FUNCTION;
1427 
1428 /*-----------------------------------------------------------
1429  * TASK UTILITIES
1430  *----------------------------------------------------------*/
1431 
1432 /**
1433  * task. h
1434  * <PRE>TickType_t xTaskGetTickCount( void );</PRE>
1435  *
1436  * @return The count of ticks since vTaskStartScheduler was called.
1437  *
1438  * \defgroup xTaskGetTickCount xTaskGetTickCount
1439  * \ingroup TaskUtils
1440  */
1441 TickType_t xTaskGetTickCount(void) PRIVILEGED_FUNCTION;
1442 
1443 /**
1444  * task. h
1445  * <PRE>TickType_t xTaskGetTickCountFromISR( void );</PRE>
1446  *
1447  * @return The count of ticks since vTaskStartScheduler was called.
1448  *
1449  * This is a version of xTaskGetTickCount() that is safe to be called from an
1450  * ISR - provided that TickType_t is the natural word size of the
1451  * microcontroller being used or interrupt nesting is either not supported or
1452  * not being used.
1453  *
1454  * \defgroup xTaskGetTickCountFromISR xTaskGetTickCountFromISR
1455  * \ingroup TaskUtils
1456  */
1457 TickType_t xTaskGetTickCountFromISR(void) PRIVILEGED_FUNCTION;
1458 
1459 /**
1460  * task. h
1461  * <PRE>uint16_t uxTaskGetNumberOfTasks( void );</PRE>
1462  *
1463  * @return The number of tasks that the real time kernel is currently managing.
1464  * This includes all ready, blocked and suspended tasks.  A task that
1465  * has been deleted but not yet freed by the idle task will also be
1466  * included in the count.
1467  *
1468  * \defgroup uxTaskGetNumberOfTasks uxTaskGetNumberOfTasks
1469  * \ingroup TaskUtils
1470  */
1471 UBaseType_t uxTaskGetNumberOfTasks(void) PRIVILEGED_FUNCTION;
1472 
1473 /**
1474  * task. h
1475  * <PRE>char *pcTaskGetName( TaskHandle_t xTaskToQuery );</PRE>
1476  *
1477  * @return The text (human readable) name of the task referenced by the handle
1478  * xTaskToQuery.  A task can query its own name by either passing in its own
1479  * handle, or by setting xTaskToQuery to NULL.
1480  *
1481  * \defgroup pcTaskGetName pcTaskGetName
1482  * \ingroup TaskUtils
1483  */
1484 char *pcTaskGetName(TaskHandle_t xTaskToQuery)
1485     PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for
1486                             strings and single characters only. */
1487 
1488 /**
1489  * task. h
1490  * <PRE>TaskHandle_t xTaskGetHandle( const char *pcNameToQuery );</PRE>
1491  *
1492  * NOTE:  This function takes a relatively long time to complete and should be
1493  * used sparingly.
1494  *
1495  * @return The handle of the task that has the human readable name
1496  * pcNameToQuery. NULL is returned if no matching name is found.
1497  * INCLUDE_xTaskGetHandle must be set to 1 in FreeRTOSConfig.h for
1498  * pcTaskGetHandle() to be available.
1499  *
1500  * \defgroup pcTaskGetHandle pcTaskGetHandle
1501  * \ingroup TaskUtils
1502  */
1503 TaskHandle_t xTaskGetHandle(const char *pcNameToQuery)
1504     PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for
1505                             strings and single characters only. */
1506 
1507 /**
1508  * task.h
1509  * <PRE>UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask );</PRE>
1510  *
1511  * INCLUDE_uxTaskGetStackHighWaterMark must be set to 1 in FreeRTOSConfig.h for
1512  * this function to be available.
1513  *
1514  * Returns the high water mark of the stack associated with xTask.  That is,
1515  * the minimum free stack space there has been (in words, so on a 32 bit machine
1516  * a value of 1 means 4 bytes) since the task started.  The smaller the returned
1517  * number the closer the task has come to overflowing its stack.
1518  *
1519  * uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
1520  * same except for their return type.  Using configSTACK_DEPTH_TYPE allows the
1521  * user to determine the return type.  It gets around the problem of the value
1522  * overflowing on 8-bit types without breaking backward compatibility for
1523  * applications that expect an 8-bit return type.
1524  *
1525  * @param xTask Handle of the task associated with the stack to be checked.
1526  * Set xTask to NULL to check the stack of the calling task.
1527  *
1528  * @return The smallest amount of free stack space there has been (in words, so
1529  * actual spaces on the stack rather than bytes) since the task referenced by
1530  * xTask was created.
1531  */
1532 UBaseType_t uxTaskGetStackHighWaterMark(TaskHandle_t xTask) PRIVILEGED_FUNCTION;
1533 
1534 /**
1535  * task.h
1536  * <PRE>configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask
1537  * );</PRE>
1538  *
1539  * INCLUDE_uxTaskGetStackHighWaterMark2 must be set to 1 in FreeRTOSConfig.h for
1540  * this function to be available.
1541  *
1542  * Returns the high water mark of the stack associated with xTask.  That is,
1543  * the minimum free stack space there has been (in words, so on a 32 bit machine
1544  * a value of 1 means 4 bytes) since the task started.  The smaller the returned
1545  * number the closer the task has come to overflowing its stack.
1546  *
1547  * uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
1548  * same except for their return type.  Using configSTACK_DEPTH_TYPE allows the
1549  * user to determine the return type.  It gets around the problem of the value
1550  * overflowing on 8-bit types without breaking backward compatibility for
1551  * applications that expect an 8-bit return type.
1552  *
1553  * @param xTask Handle of the task associated with the stack to be checked.
1554  * Set xTask to NULL to check the stack of the calling task.
1555  *
1556  * @return The smallest amount of free stack space there has been (in words, so
1557  * actual spaces on the stack rather than bytes) since the task referenced by
1558  * xTask was created.
1559  */
1560 configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2(TaskHandle_t xTask)
1561     PRIVILEGED_FUNCTION;
1562 
1563 /* When using trace macros it is sometimes necessary to include task.h before
1564 FreeRTOS.h.  When this is done TaskHookFunction_t will not yet have been
1565 defined, so the following two prototypes will cause a compilation error.  This
1566 can be fixed by simply guarding against the inclusion of these two prototypes
1567 unless they are explicitly required by the configUSE_APPLICATION_TASK_TAG
1568 configuration constant. */
1569 #ifdef configUSE_APPLICATION_TASK_TAG
1570 #    if configUSE_APPLICATION_TASK_TAG == 1
1571 /**
1572  * task.h
1573  * <pre>void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t
1574  * pxHookFunction );</pre>
1575  *
1576  * Sets pxHookFunction to be the task hook function used by the task xTask.
1577  * Passing xTask as NULL has the effect of setting the calling tasks hook
1578  * function.
1579  */
1580 void vTaskSetApplicationTaskTag(
1581     TaskHandle_t xTask,
1582     TaskHookFunction_t pxHookFunction) PRIVILEGED_FUNCTION;
1583 
1584 /**
1585  * task.h
1586  * <pre>void xTaskGetApplicationTaskTag( TaskHandle_t xTask );</pre>
1587  *
1588  * Returns the pxHookFunction value assigned to the task xTask.  Do not
1589  * call from an interrupt service routine - call
1590  * xTaskGetApplicationTaskTagFromISR() instead.
1591  */
1592 TaskHookFunction_t xTaskGetApplicationTaskTag(TaskHandle_t xTask)
1593     PRIVILEGED_FUNCTION;
1594 
1595 /**
1596  * task.h
1597  * <pre>void xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask );</pre>
1598  *
1599  * Returns the pxHookFunction value assigned to the task xTask.  Can
1600  * be called from an interrupt service routine.
1601  */
1602 TaskHookFunction_t xTaskGetApplicationTaskTagFromISR(TaskHandle_t xTask)
1603     PRIVILEGED_FUNCTION;
1604 #    endif /* configUSE_APPLICATION_TASK_TAG ==1 */
1605 #endif /* ifdef configUSE_APPLICATION_TASK_TAG */
1606 
1607 #if (configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0)
1608 
1609 /* Each task contains an array of pointers that is dimensioned by the
1610 configNUM_THREAD_LOCAL_STORAGE_POINTERS setting in FreeRTOSConfig.h.  The
1611 kernel does not use the pointers itself, so the application writer can use
1612 the pointers for any purpose they wish.  The following two functions are
1613 used to set and query a pointer respectively. */
1614 void vTaskSetThreadLocalStoragePointer(
1615     TaskHandle_t xTaskToSet,
1616     BaseType_t xIndex,
1617     void *pvValue) PRIVILEGED_FUNCTION;
1618 void *pvTaskGetThreadLocalStoragePointer(
1619     TaskHandle_t xTaskToQuery,
1620     BaseType_t xIndex) PRIVILEGED_FUNCTION;
1621 
1622 #endif
1623 
1624 /**
1625  * task.h
1626  * <pre>BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void
1627  * *pvParameter );</pre>
1628  *
1629  * Calls the hook function associated with xTask.  Passing xTask as NULL has
1630  * the effect of calling the Running tasks (the calling task) hook function.
1631  *
1632  * pvParameter is passed to the hook function for the task to interpret as it
1633  * wants.  The return value is the value returned by the task hook function
1634  * registered by the user.
1635  */
1636 BaseType_t xTaskCallApplicationTaskHook(TaskHandle_t xTask, void *pvParameter)
1637     PRIVILEGED_FUNCTION;
1638 
1639 /**
1640  * xTaskGetIdleTaskHandle() is only available if
1641  * INCLUDE_xTaskGetIdleTaskHandle is set to 1 in FreeRTOSConfig.h.
1642  *
1643  * Simply returns the handle of the idle task.  It is not valid to call
1644  * xTaskGetIdleTaskHandle() before the scheduler has been started.
1645  */
1646 TaskHandle_t xTaskGetIdleTaskHandle(void) PRIVILEGED_FUNCTION;
1647 
1648 /**
1649  * configUSE_TRACE_FACILITY must be defined as 1 in FreeRTOSConfig.h for
1650  * uxTaskGetSystemState() to be available.
1651  *
1652  * uxTaskGetSystemState() populates an TaskStatus_t structure for each task in
1653  * the system.  TaskStatus_t structures contain, among other things, members
1654  * for the task handle, task name, task priority, task state, and total amount
1655  * of run time consumed by the task.  See the TaskStatus_t structure
1656  * definition in this file for the full member list.
1657  *
1658  * NOTE:  This function is intended for debugging use only as its use results in
1659  * the scheduler remaining suspended for an extended period.
1660  *
1661  * @param pxTaskStatusArray A pointer to an array of TaskStatus_t structures.
1662  * The array must contain at least one TaskStatus_t structure for each task
1663  * that is under the control of the RTOS.  The number of tasks under the control
1664  * of the RTOS can be determined using the uxTaskGetNumberOfTasks() API
1665  function.
1666  *
1667  * @param uxArraySize The size of the array pointed to by the pxTaskStatusArray
1668  * parameter.  The size is specified as the number of indexes in the array, or
1669  * the number of TaskStatus_t structures contained in the array, not by the
1670  * number of bytes in the array.
1671  *
1672  * @param pulTotalRunTime If configGENERATE_RUN_TIME_STATS is set to 1 in
1673  * FreeRTOSConfig.h then *pulTotalRunTime is set by uxTaskGetSystemState() to
1674  the
1675  * total run time (as defined by the run time stats clock, see
1676  * http://www.freertos.org/rtos-run-time-stats.html) since the target booted.
1677  * pulTotalRunTime can be set to NULL to omit the total run time information.
1678  *
1679  * @return The number of TaskStatus_t structures that were populated by
1680  * uxTaskGetSystemState().  This should equal the number returned by the
1681  * uxTaskGetNumberOfTasks() API function, but will be zero if the value passed
1682  * in the uxArraySize parameter was too small.
1683  *
1684  * Example usage:
1685    <pre>
1686     // This example demonstrates how a human readable table of run time stats
1687     // information is generated from raw data provided by
1688  uxTaskGetSystemState().
1689     // The human readable table is written to pcWriteBuffer
1690     void vTaskGetRunTimeStats( char *pcWriteBuffer )
1691     {
1692     TaskStatus_t *pxTaskStatusArray;
1693     volatile UBaseType_t uxArraySize, x;
1694     uint32_t ulTotalRunTime, ulStatsAsPercentage;
1695 
1696         // Make sure the write buffer does not contain a string.
1697         *pcWriteBuffer = 0x00;
1698 
1699         // Take a snapshot of the number of tasks in case it changes while this
1700         // function is executing.
1701         uxArraySize = uxTaskGetNumberOfTasks();
1702 
1703         // Allocate a TaskStatus_t structure for each task.  An array could be
1704         // allocated statically at compile time.
1705         pxTaskStatusArray = pvPortMalloc( uxArraySize * sizeof( TaskStatus_t )
1706  );
1707 
1708         if( pxTaskStatusArray != NULL )
1709         {
1710             // Generate raw status information about each task.
1711             uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize,
1712  &ulTotalRunTime );
1713 
1714             // For percentage calculations.
1715             ulTotalRunTime /= 100UL;
1716 
1717             // Avoid divide by zero errors.
1718             if( ulTotalRunTime > 0 )
1719             {
1720                 // For each populated position in the pxTaskStatusArray array,
1721                 // format the raw data as human readable ASCII data
1722                 for( x = 0; x < uxArraySize; x++ )
1723                 {
1724                     // What percentage of the total run time has the task used?
1725                     // This will always be rounded down to the nearest integer.
1726                     // ulTotalRunTimeDiv100 has already been divided by 100.
1727                     ulStatsAsPercentage = pxTaskStatusArray[ x
1728  ].ulRunTimeCounter / ulTotalRunTime;
1729 
1730                     if( ulStatsAsPercentage > 0UL )
1731                     {
1732                         sprintf( pcWriteBuffer, "%s\t\t%lu\t\t%lu%%\r\n",
1733  pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter,
1734  ulStatsAsPercentage );
1735                     }
1736                     else
1737                     {
1738                         // If the percentage is zero here then the task has
1739                         // consumed less than 1% of the total run time.
1740                         sprintf( pcWriteBuffer, "%s\t\t%lu\t\t<1%%\r\n",
1741  pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter );
1742                     }
1743 
1744                     pcWriteBuffer += strlen( ( char * ) pcWriteBuffer );
1745                 }
1746             }
1747 
1748             // The array is no longer needed, free the memory it consumes.
1749             vPortFree( pxTaskStatusArray );
1750         }
1751     }
1752     </pre>
1753  */
1754 UBaseType_t uxTaskGetSystemState(
1755     TaskStatus_t *const pxTaskStatusArray,
1756     const UBaseType_t uxArraySize,
1757     uint32_t *const pulTotalRunTime) PRIVILEGED_FUNCTION;
1758 
1759 /**
1760  * task. h
1761  * <PRE>void vTaskList( char *pcWriteBuffer );</PRE>
1762  *
1763  * configUSE_TRACE_FACILITY and configUSE_STATS_FORMATTING_FUNCTIONS must
1764  * both be defined as 1 for this function to be available.  See the
1765  * configuration section of the FreeRTOS.org website for more information.
1766  *
1767  * NOTE 1: This function will disable interrupts for its duration.  It is
1768  * not intended for normal application runtime use but as a debug aid.
1769  *
1770  * Lists all the current tasks, along with their current state and stack
1771  * usage high water mark.
1772  *
1773  * Tasks are reported as blocked ('B'), ready ('R'), deleted ('D') or
1774  * suspended ('S').
1775  *
1776  * PLEASE NOTE:
1777  *
1778  * This function is provided for convenience only, and is used by many of the
1779  * demo applications.  Do not consider it to be part of the scheduler.
1780  *
1781  * vTaskList() calls uxTaskGetSystemState(), then formats part of the
1782  * uxTaskGetSystemState() output into a human readable table that displays task
1783  * names, states and stack usage.
1784  *
1785  * vTaskList() has a dependency on the sprintf() C library function that might
1786  * bloat the code size, use a lot of stack, and provide different results on
1787  * different platforms.  An alternative, tiny, third party, and limited
1788  * functionality implementation of sprintf() is provided in many of the
1789  * FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note
1790  * printf-stdarg.c does not provide a full snprintf() implementation!).
1791  *
1792  * It is recommended that production systems call uxTaskGetSystemState()
1793  * directly to get access to raw stats data, rather than indirectly through a
1794  * call to vTaskList().
1795  *
1796  * @param pcWriteBuffer A buffer into which the above mentioned details
1797  * will be written, in ASCII form.  This buffer is assumed to be large
1798  * enough to contain the generated report.  Approximately 40 bytes per
1799  * task should be sufficient.
1800  *
1801  * \defgroup vTaskList vTaskList
1802  * \ingroup TaskUtils
1803  */
1804 void vTaskList(char *pcWriteBuffer)
1805     PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for
1806                             strings and single characters only. */
1807 
1808 /**
1809  * task. h
1810  * <PRE>void vTaskGetRunTimeStats( char *pcWriteBuffer );</PRE>
1811  *
1812  * configGENERATE_RUN_TIME_STATS and configUSE_STATS_FORMATTING_FUNCTIONS
1813  * must both be defined as 1 for this function to be available.  The application
1814  * must also then provide definitions for
1815  * portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and portGET_RUN_TIME_COUNTER_VALUE()
1816  * to configure a peripheral timer/counter and return the timers current count
1817  * value respectively.  The counter should be at least 10 times the frequency of
1818  * the tick count.
1819  *
1820  * NOTE 1: This function will disable interrupts for its duration.  It is
1821  * not intended for normal application runtime use but as a debug aid.
1822  *
1823  * Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total
1824  * accumulated execution time being stored for each task.  The resolution
1825  * of the accumulated time value depends on the frequency of the timer
1826  * configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro.
1827  * Calling vTaskGetRunTimeStats() writes the total execution time of each
1828  * task into a buffer, both as an absolute count value and as a percentage
1829  * of the total system execution time.
1830  *
1831  * NOTE 2:
1832  *
1833  * This function is provided for convenience only, and is used by many of the
1834  * demo applications.  Do not consider it to be part of the scheduler.
1835  *
1836  * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part of the
1837  * uxTaskGetSystemState() output into a human readable table that displays the
1838  * amount of time each task has spent in the Running state in both absolute and
1839  * percentage terms.
1840  *
1841  * vTaskGetRunTimeStats() has a dependency on the sprintf() C library function
1842  * that might bloat the code size, use a lot of stack, and provide different
1843  * results on different platforms.  An alternative, tiny, third party, and
1844  * limited functionality implementation of sprintf() is provided in many of the
1845  * FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note
1846  * printf-stdarg.c does not provide a full snprintf() implementation!).
1847  *
1848  * It is recommended that production systems call uxTaskGetSystemState()
1849  * directly to get access to raw stats data, rather than indirectly through a
1850  * call to vTaskGetRunTimeStats().
1851  *
1852  * @param pcWriteBuffer A buffer into which the execution times will be
1853  * written, in ASCII form.  This buffer is assumed to be large enough to
1854  * contain the generated report.  Approximately 40 bytes per task should
1855  * be sufficient.
1856  *
1857  * \defgroup vTaskGetRunTimeStats vTaskGetRunTimeStats
1858  * \ingroup TaskUtils
1859  */
1860 void vTaskGetRunTimeStats(char *pcWriteBuffer)
1861     PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for
1862                             strings and single characters only. */
1863 
1864 /**
1865  * task. h
1866  * <PRE>uint32_t ulTaskGetIdleRunTimeCounter( void );</PRE>
1867  *
1868  * configGENERATE_RUN_TIME_STATS and configUSE_STATS_FORMATTING_FUNCTIONS
1869  * must both be defined as 1 for this function to be available.  The application
1870  * must also then provide definitions for
1871  * portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and portGET_RUN_TIME_COUNTER_VALUE()
1872  * to configure a peripheral timer/counter and return the timers current count
1873  * value respectively.  The counter should be at least 10 times the frequency of
1874  * the tick count.
1875  *
1876  * Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total
1877  * accumulated execution time being stored for each task.  The resolution
1878  * of the accumulated time value depends on the frequency of the timer
1879  * configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro.
1880  * While uxTaskGetSystemState() and vTaskGetRunTimeStats() writes the total
1881  * execution time of each task into a buffer, ulTaskGetIdleRunTimeCounter()
1882  * returns the total execution time of just the idle task.
1883  *
1884  * @return The total run time of the idle task.  This is the amount of time the
1885  * idle task has actually been executing.  The unit of time is dependent on the
1886  * frequency configured using the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and
1887  * portGET_RUN_TIME_COUNTER_VALUE() macros.
1888  *
1889  * \defgroup ulTaskGetIdleRunTimeCounter ulTaskGetIdleRunTimeCounter
1890  * \ingroup TaskUtils
1891  */
1892 uint32_t ulTaskGetIdleRunTimeCounter(void) PRIVILEGED_FUNCTION;
1893 
1894 /**
1895  * task. h
1896  * <PRE>BaseType_t xTaskNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue,
1897  * eNotifyAction eAction );</PRE>
1898  *
1899  * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
1900  * function to be available.
1901  *
1902  * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
1903  * "notification value", which is a 32-bit unsigned integer (uint32_t).
1904  *
1905  * Events can be sent to a task using an intermediary object.  Examples of such
1906  * objects are queues, semaphores, mutexes and event groups.  Task notifications
1907  * are a method of sending an event directly to a task without the need for such
1908  * an intermediary object.
1909  *
1910  * A notification sent to a task can optionally perform an action, such as
1911  * update, overwrite or increment the task's notification value.  In that way
1912  * task notifications can be used to send data to a task, or be used as light
1913  * weight and fast binary or counting semaphores.
1914  *
1915  * A notification sent to a task will remain pending until it is cleared by the
1916  * task calling xTaskNotifyWait() or ulTaskNotifyTake().  If the task was
1917  * already in the Blocked state to wait for a notification when the notification
1918  * arrives then the task will automatically be removed from the Blocked state
1919  * (unblocked) and the notification cleared.
1920  *
1921  * A task can use xTaskNotifyWait() to [optionally] block to wait for a
1922  * notification to be pending, or ulTaskNotifyTake() to [optionally] block
1923  * to wait for its notification value to have a non-zero value.  The task does
1924  * not consume any CPU time while it is in the Blocked state.
1925  *
1926  * See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
1927  *
1928  * @param xTaskToNotify The handle of the task being notified.  The handle to a
1929  * task can be returned from the xTaskCreate() API function used to create the
1930  * task, and the handle of the currently running task can be obtained by calling
1931  * xTaskGetCurrentTaskHandle().
1932  *
1933  * @param ulValue Data that can be sent with the notification.  How the data is
1934  * used depends on the value of the eAction parameter.
1935  *
1936  * @param eAction Specifies how the notification updates the task's notification
1937  * value, if at all.  Valid values for eAction are as follows:
1938  *
1939  * eSetBits -
1940  * The task's notification value is bitwise ORed with ulValue.  xTaskNofify()
1941  * always returns pdPASS in this case.
1942  *
1943  * eIncrement -
1944  * The task's notification value is incremented.  ulValue is not used and
1945  * xTaskNotify() always returns pdPASS in this case.
1946  *
1947  * eSetValueWithOverwrite -
1948  * The task's notification value is set to the value of ulValue, even if the
1949  * task being notified had not yet processed the previous notification (the
1950  * task already had a notification pending).  xTaskNotify() always returns
1951  * pdPASS in this case.
1952  *
1953  * eSetValueWithoutOverwrite -
1954  * If the task being notified did not already have a notification pending then
1955  * the task's notification value is set to ulValue and xTaskNotify() will
1956  * return pdPASS.  If the task being notified already had a notification
1957  * pending then no action is performed and pdFAIL is returned.
1958  *
1959  * eNoAction -
1960  * The task receives a notification without its notification value being
1961  * updated.  ulValue is not used and xTaskNotify() always returns pdPASS in
1962  * this case.
1963  *
1964  *  pulPreviousNotificationValue -
1965  *  Can be used to pass out the subject task's notification value before any
1966  *  bits are modified by the notify function.
1967  *
1968  * @return Dependent on the value of eAction.  See the description of the
1969  * eAction parameter.
1970  *
1971  * \defgroup xTaskNotify xTaskNotify
1972  * \ingroup TaskNotifications
1973  */
1974 BaseType_t xTaskGenericNotify(
1975     TaskHandle_t xTaskToNotify,
1976     uint32_t ulValue,
1977     eNotifyAction eAction,
1978     uint32_t *pulPreviousNotificationValue) PRIVILEGED_FUNCTION;
1979 #define xTaskNotify(xTaskToNotify, ulValue, eAction) \
1980     xTaskGenericNotify((xTaskToNotify), (ulValue), (eAction), NULL)
1981 #define xTaskNotifyAndQuery( \
1982     xTaskToNotify, ulValue, eAction, pulPreviousNotifyValue) \
1983     xTaskGenericNotify( \
1984         (xTaskToNotify), (ulValue), (eAction), (pulPreviousNotifyValue))
1985 
1986 /**
1987  * task. h
1988  * <PRE>BaseType_t xTaskNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t
1989  * ulValue, eNotifyAction eAction, BaseType_t *pxHigherPriorityTaskWoken
1990  * );</PRE>
1991  *
1992  * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
1993  * function to be available.
1994  *
1995  * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
1996  * "notification value", which is a 32-bit unsigned integer (uint32_t).
1997  *
1998  * A version of xTaskNotify() that can be used from an interrupt service routine
1999  * (ISR).
2000  *
2001  * Events can be sent to a task using an intermediary object.  Examples of such
2002  * objects are queues, semaphores, mutexes and event groups.  Task notifications
2003  * are a method of sending an event directly to a task without the need for such
2004  * an intermediary object.
2005  *
2006  * A notification sent to a task can optionally perform an action, such as
2007  * update, overwrite or increment the task's notification value.  In that way
2008  * task notifications can be used to send data to a task, or be used as light
2009  * weight and fast binary or counting semaphores.
2010  *
2011  * A notification sent to a task will remain pending until it is cleared by the
2012  * task calling xTaskNotifyWait() or ulTaskNotifyTake().  If the task was
2013  * already in the Blocked state to wait for a notification when the notification
2014  * arrives then the task will automatically be removed from the Blocked state
2015  * (unblocked) and the notification cleared.
2016  *
2017  * A task can use xTaskNotifyWait() to [optionally] block to wait for a
2018  * notification to be pending, or ulTaskNotifyTake() to [optionally] block
2019  * to wait for its notification value to have a non-zero value.  The task does
2020  * not consume any CPU time while it is in the Blocked state.
2021  *
2022  * See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
2023  *
2024  * @param xTaskToNotify The handle of the task being notified.  The handle to a
2025  * task can be returned from the xTaskCreate() API function used to create the
2026  * task, and the handle of the currently running task can be obtained by calling
2027  * xTaskGetCurrentTaskHandle().
2028  *
2029  * @param ulValue Data that can be sent with the notification.  How the data is
2030  * used depends on the value of the eAction parameter.
2031  *
2032  * @param eAction Specifies how the notification updates the task's notification
2033  * value, if at all.  Valid values for eAction are as follows:
2034  *
2035  * eSetBits -
2036  * The task's notification value is bitwise ORed with ulValue.  xTaskNofify()
2037  * always returns pdPASS in this case.
2038  *
2039  * eIncrement -
2040  * The task's notification value is incremented.  ulValue is not used and
2041  * xTaskNotify() always returns pdPASS in this case.
2042  *
2043  * eSetValueWithOverwrite -
2044  * The task's notification value is set to the value of ulValue, even if the
2045  * task being notified had not yet processed the previous notification (the
2046  * task already had a notification pending).  xTaskNotify() always returns
2047  * pdPASS in this case.
2048  *
2049  * eSetValueWithoutOverwrite -
2050  * If the task being notified did not already have a notification pending then
2051  * the task's notification value is set to ulValue and xTaskNotify() will
2052  * return pdPASS.  If the task being notified already had a notification
2053  * pending then no action is performed and pdFAIL is returned.
2054  *
2055  * eNoAction -
2056  * The task receives a notification without its notification value being
2057  * updated.  ulValue is not used and xTaskNotify() always returns pdPASS in
2058  * this case.
2059  *
2060  * @param pxHigherPriorityTaskWoken  xTaskNotifyFromISR() will set
2061  * *pxHigherPriorityTaskWoken to pdTRUE if sending the notification caused the
2062  * task to which the notification was sent to leave the Blocked state, and the
2063  * unblocked task has a priority higher than the currently running task.  If
2064  * xTaskNotifyFromISR() sets this value to pdTRUE then a context switch should
2065  * be requested before the interrupt is exited.  How a context switch is
2066  * requested from an ISR is dependent on the port - see the documentation page
2067  * for the port in use.
2068  *
2069  * @return Dependent on the value of eAction.  See the description of the
2070  * eAction parameter.
2071  *
2072  * \defgroup xTaskNotify xTaskNotify
2073  * \ingroup TaskNotifications
2074  */
2075 BaseType_t xTaskGenericNotifyFromISR(
2076     TaskHandle_t xTaskToNotify,
2077     uint32_t ulValue,
2078     eNotifyAction eAction,
2079     uint32_t *pulPreviousNotificationValue,
2080     BaseType_t *pxHigherPriorityTaskWoken) PRIVILEGED_FUNCTION;
2081 #define xTaskNotifyFromISR( \
2082     xTaskToNotify, ulValue, eAction, pxHigherPriorityTaskWoken) \
2083     xTaskGenericNotifyFromISR( \
2084         (xTaskToNotify), \
2085         (ulValue), \
2086         (eAction), \
2087         NULL, \
2088         (pxHigherPriorityTaskWoken))
2089 #define xTaskNotifyAndQueryFromISR( \
2090     xTaskToNotify, \
2091     ulValue, \
2092     eAction, \
2093     pulPreviousNotificationValue, \
2094     pxHigherPriorityTaskWoken) \
2095     xTaskGenericNotifyFromISR( \
2096         (xTaskToNotify), \
2097         (ulValue), \
2098         (eAction), \
2099         (pulPreviousNotificationValue), \
2100         (pxHigherPriorityTaskWoken))
2101 
2102 /**
2103  * task. h
2104  * <PRE>BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t
2105  * ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait
2106  * );</pre>
2107  *
2108  * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
2109  * function to be available.
2110  *
2111  * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
2112  * "notification value", which is a 32-bit unsigned integer (uint32_t).
2113  *
2114  * Events can be sent to a task using an intermediary object.  Examples of such
2115  * objects are queues, semaphores, mutexes and event groups.  Task notifications
2116  * are a method of sending an event directly to a task without the need for such
2117  * an intermediary object.
2118  *
2119  * A notification sent to a task can optionally perform an action, such as
2120  * update, overwrite or increment the task's notification value.  In that way
2121  * task notifications can be used to send data to a task, or be used as light
2122  * weight and fast binary or counting semaphores.
2123  *
2124  * A notification sent to a task will remain pending until it is cleared by the
2125  * task calling xTaskNotifyWait() or ulTaskNotifyTake().  If the task was
2126  * already in the Blocked state to wait for a notification when the notification
2127  * arrives then the task will automatically be removed from the Blocked state
2128  * (unblocked) and the notification cleared.
2129  *
2130  * A task can use xTaskNotifyWait() to [optionally] block to wait for a
2131  * notification to be pending, or ulTaskNotifyTake() to [optionally] block
2132  * to wait for its notification value to have a non-zero value.  The task does
2133  * not consume any CPU time while it is in the Blocked state.
2134  *
2135  * See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
2136  *
2137  * @param ulBitsToClearOnEntry Bits that are set in ulBitsToClearOnEntry value
2138  * will be cleared in the calling task's notification value before the task
2139  * checks to see if any notifications are pending, and optionally blocks if no
2140  * notifications are pending.  Setting ulBitsToClearOnEntry to ULONG_MAX (if
2141  * limits.h is included) or 0xffffffffUL (if limits.h is not included) will have
2142  * the effect of resetting the task's notification value to 0.  Setting
2143  * ulBitsToClearOnEntry to 0 will leave the task's notification value unchanged.
2144  *
2145  * @param ulBitsToClearOnExit If a notification is pending or received before
2146  * the calling task exits the xTaskNotifyWait() function then the task's
2147  * notification value (see the xTaskNotify() API function) is passed out using
2148  * the pulNotificationValue parameter.  Then any bits that are set in
2149  * ulBitsToClearOnExit will be cleared in the task's notification value (note
2150  * *pulNotificationValue is set before any bits are cleared).  Setting
2151  * ulBitsToClearOnExit to ULONG_MAX (if limits.h is included) or 0xffffffffUL
2152  * (if limits.h is not included) will have the effect of resetting the task's
2153  * notification value to 0 before the function exits.  Setting
2154  * ulBitsToClearOnExit to 0 will leave the task's notification value unchanged
2155  * when the function exits (in which case the value passed out in
2156  * pulNotificationValue will match the task's notification value).
2157  *
2158  * @param pulNotificationValue Used to pass the task's notification value out
2159  * of the function.  Note the value passed out will not be effected by the
2160  * clearing of any bits caused by ulBitsToClearOnExit being non-zero.
2161  *
2162  * @param xTicksToWait The maximum amount of time that the task should wait in
2163  * the Blocked state for a notification to be received, should a notification
2164  * not already be pending when xTaskNotifyWait() was called.  The task
2165  * will not consume any processing time while it is in the Blocked state.  This
2166  * is specified in kernel ticks, the macro pdMS_TO_TICSK( value_in_ms ) can be
2167  * used to convert a time specified in milliseconds to a time specified in
2168  * ticks.
2169  *
2170  * @return If a notification was received (including notifications that were
2171  * already pending when xTaskNotifyWait was called) then pdPASS is
2172  * returned.  Otherwise pdFAIL is returned.
2173  *
2174  * \defgroup xTaskNotifyWait xTaskNotifyWait
2175  * \ingroup TaskNotifications
2176  */
2177 BaseType_t xTaskNotifyWait(
2178     uint32_t ulBitsToClearOnEntry,
2179     uint32_t ulBitsToClearOnExit,
2180     uint32_t *pulNotificationValue,
2181     TickType_t xTicksToWait) PRIVILEGED_FUNCTION;
2182 
2183 /**
2184  * task. h
2185  * <PRE>BaseType_t xTaskNotifyGive( TaskHandle_t xTaskToNotify );</PRE>
2186  *
2187  * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this macro
2188  * to be available.
2189  *
2190  * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
2191  * "notification value", which is a 32-bit unsigned integer (uint32_t).
2192  *
2193  * Events can be sent to a task using an intermediary object.  Examples of such
2194  * objects are queues, semaphores, mutexes and event groups.  Task notifications
2195  * are a method of sending an event directly to a task without the need for such
2196  * an intermediary object.
2197  *
2198  * A notification sent to a task can optionally perform an action, such as
2199  * update, overwrite or increment the task's notification value.  In that way
2200  * task notifications can be used to send data to a task, or be used as light
2201  * weight and fast binary or counting semaphores.
2202  *
2203  * xTaskNotifyGive() is a helper macro intended for use when task notifications
2204  * are used as light weight and faster binary or counting semaphore equivalents.
2205  * Actual FreeRTOS semaphores are given using the xSemaphoreGive() API function,
2206  * the equivalent action that instead uses a task notification is
2207  * xTaskNotifyGive().
2208  *
2209  * When task notifications are being used as a binary or counting semaphore
2210  * equivalent then the task being notified should wait for the notification
2211  * using the ulTaskNotificationTake() API function rather than the
2212  * xTaskNotifyWait() API function.
2213  *
2214  * See http://www.FreeRTOS.org/RTOS-task-notifications.html for more details.
2215  *
2216  * @param xTaskToNotify The handle of the task being notified.  The handle to a
2217  * task can be returned from the xTaskCreate() API function used to create the
2218  * task, and the handle of the currently running task can be obtained by calling
2219  * xTaskGetCurrentTaskHandle().
2220  *
2221  * @return xTaskNotifyGive() is a macro that calls xTaskNotify() with the
2222  * eAction parameter set to eIncrement - so pdPASS is always returned.
2223  *
2224  * \defgroup xTaskNotifyGive xTaskNotifyGive
2225  * \ingroup TaskNotifications
2226  */
2227 #define xTaskNotifyGive(xTaskToNotify) \
2228     xTaskGenericNotify((xTaskToNotify), (0), eIncrement, NULL)
2229 
2230 /**
2231  * task. h
2232  * <PRE>void vTaskNotifyGiveFromISR( TaskHandle_t xTaskHandle, BaseType_t
2233  * *pxHigherPriorityTaskWoken );
2234  *
2235  * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this macro
2236  * to be available.
2237  *
2238  * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
2239  * "notification value", which is a 32-bit unsigned integer (uint32_t).
2240  *
2241  * A version of xTaskNotifyGive() that can be called from an interrupt service
2242  * routine (ISR).
2243  *
2244  * Events can be sent to a task using an intermediary object.  Examples of such
2245  * objects are queues, semaphores, mutexes and event groups.  Task notifications
2246  * are a method of sending an event directly to a task without the need for such
2247  * an intermediary object.
2248  *
2249  * A notification sent to a task can optionally perform an action, such as
2250  * update, overwrite or increment the task's notification value.  In that way
2251  * task notifications can be used to send data to a task, or be used as light
2252  * weight and fast binary or counting semaphores.
2253  *
2254  * vTaskNotifyGiveFromISR() is intended for use when task notifications are
2255  * used as light weight and faster binary or counting semaphore equivalents.
2256  * Actual FreeRTOS semaphores are given from an ISR using the
2257  * xSemaphoreGiveFromISR() API function, the equivalent action that instead uses
2258  * a task notification is vTaskNotifyGiveFromISR().
2259  *
2260  * When task notifications are being used as a binary or counting semaphore
2261  * equivalent then the task being notified should wait for the notification
2262  * using the ulTaskNotificationTake() API function rather than the
2263  * xTaskNotifyWait() API function.
2264  *
2265  * See http://www.FreeRTOS.org/RTOS-task-notifications.html for more details.
2266  *
2267  * @param xTaskToNotify The handle of the task being notified.  The handle to a
2268  * task can be returned from the xTaskCreate() API function used to create the
2269  * task, and the handle of the currently running task can be obtained by calling
2270  * xTaskGetCurrentTaskHandle().
2271  *
2272  * @param pxHigherPriorityTaskWoken  vTaskNotifyGiveFromISR() will set
2273  * *pxHigherPriorityTaskWoken to pdTRUE if sending the notification caused the
2274  * task to which the notification was sent to leave the Blocked state, and the
2275  * unblocked task has a priority higher than the currently running task.  If
2276  * vTaskNotifyGiveFromISR() sets this value to pdTRUE then a context switch
2277  * should be requested before the interrupt is exited.  How a context switch is
2278  * requested from an ISR is dependent on the port - see the documentation page
2279  * for the port in use.
2280  *
2281  * \defgroup xTaskNotifyWait xTaskNotifyWait
2282  * \ingroup TaskNotifications
2283  */
2284 void vTaskNotifyGiveFromISR(
2285     TaskHandle_t xTaskToNotify,
2286     BaseType_t *pxHigherPriorityTaskWoken) PRIVILEGED_FUNCTION;
2287 
2288 /**
2289  * task. h
2290  * <PRE>uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t
2291  * xTicksToWait );</pre>
2292  *
2293  * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
2294  * function to be available.
2295  *
2296  * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
2297  * "notification value", which is a 32-bit unsigned integer (uint32_t).
2298  *
2299  * Events can be sent to a task using an intermediary object.  Examples of such
2300  * objects are queues, semaphores, mutexes and event groups.  Task notifications
2301  * are a method of sending an event directly to a task without the need for such
2302  * an intermediary object.
2303  *
2304  * A notification sent to a task can optionally perform an action, such as
2305  * update, overwrite or increment the task's notification value.  In that way
2306  * task notifications can be used to send data to a task, or be used as light
2307  * weight and fast binary or counting semaphores.
2308  *
2309  * ulTaskNotifyTake() is intended for use when a task notification is used as a
2310  * faster and lighter weight binary or counting semaphore alternative.  Actual
2311  * FreeRTOS semaphores are taken using the xSemaphoreTake() API function, the
2312  * equivalent action that instead uses a task notification is
2313  * ulTaskNotifyTake().
2314  *
2315  * When a task is using its notification value as a binary or counting semaphore
2316  * other tasks should send notifications to it using the xTaskNotifyGive()
2317  * macro, or xTaskNotify() function with the eAction parameter set to
2318  * eIncrement.
2319  *
2320  * ulTaskNotifyTake() can either clear the task's notification value to
2321  * zero on exit, in which case the notification value acts like a binary
2322  * semaphore, or decrement the task's notification value on exit, in which case
2323  * the notification value acts like a counting semaphore.
2324  *
2325  * A task can use ulTaskNotifyTake() to [optionally] block to wait for a
2326  * the task's notification value to be non-zero.  The task does not consume any
2327  * CPU time while it is in the Blocked state.
2328  *
2329  * Where as xTaskNotifyWait() will return when a notification is pending,
2330  * ulTaskNotifyTake() will return when the task's notification value is
2331  * not zero.
2332  *
2333  * See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
2334  *
2335  * @param xClearCountOnExit if xClearCountOnExit is pdFALSE then the task's
2336  * notification value is decremented when the function exits.  In this way the
2337  * notification value acts like a counting semaphore.  If xClearCountOnExit is
2338  * not pdFALSE then the task's notification value is cleared to zero when the
2339  * function exits.  In this way the notification value acts like a binary
2340  * semaphore.
2341  *
2342  * @param xTicksToWait The maximum amount of time that the task should wait in
2343  * the Blocked state for the task's notification value to be greater than zero,
2344  * should the count not already be greater than zero when
2345  * ulTaskNotifyTake() was called.  The task will not consume any processing
2346  * time while it is in the Blocked state.  This is specified in kernel ticks,
2347  * the macro pdMS_TO_TICSK( value_in_ms ) can be used to convert a time
2348  * specified in milliseconds to a time specified in ticks.
2349  *
2350  * @return The task's notification count before it is either cleared to zero or
2351  * decremented (see the xClearCountOnExit parameter).
2352  *
2353  * \defgroup ulTaskNotifyTake ulTaskNotifyTake
2354  * \ingroup TaskNotifications
2355  */
2356 uint32_t ulTaskNotifyTake(BaseType_t xClearCountOnExit, TickType_t xTicksToWait)
2357     PRIVILEGED_FUNCTION;
2358 
2359 /**
2360  * task. h
2361  * <PRE>BaseType_t xTaskNotifyStateClear( TaskHandle_t xTask );</pre>
2362  *
2363  * If the notification state of the task referenced by the handle xTask is
2364  * eNotified, then set the task's notification state to eNotWaitingNotification.
2365  * The task's notification value is not altered.  Set xTask to NULL to clear the
2366  * notification state of the calling task.
2367  *
2368  * @return pdTRUE if the task's notification state was set to
2369  * eNotWaitingNotification, otherwise pdFALSE.
2370  * \defgroup xTaskNotifyStateClear xTaskNotifyStateClear
2371  * \ingroup TaskNotifications
2372  */
2373 BaseType_t xTaskNotifyStateClear(TaskHandle_t xTask);
2374 
2375 /**
2376  * task. h
2377  * <PRE>uint32_t ulTaskNotifyValueClear( TaskHandle_t xTask, uint32_t
2378  * ulBitsToClear );</pre>
2379  *
2380  * Clears the bits specified by the ulBitsToClear bit mask in the notification
2381  * value of the task referenced by xTask.
2382  *
2383  * Set ulBitsToClear to 0xffffffff (UINT_MAX on 32-bit architectures) to clear
2384  * the notification value to 0.  Set ulBitsToClear to 0 to query the task's
2385  * notification value without clearing any bits.
2386  *
2387  * @return The value of the target task's notification value before the bits
2388  * specified by ulBitsToClear were cleared.
2389  * \defgroup ulTaskNotifyValueClear ulTaskNotifyValueClear
2390  * \ingroup TaskNotifications
2391  */
2392 uint32_t ulTaskNotifyValueClear(TaskHandle_t xTask, uint32_t ulBitsToClear)
2393     PRIVILEGED_FUNCTION;
2394 
2395 /**
2396  * task.h
2397  * <pre>void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )</pre>
2398  *
2399  * Capture the current time for future use with xTaskCheckForTimeOut().
2400  *
2401  * @param pxTimeOut Pointer to a timeout object into which the current time
2402  * is to be captured.  The captured time includes the tick count and the number
2403  * of times the tick count has overflowed since the system first booted.
2404  * \defgroup vTaskSetTimeOutState vTaskSetTimeOutState
2405  * \ingroup TaskCtrl
2406  */
2407 void vTaskSetTimeOutState(TimeOut_t *const pxTimeOut) PRIVILEGED_FUNCTION;
2408 
2409 /**
2410  * task.h
2411  * <pre>BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t
2412  * const pxTicksToWait );</pre>
2413  *
2414  * Determines if pxTicksToWait ticks has passed since a time was captured
2415  * using a call to vTaskSetTimeOutState().  The captured time includes the tick
2416  * count and the number of times the tick count has overflowed.
2417  *
2418  * @param pxTimeOut The time status as captured previously using
2419  * vTaskSetTimeOutState. If the timeout has not yet occurred, it is updated
2420  * to reflect the current time status.
2421  * @param pxTicksToWait The number of ticks to check for timeout i.e. if
2422  * pxTicksToWait ticks have passed since pxTimeOut was last updated (either by
2423  * vTaskSetTimeOutState() or xTaskCheckForTimeOut()), the timeout has occurred.
2424  * If the timeout has not occurred, pxTIcksToWait is updated to reflect the
2425  * number of remaining ticks.
2426  *
2427  * @return If timeout has occurred, pdTRUE is returned. Otherwise pdFALSE is
2428  * returned and pxTicksToWait is updated to reflect the number of remaining
2429  * ticks.
2430  *
2431  * @see https://www.freertos.org/xTaskCheckForTimeOut.html
2432  *
2433  * Example Usage:
2434  * <pre>
2435     // Driver library function used to receive uxWantedBytes from an Rx buffer
2436     // that is filled by a UART interrupt. If there are not enough bytes in the
2437     // Rx buffer then the task enters the Blocked state until it is notified
2438  that
2439     // more data has been placed into the buffer. If there is still not enough
2440     // data then the task re-enters the Blocked state, and
2441  xTaskCheckForTimeOut()
2442     // is used to re-calculate the Block time to ensure the total amount of time
2443     // spent in the Blocked state does not exceed MAX_TIME_TO_WAIT. This
2444     // continues until either the buffer contains at least uxWantedBytes bytes,
2445     // or the total amount of time spent in the Blocked state reaches
2446     // MAX_TIME_TO_WAIT – at which point the task reads however many bytes are
2447     // available up to a maximum of uxWantedBytes.
2448 
2449     size_t xUART_Receive( uint8_t *pucBuffer, size_t uxWantedBytes )
2450     {
2451     size_t uxReceived = 0;
2452     TickType_t xTicksToWait = MAX_TIME_TO_WAIT;
2453     TimeOut_t xTimeOut;
2454 
2455         // Initialize xTimeOut.  This records the time at which this function
2456         // was entered.
2457         vTaskSetTimeOutState( &xTimeOut );
2458 
2459         // Loop until the buffer contains the wanted number of bytes, or a
2460         // timeout occurs.
2461         while( UART_bytes_in_rx_buffer( pxUARTInstance ) < uxWantedBytes )
2462         {
2463             // The buffer didn't contain enough data so this task is going to
2464             // enter the Blocked state. Adjusting xTicksToWait to account for
2465             // any time that has been spent in the Blocked state within this
2466             // function so far to ensure the total amount of time spent in the
2467             // Blocked state does not exceed MAX_TIME_TO_WAIT.
2468             if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) != pdFALSE )
2469             {
2470                 //Timed out before the wanted number of bytes were available,
2471                 // exit the loop.
2472                 break;
2473             }
2474 
2475             // Wait for a maximum of xTicksToWait ticks to be notified that the
2476             // receive interrupt has placed more data into the buffer.
2477             ulTaskNotifyTake( pdTRUE, xTicksToWait );
2478         }
2479 
2480         // Attempt to read uxWantedBytes from the receive buffer into pucBuffer.
2481         // The actual number of bytes read (which might be less than
2482         // uxWantedBytes) is returned.
2483         uxReceived = UART_read_from_receive_buffer( pxUARTInstance,
2484                                                     pucBuffer,
2485                                                     uxWantedBytes );
2486 
2487         return uxReceived;
2488     }
2489  </pre>
2490  * \defgroup xTaskCheckForTimeOut xTaskCheckForTimeOut
2491  * \ingroup TaskCtrl
2492  */
2493 BaseType_t xTaskCheckForTimeOut(
2494     TimeOut_t *const pxTimeOut,
2495     TickType_t *const pxTicksToWait) PRIVILEGED_FUNCTION;
2496 
2497 /*-----------------------------------------------------------
2498  * SCHEDULER INTERNALS AVAILABLE FOR PORTING PURPOSES
2499  *----------------------------------------------------------*/
2500 
2501 /*
2502  * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE.  IT IS ONLY
2503  * INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS
2504  * AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
2505  *
2506  * Called from the real time kernel tick (either preemptive or cooperative),
2507  * this increments the tick count and checks if any tasks that are blocked
2508  * for a finite period required removing from a blocked list and placing on
2509  * a ready list.  If a non-zero value is returned then a context switch is
2510  * required because either:
2511  *   + A task was removed from a blocked list because its timeout had expired,
2512  *     or
2513  *   + Time slicing is in use and there is a task of equal priority to the
2514  *     currently running task.
2515  */
2516 BaseType_t xTaskIncrementTick(void) PRIVILEGED_FUNCTION;
2517 
2518 /*
2519  * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE.  IT IS AN
2520  * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
2521  *
2522  * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
2523  *
2524  * Removes the calling task from the ready list and places it both
2525  * on the list of tasks waiting for a particular event, and the
2526  * list of delayed tasks.  The task will be removed from both lists
2527  * and replaced on the ready list should either the event occur (and
2528  * there be no higher priority tasks waiting on the same event) or
2529  * the delay period expires.
2530  *
2531  * The 'unordered' version replaces the event list item value with the
2532  * xItemValue value, and inserts the list item at the end of the list.
2533  *
2534  * The 'ordered' version uses the existing event list item value (which is the
2535  * owning tasks priority) to insert the list item into the event list is task
2536  * priority order.
2537  *
2538  * @param pxEventList The list containing tasks that are blocked waiting
2539  * for the event to occur.
2540  *
2541  * @param xItemValue The item value to use for the event list item when the
2542  * event list is not ordered by task priority.
2543  *
2544  * @param xTicksToWait The maximum amount of time that the task should wait
2545  * for the event to occur.  This is specified in kernel ticks,the constant
2546  * portTICK_PERIOD_MS can be used to convert kernel ticks into a real time
2547  * period.
2548  */
2549 void vTaskPlaceOnEventList(
2550     List_t *const pxEventList,
2551     const TickType_t xTicksToWait) PRIVILEGED_FUNCTION;
2552 void vTaskPlaceOnUnorderedEventList(
2553     List_t *pxEventList,
2554     const TickType_t xItemValue,
2555     const TickType_t xTicksToWait) PRIVILEGED_FUNCTION;
2556 
2557 /*
2558  * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE.  IT IS AN
2559  * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
2560  *
2561  * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
2562  *
2563  * This function performs nearly the same function as vTaskPlaceOnEventList().
2564  * The difference being that this function does not permit tasks to block
2565  * indefinitely, whereas vTaskPlaceOnEventList() does.
2566  *
2567  */
2568 void vTaskPlaceOnEventListRestricted(
2569     List_t *const pxEventList,
2570     TickType_t xTicksToWait,
2571     const BaseType_t xWaitIndefinitely) PRIVILEGED_FUNCTION;
2572 
2573 /*
2574  * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE.  IT IS AN
2575  * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
2576  *
2577  * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
2578  *
2579  * Removes a task from both the specified event list and the list of blocked
2580  * tasks, and places it on a ready queue.
2581  *
2582  * xTaskRemoveFromEventList()/vTaskRemoveFromUnorderedEventList() will be called
2583  * if either an event occurs to unblock a task, or the block timeout period
2584  * expires.
2585  *
2586  * xTaskRemoveFromEventList() is used when the event list is in task priority
2587  * order.  It removes the list item from the head of the event list as that will
2588  * have the highest priority owning task of all the tasks on the event list.
2589  * vTaskRemoveFromUnorderedEventList() is used when the event list is not
2590  * ordered and the event list items hold something other than the owning tasks
2591  * priority.  In this case the event list item value is updated to the value
2592  * passed in the xItemValue parameter.
2593  *
2594  * @return pdTRUE if the task being removed has a higher priority than the task
2595  * making the call, otherwise pdFALSE.
2596  */
2597 BaseType_t xTaskRemoveFromEventList(const List_t *const pxEventList)
2598     PRIVILEGED_FUNCTION;
2599 void vTaskRemoveFromUnorderedEventList(
2600     ListItem_t *pxEventListItem,
2601     const TickType_t xItemValue) PRIVILEGED_FUNCTION;
2602 
2603 /*
2604  * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE.  IT IS ONLY
2605  * INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS
2606  * AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
2607  *
2608  * Sets the pointer to the current TCB to the TCB of the highest priority task
2609  * that is ready to run.
2610  */
2611 portDONT_DISCARD void vTaskSwitchContext(void) PRIVILEGED_FUNCTION;
2612 
2613 /*
2614  * THESE FUNCTIONS MUST NOT BE USED FROM APPLICATION CODE.  THEY ARE USED BY
2615  * THE EVENT BITS MODULE.
2616  */
2617 TickType_t uxTaskResetEventItemValue(void) PRIVILEGED_FUNCTION;
2618 
2619 /*
2620  * Return the handle of the calling task.
2621  */
2622 TaskHandle_t xTaskGetCurrentTaskHandle(void) PRIVILEGED_FUNCTION;
2623 
2624 /*
2625  * Shortcut used by the queue implementation to prevent unnecessary call to
2626  * taskYIELD();
2627  */
2628 void vTaskMissedYield(void) PRIVILEGED_FUNCTION;
2629 
2630 /*
2631  * Returns the scheduler state as taskSCHEDULER_RUNNING,
2632  * taskSCHEDULER_NOT_STARTED or taskSCHEDULER_SUSPENDED.
2633  */
2634 BaseType_t xTaskGetSchedulerState(void) PRIVILEGED_FUNCTION;
2635 
2636 /*
2637  * Raises the priority of the mutex holder to that of the calling task should
2638  * the mutex holder have a priority less than the calling task.
2639  */
2640 BaseType_t xTaskPriorityInherit(TaskHandle_t const pxMutexHolder)
2641     PRIVILEGED_FUNCTION;
2642 
2643 /*
2644  * Set the priority of a task back to its proper priority in the case that it
2645  * inherited a higher priority while it was holding a semaphore.
2646  */
2647 BaseType_t xTaskPriorityDisinherit(TaskHandle_t const pxMutexHolder)
2648     PRIVILEGED_FUNCTION;
2649 
2650 /*
2651  * If a higher priority task attempting to obtain a mutex caused a lower
2652  * priority task to inherit the higher priority task's priority - but the higher
2653  * priority task then timed out without obtaining the mutex, then the lower
2654  * priority task will disinherit the priority again - but only down as far as
2655  * the highest priority task that is still waiting for the mutex (if there were
2656  * more than one task waiting for the mutex).
2657  */
2658 void vTaskPriorityDisinheritAfterTimeout(
2659     TaskHandle_t const pxMutexHolder,
2660     UBaseType_t uxHighestPriorityWaitingTask) PRIVILEGED_FUNCTION;
2661 
2662 /*
2663  * Get the uxTCBNumber assigned to the task referenced by the xTask parameter.
2664  */
2665 UBaseType_t uxTaskGetTaskNumber(TaskHandle_t xTask) PRIVILEGED_FUNCTION;
2666 
2667 /*
2668  * Set the uxTaskNumber of the task referenced by the xTask parameter to
2669  * uxHandle.
2670  */
2671 void vTaskSetTaskNumber(TaskHandle_t xTask, const UBaseType_t uxHandle)
2672     PRIVILEGED_FUNCTION;
2673 
2674 /*
2675  * Only available when configUSE_TICKLESS_IDLE is set to 1.
2676  * If tickless mode is being used, or a low power mode is implemented, then
2677  * the tick interrupt will not execute during idle periods.  When this is the
2678  * case, the tick count value maintained by the scheduler needs to be kept up
2679  * to date with the actual execution time by being skipped forward by a time
2680  * equal to the idle period.
2681  */
2682 void vTaskStepTick(const TickType_t xTicksToJump) PRIVILEGED_FUNCTION;
2683 
2684 /* Correct the tick count value after the application code has held
2685 interrupts disabled for an extended period.  xTicksToCatchUp is the number
2686 of tick interrupts that have been missed due to interrupts being disabled.
2687 Its value is not computed automatically, so must be computed by the
2688 application writer.
2689 
2690 This function is similar to vTaskStepTick(), however, unlike
2691 vTaskStepTick(), xTaskCatchUpTicks() may move the tick count forward past a
2692 time at which a task should be removed from the blocked state.  That means
2693 tasks may have to be removed from the blocked state as the tick count is
2694 moved. */
2695 BaseType_t xTaskCatchUpTicks(TickType_t xTicksToCatchUp) PRIVILEGED_FUNCTION;
2696 
2697 /*
2698  * Only available when configUSE_TICKLESS_IDLE is set to 1.
2699  * Provided for use within portSUPPRESS_TICKS_AND_SLEEP() to allow the port
2700  * specific sleep function to determine if it is ok to proceed with the sleep,
2701  * and if it is ok to proceed, if it is ok to sleep indefinitely.
2702  *
2703  * This function is necessary because portSUPPRESS_TICKS_AND_SLEEP() is only
2704  * called with the scheduler suspended, not from within a critical section.  It
2705  * is therefore possible for an interrupt to request a context switch between
2706  * portSUPPRESS_TICKS_AND_SLEEP() and the low power mode actually being
2707  * entered.  eTaskConfirmSleepModeStatus() should be called from a short
2708  * critical section between the timer being stopped and the sleep mode being
2709  * entered to ensure it is ok to proceed into the sleep mode.
2710  */
2711 eSleepModeStatus eTaskConfirmSleepModeStatus(void) PRIVILEGED_FUNCTION;
2712 
2713 /*
2714  * For internal use only.  Increment the mutex held count when a mutex is
2715  * taken and return the handle of the task that has taken the mutex.
2716  */
2717 TaskHandle_t pvTaskIncrementMutexHeldCount(void) PRIVILEGED_FUNCTION;
2718 
2719 /*
2720  * For internal use only.  Same as vTaskSetTimeOutState(), but without a critial
2721  * section.
2722  */
2723 void vTaskInternalSetTimeOutState(TimeOut_t *const pxTimeOut)
2724     PRIVILEGED_FUNCTION;
2725 
2726 #ifdef __cplusplus
2727 }
2728 #endif
2729 #endif /* INC_TASK_H */
2730